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 Novelty bonuses (Kakade & Dayan, 2002)

Table 1. Parameter Estimates for the Behavioral Model, Shown

- Daw Novelty study as Mean (Over Subjects) + 1 SE
Learning rate v 0.23 + 0.038
Softmax inv. temperature 3 85+1.2
Initial value, familiarized Qy 0.37 + 0.071
Initial value, novel Q, 0.41 + 0.076
Due to poor identification of § and v, one subject is omitted from these
averages.

Figure 2. Ventral Striatal Response to
Prediction Error and Novelty

Peak coordinates are given in MNI space on all im-
ages. Color bars indicate T values.

(A) Activation in right ventral striatum correlated
significantly with reward prediction errors gener-
ated by the standard TD model (p < 0.001 uncor-
rected, p < 0.05 SVC, cluster > 5 voxels).

(B) Activation in right ventral striatum correlated
significantly with additional prediction error due
to inclusion of a novelty bonus (p < 0.001 uncor-
rected, p < 0.05 SVC, cluster > 5 voxels).

(C) Significant overlap between activation in right
ventral striatum for the novelty bonus (see [B])
and activation obtained for standard model (see
[A]) derived by inclusively masking (B) with (A)
(p < 0.005, uncorrected, for both contrasts, clus-
ter > 5 voxels).

(D) Striatal activation time courses calculated for
the first two trials a novel stimulus is chosen minus
the first two choices of familiar stimuli, shown
for the peak voxel correlating with the novelty
bonus (MNI coordinates: 14, 20, —10). Trials are
aligned by the time of reward outcome at 6.5 s;
the average stimulus onset time is also indicated.
Error bars indicate SEM.

Until choice (max. 3.5 s)

Figure 1. Experimental Design

Following a familiarization phase, participants were shown four pictures on each trial and asked to choose one. Both familiarized and novel pictures were pre-
sented at randomized locations that changed on each trial. Each picture was repeated for an average of 20 trials and then replaced. Participants were informed
that each picture had been assigned a unique probability of winning £1 that would not change as long as that picture was repeated. They were given feedback at
the end of each trial indicating whether they had won or received nothing.
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Process decoding
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Figure 7. ROI results for problem state updates. Top panels show

Problem
State

model predictions; bottom panels data. 1 scan = 2 seconds.

Figure 8. Model-based fMRI results. Statistical maps were thresholded at

p <.001 (uncorrected). White squares indicate predefined ACT-R regions.



Experiment Design
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Experiment Design
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Experiment Design
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24,722,168 hours

Delay between study and test varied
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Process decoding
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Brain mapping of semantic space

a Voxel-wise model estimation b Voxel-wise model validation

Naturally spoken stories were played for 7 subjects A new story was then played for each subject
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Summary

Cognitive models might provide the bridge between Marr's levels of analyses

Cognitive models are able to account of behavior (e.g., choices, reaction time) and
thus provide strong targets for localizing and interpreting brain data

Can possibly use brain data to adjust predictions of behavior for individual subjects

Large scale mapping studies provide insight into the organization of semantic
memory In the brain






neural networks / deep learning
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Reinforcement learning
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Bayesian modeling  !random “yes" example:
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Model fitting, evaluation, and comparison

Akaike’s Information Criterion (AlIC)

AIC = 2InL(0|u, M) + 2K 1

Bayesian Information Criterion (BIC)

BIC = =2IinL(0|u, M) + KinN a

Global minimum at [0 0]
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classification and category learning

the human cognition framework
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Probabilistic graphical models

Object B is placed on Object B is removed Object A is placed on Object B is added to the detector with
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Probilistic programs and program induction
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(topleft (setDifference (set 1A ... 6F) (coloredTiles Water)))

Are all the ships horizontal?
(all (map (lambda x (== H (orient x))) (set Blue Red Purple)))

Are blue and purple ships touching and red and purple not touching (or vice versa)?

(== (touch Blue Purple) (not (touch Red Purple)))
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Open questions

e How does a computationally limited, time constrained, noisy/wet/squish brain perform
sophisticated (probabilistic) inferences?

e How do these noisy/wet/squishy neurons hook up in neural networks and maintain
stability and function, even under damage or disease?

e How does the mind and brain learn, represent and reason with rich structural
representations (graphs, trees, programs, etc.)? These representations sometimes
seems as antithetical to brain processes (e.g., neural networks) but we are on verge
of seeing massive convergence in approaches.



More open questions

e How can recent advances in Al best advance computational cognitive modeling? How
can recent advances in computational cognitive modeling best advance Al?

e Many human abilities lack compelling computational models:
- scene understanding

- language understanding

- creativity

- general purpose problem solving

- learning new video games

- commonsense reasoning, etc.

e How do deep learning, reinforcement learning, Bayesian modeling, graphical models, and
probabilistic programming fit together? Is there are unifying computational framework for

understanding human intelligence?

e How can understanding the structure of the cognitive system (e.g., the algorithmic or
computational level) help us interpret the function and organization of the human brain?
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Open Questions in Computational Cognitive Modeling



How do deep learning, reinforcement learning, Bayesian modeling,
graphical models, and probabilistic programming fit together? Is there are
unifying computational framework for understanding human intelligence?



