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Directly relate operational definitions of psychological constructs to the 
brain: 

Classic approach



Model-based fMRI

   

• Novelty bonuses (Kakade & Dayan, 2002) 

• Daw Novelty study

Novelty and Reward
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Experiment Design
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Study items shuffled within rows of 5
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Lithuanian-English word pairs
Items varied in difficult based on
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Experiment Design

Study Session Judgements of
Learning

24,72,168 hours

5-8 minutes 8-15 minutes
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Experiment Design

Study Session Judgements of
Learning

24,72,168 hours

5-8 minutes 8-15 minutes

Test Session

~55 minutes

krantas

Cued Recall Test
Type out response with keyboard
within 12 seconds

Delay between study and test varied
Different subjects came back on 
different days, all > 24 hours.



Process decoding
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Brain mapping of semantic space



• Cognitive models might provide the bridge between Marr’s levels of analyses 

• Cognitive models are able to account of behavior (e.g., choices, reaction time) and 
thus provide strong targets for localizing and interpreting brain data 

• Can possibly use brain data to adjust predictions of behavior for individual subjects 

• Large scale mapping studies provide insight into the organization of semantic 
memory in the brain

Summary
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neural networks / deep learning
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R E V I EW S

children’s experience, and the coding of experience for
the network finesses some important issues. However,
we argue that the training data capture two essential fea-
tures. First, many types of naturally occurring things
have a hierarchical similarity structure, as Quillian
noticed; and second, from exposure to examples of
objects children learn just what the similarities are and
how they can be exploited.

The Rumelhart model can show how learning can
shape not only overt responses, but also internal repre-
sentations. A special set of internal or hidden units,
labelled ‘representation’ units, was included between the
input units for the individual concepts and the large
group of hidden units that combine the concept and
relation information. When the network is initialized,
the patterns of activation on the representation units are
weak and random, owing to the random initial connec-
tion weights, but gradually these patterns become 
differentiated, recapitulating the general-to-specific
progression seen in many developmental studies. The
simulation results in FIG. 4 show that patterns represent-
ing the different concepts are similar at the beginning
of training, but gradually become differentiated in
waves. One wave of differentiation separates plants from
animals. The next waves differentiate birds from fish,
and trees from flowers. Later waves differentiate the
individual objects. The process is continuous, but there
are periods of stability punctuated by relatively rapid
transitions also seen in many other developmental
models54,56,59, reminiscent of the seemingly stage-like
character of many aspects of cognitive development62.

Rumelhart focused on showing how this network
recapitulates Quillian’s hierarchical representation of
concepts, but in a different way than Quillian envi-
sioned it — in the pattern of similarities and differences
among the internal representations of the various con-
cepts, rather than in the form of explicit ‘ISA’ links. This
characteristic of the model is clearly brought out in the
hierarchical clustering analysis of the representations of
the concepts (FIG. 4b). Rumelhart also showed how the
network could generalize what it knows about familiar
concepts to new ones. He introduced the network to a
new concept,‘sparrow’, by adding a new input unit with
0-valued connections to the representation units. He
then presented the network with the input–output pair
‘sparrow–ISA–bird/animal/living thing’. Only the con-
nection weights from ‘sparrow’ to the representation
units were allowed to change. As a result, ‘sparrow’ pro-
duced a pattern of activation similar to that already used
for the robin and the canary. Rumelhart then tested the
responses of the network to other questions about the
sparrow, by probing with the inputs ‘sparrow–CAN’,
‘sparrow–HAS’ and ‘sparrow–IS’. In each case the net-
work activated output units corresponding to shared
characteristics of the other birds in the training set
(CAN grow, CAN move, CAN fly; HAS skin, HAS
wings, HAS feathers), and produced very low activation
of output units corresponding to attributes not charac-
teristic of any animals. Attributes varying between the
birds and attributes possessed by other animals received
intermediate degrees of activation. This behaviour is a

compared to the correct output (activation of ‘grow’,
‘move’,‘fly’ and ‘sing’ should be 1, and activation of other
output units should be 0). The connection weights are
then adjusted to reduce the difference between the tar-
get and the obtained activations. The set of training
experiences includes one for each concept–relation pair,
with the target specifying all valid completions consis-
tent with FIG. 1.

The network is trained through many epochs or suc-
cessive sweeps through the set of training examples.
Only small adjustments to the connection weights are
made after each example is processed, so that learning is
very gradual — akin to the process we believe occurs in
development, as children experience items and their
properties through day-to-day experience. Of course,
the tiny training set used is not fully representative of
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Figure 3 | Our depiction of the connectionist network used by Rumelhart60,61. The network
is used to learn propositions about the concepts shown in FIG. 1. The entire set of units used in
the network is shown. Inputs are presented on the left, and activation propagates from left to
right. Where connections are indicated, every unit in the pool on the left (sending) side projects to
every unit on the right (receiving) side. An input consists of a concept–relation pair; the input
‘canary CAN’ is represented by darkening the active input units. The network is trained to turn on
all those output units that represent correct completions of the input pattern. In this case, the
correct units to activate are ‘grow’, ‘move’, ‘fly’ and ‘sing’. Subsequent analysis focuses on the
concept representation units, the group of eight units to the right of the concept input units.
Adapted, with permission, from REF. 61 © (1993) MIT Press.

raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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than that of IT (12). Comparing a performance-optimized model
to these data would provide a strong test both of its ability to
predict the internal structure of the ventral stream, as well as to
go beyond the direct consequences of category selectivity. We
thus measured the HMO model’s neural predictivity for the V4
neural population (Fig. 5). We found that the HMO model’s
penultimate layer is highly predictive of V4 neural responses
(51:7± 2:3% explained V4 variance), providing a significantly
better match to V4 than either the model’s top or bottom layers.
These results are strong evidence for the hypothesis that V4
corresponds to an intermediate layer in a hierarchical model
whose top layer is an effective model of IT. Of the control
models that we tested, the V2-like model predicts the most V4
variation ð34:1± 2:4%Þ. Unlike the case of IT, semantic models
explain effectively no variance in V4, consistent with V4’s lack of
category selectivity. Together these results suggest that perfor-
mance optimization not only drives top-level output model layers
to resemble IT, but also imposes biologically consistent con-
straints on the intermediate feature representations that can
support downstream performance.

Discussion
Here, we demonstrate a principled method for achieving greatly
improved predictive models of neural responses in higher
ventral cortex. Our approach operationalizes a hypothesis for
how two biological constraints together shaped visual cortex:
(i) the functional constraint of recognition performance and
(ii) the structural constraint imposed by the hierarchical net-
work architecture.

Generative Basis for Higher Visual Cortical Areas. Our modeling
approach has common ground with existing work on neural re-
sponse prediction (27), e.g., the HLN hypothesis. However, in
a departure from that line of work, we do not tune model
parameters (the nonlinearities or the model filters) separately
for each neural unit to be predicted. In fact, with the exception
of the final linear weighting, we do not tune parameters using
neural data at all. Instead, the parameters of our model were
independently selected to optimize functional performance at
the top level, and these choices create fixed bases from which any
individual IT or V4 unit can be composed. This yields a genera-
tive model that allows the sampling of an arbitrary number of

neurally consistent units. As a result, the size of the model does
not scale with the number of neural sites to be predicted—and
because the prediction results were assessed for a random
sample of IT and V4 units, they are likely to generalize with
similar levels of predictivity to any new sites that are measured.