How do deep learning, reinforcement learning, Bayesian modeling,
graphical models, and probabilistic programming fit together? Is there are
unifying computational framework for understanding human intelligence?

deep learning + reinforcement learning = deep RL
deep learning + Bayesian modeling = Bayesian deep learning
deep learning + symbolic modeling = neuro-symbolic modeling




Probabilistic programs and program induction
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Generative neuro-symbolic modeling
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How can understanding the structure of the cognitive system (e.g., the
algorithmic or computational level) help us interpret the function and
organization of the human brain?



Classic approach

Directly relate operational definitions of psychological constructs to
the brain:
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Model-based fMRI
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Table 1. Parameter Estimates for the Behavioral Model, Shown
as Mean (Over Subjects) + 1 SE
- Daw N 0V€lty stu dy Learning rate v 0.23 + 0.038

Softmax inv. temperature 85+1.2

Initial value, familiarized Q¢ 0.37 = 0.071
Initial value, novel Q, 0.41 + 0.076
Due to poor identification of B and v, one subject is omitted from these
averages.

Figure 2. Ventral Striatal Response to
Prediction Error and Novelty

Peak coordinates are given in MNI space on all im-
ages. Color bars indicate T values.

(A) Activation in right ventral striatum correlated
significantly with reward prediction errors gener-
ated by the standard TD model (p < 0.001 uncor-
rected, p < 0.05 SVC, cluster > 5 voxels).

(B) Activation in right ventral striatum correlated
significantly with additional prediction error due
to inclusion of a novelty bonus (p < 0.001 uncor-
rected, p < 0.05 SVC, cluster > 5 voxels).

(C) Significant overlap between activation in right
ventral striatum for the novelty bonus (see [B])
and activation obtained for standard model (see
[A]) derived by inclusively masking (B) with (A)
(p < 0.005, uncorrected, for both contrasts, clus-
ter > 5 voxels).

(D) Striatal activation time courses calculated for

Until choice (max. 3.5s)

Figure 1. Experimental Design

Following a familiarization phase, participants were shown four pictures on each trial and asked to choose one. Both familiarized and novel pictures were pre-
sented at randomized locations that changed on each trial. Each picture was repeated for an average of 20 trials and then replaced. Participants were informed
that each picture had been assigned a unique probability of winning £1 that would not change as long as that picture was repeated. They were given feedback at

the end of each trial indicating whether they had won or received nothing. the first two trials a novel stimulus is chosen minus
the first two choices of familiar stimuli, shown
for the peak voxel correlating with the novelty
£ oos / bonus (MNI coordinates: 14, 20, —10). Trials are
% / N aligned by the time of reward outcome at 6.5 s;
5§ 000 the average stimulus onset time is also indicated.
H \ Error bars indicate SEM.
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Brain mapping of semantic space

a Voxel-wise model estimation b Voxel-wise model validation
Naturally spoken stories were played for 7 subjects . A new story was then played for each subject
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How can recent advances In Al best advance computational cognitive
modeling?

How can recent advances in computational cognitive modeling best
advance Al?



How can recent advances in Al best advance computational cognitive modeling?

Living thing
Plant
Animal
Tree
Flower

Bird
Flower
Pine

Oak

Pine Rose
Oak Daisy
Rose Robin
Daisy Canary
Robin Sunfish
Canary Salmon
Sunfish

Salmon . Pretty

Tall

Item
Living
Green
Red

Yellow

) | Grow
Move

)| Swim
_ D |Fly
Sing

Bark
Petals
Wings
Feathers
Scales
Gills
Roots
Skin
Attribute

- GV A V- g GV P P V- g A . I AV 4V 4N A 4N 4V 4V 4V 4V gV b 4V 9 & 4F 4V 4V @b 4V 4V 4V 4V iV gV g g gV 4 V- 4V g gV 4V g5 4V gV 45 g JF V- V- gV 4V g 4V _dV 4V gF gy gV- g8 4y & 4

Convolutions and RelLU
B & L& & L LS L& & ZF &Sy LF LA Lo o o o s S S K s S &N & =

Max pooling

Eaf J o o f f M e - J ) S A

Convolutions and RelLU
S - - S o

Max pooling

VERBS

0Q-OFT

AL
?S.\u aladel Wie)
1

ANIMALS

- n&er
__EE ANIMEATES
- HrAgTn
TN
)

NOUNS

dw_uich

sonie FOOD
oiad INANIMATES

s

BREAKABLES

03

& Animals (8)
. Boats (8)

Image
generalization

Planes (8)

=52 Tables (8)




How can recent advances in Al best advance computational cognitive modeling?
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How can recent advances in computational cognitive modeling best

advance Al?

Many human abilities lack compelling computational models:
scene understanding
language understanding
creativity
general purpose problem solving
learning new video games

commonsense reasoning, etc.