What Features Do Good Models Share? Although the highest-per-
forming models had certain commonalities (e.g., more hierar-
chical layers), many poor models also exhibited these features,
and no one architectural parameter dominated performance
variability (Fig. S3). To gain further insight, we performed an
exploratory analysis of the parameters of the learned HMO
model, evaluating each parameter both for how sensitively it was
tuned and how diverse it was between model mixture components.
Two classes of model parameters were especially sensitive and
diverse (SI Text and Figs. S10 and S11): (i) filter statistics, in-
cluding filter mean and spread, and (ii) the exponent trading off
between max-pooling and average-pooling (16). This observation
hints at a computationally rigorous explanation for experimentally
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Fig. 4. Population-level similarity. (A) Object-level representation dissimi-
larity matrices (RDMs) visualized via rank-normalized color plots (blue = 0th
distance percentile, red = 100th percentile). (B) IT population and the HMO-
based IT model population, for image, object, and category generalizations
(SI Text). (C) Quantification of model population representation similarity to
IT. Bar height indicates the spearman correlation value of a given model’s
RDM to the RDM for the IT neural population. The IT bar represents the
Spearman-Brown corrected consistency of the IT RDM for split-halves over
the IT units, establishing a noise-limited upper bound. Error bars are taken
over cross-validated regression splits in the case of models and over image
and unit splits in the case of neural data.
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Reinforcement learning



Bayesian modeling

P (h|D) =
P (h)P (D|h)P

hi
P (hi)P (D|hi)

h : hypothesis D : data

Which numbers will be accepted by the 
same computer program? 

15? 128? 

Which numbers will be accepted by the 
same computer program? 

15? 128? T S
noise

P(T|S)

The speaker makes an intended sound production T.
Noise in the air perturbs T into S.
The listener calculates the posterior P(T|S)

P (T |S) =
P (S|T )P (T )

P (S)

noise
speech sound from 

speakerperception

Bayesian model of speech perception
speaker listener

ttotal

best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2. People’s predictions for various everyday phenomena. The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximately Erlang. The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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Model fitting, evaluation, and comparison

 63

Saturated Model

Null Model

In an ideal world, you want to fit as well 
as the saturated model, but using no 
“free” parameters.

• Akaike’s Information Criterion (AIC)


• Bayesian Information Criterion (BIC)

 73

Information criteria

AIC = �2lnL(✓|u,M) + 2K

BIC = �2lnL(✓|u,M) +KlnN

 37

hill climbing
 40

start multiple places!



classification and category learning

9

What is the function y = f(x) that best characterizes how people 
make categorization decisions? 

the human cognition framework

Slide credit: L. Lazebnik 
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Is y = f(x) that people used based on instances?

Bird? Birds  
You’ve Seen 

• Find a linear function to separate the classes: 

 f(x) = sgn(w ⋅ x + b)
Slide credit: L. Lazebnik

What is the decision architecture of 
categorization decisions? e.g., linear decision

boundary



Probabilistic graphical models

extent to which graphs with many clusters are penalized, and is
fixed for all of our experiments. The normalizing constant for
P(S!F) depends on the number of structures compatible with a
given form, and ensures that simpler forms are preferred when-

ever possible. For example, any chain Sc is a special case of a grid,
but P(Sc!F ! chain) " P(Sc!F ! grid) because there are more
possible grids than chains given a fixed number of entities. It
follows that P(Sc, F ! chain!D) " P(Sc, F ! grid!D) for any
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extent to which graphs with many clusters are penalized, and is
fixed for all of our experiments. The normalizing constant for
P(S!F) depends on the number of structures compatible with a
given form, and ensures that simpler forms are preferred when-

ever possible. For example, any chain Sc is a special case of a grid,
but P(Sc!F ! chain) " P(Sc!F ! grid) because there are more
possible grids than chains given a fixed number of entities. It
follows that P(Sc, F ! chain!D) " P(Sc, F ! grid!D) for any

New
York

Bombay

Buenos Aires

Moscow

Sao Paulo

Mexico City

Jakarta

Tokyo

Lima

London

Bangkok

SantiagoLos Angeles

Berlin

Madrid

Chicago
VancouverToronto

Sydney

Perth

Anchorage

Cape Town

Nairobi

Vladivostok

Dakar

Kinshasa

Bogota

Honolulu

Wellington

Cairo
Shanghai

Teheran

Irkutsk

Manila

Budapest

GinsburgBrennan
Scalia

Thomas

O'Connor

Kennedy

White
Souter

BreyerMarshall
Blackmun Stevens Rehnquist

B

C

Elephant
Rhino Horse

Cow

CamelGiraffe

Chimp
Gorilla

Mouse
Squirrel Tiger

Lion
Cat

Dog
Wolf

Seal
Dolphin

Robin
Eagle

Chicken

Salmon Trout

Bee

Iguana

Alligator

Butterfly

AntFinch

Penguin

Cockroach

Whale

Ostrich

Deer

E

A

D

Fig. 3. Structures learned from biological features (A), Supreme Court votes (B), judgments of the similarity between pure color wavelengths (C), Euclidean
distances between faces represented as pixel vectors (D), and distances between world cities (E). For A–C, the edge lengths represent maximum a posteriori edge
lengths under our generative model.

4

3

5

2
1

Wolfowitz
Rice
Powell
Ashcroft
Cheney
Card

1

Bush

Myers
Feith

Armitage

Libby

DC

Whitman

Rumsfeld

1
11 321

2
3

A

P CAB R WL CA
B
R
M
W
R
P

WFMR

6

C
L
CW

A

F

A B

Fig. 4. Structures learned from relational data (Upper) and the raw data organized according to these structures (Lower). (A) Dominance relationships among a troop
of sooty mangabeys. The sorted data matrix has most of its entries above the diagonal, indicating that animals tend to dominate only the animals below them in the
order. (B) A hierarchy representing interactions between members of the Bush administration. (C ) Social cliques representing friendship relations between prisoners.
The sorted matrix has most of its entries along the diagonal, indicating that prisoners tend only to be friends with prisoners in the same cluster. (D) The Kula ring
representing armshell trade between New Guinea communities. The relative positions of the communities correspond approximately to their geographic locations.

Kemp and Tenenbaum PNAS ! August 5, 2008 ! vol. 105 ! no. 31 ! 10689

CO
M

PU
TE

R
SC

IE
N

CE
S

PS
YC

HO
LO

G
Y

SE
E

CO
M

M
EN

TA
RY

The results of these experiments rule out many possible hypoth-
eses about children’s causal learning. Because children did not
activate the detector themselves, they could not have solved these
tasks through operant conditioning or through trial-and-error learn-
ing. The blickets and nonblickets were perceptually indistinguish-
able, and both blocks were in contact with the detector, so children
could not have solved the tasks through their substantive prior
knowledge about everyday physics.
The “make it stop” condition in this experiment also showed

that children’s inferences went beyond classical conditioning, sim-
ple association, or simple imitative learning. Children not only
associated the word and the effect, they combined their prior
causal knowledge and the new causal knowledge they inferred
from the dependencies to create a brand-new intervention that they
had never witnessed before. As we mentioned above, this kind of
novel intervention is the hallmark of a causal map. It is interesting
that there is, to our knowledge, no equivalent of this result in the
vast animal conditioning literature, although such an experiment
would be easy to design. Would Pavlov’s dogs, for example,
intervene to silence a bell that led to shock, if they had simply
experienced an association between the bell and the shock but had
never intervened in this way before?
In all these respects, children seemed to have learned a new

causal map. Moreover, this experiment showed that children were
not using simple frequencies to determine the causal structure of
this map but were using more complex patterns of conditional
dependence. However, this experiment was consistent with all four
learning models we described above, including the causal inter-
pretation of the RW model.

Inference from indirect evidence: Backward blocking. In the
next study we wanted to see whether children’s reasoning would
extend to even more complex types of conditional dependence and,
in particular, if children would reason in ways that went beyond
causal RW. There are a number of experimental results that argue
against the RW model for adult human causal learning. One such
phenomenon is “backward blocking” (Shanks, 1985; Shanks &
Dickinson, 1987; Wasserman & Berglan, 1998). In backward
blocking, learners decide whether an object causes an effect by
using information from trials in which that object never appears.
Sobel and colleagues (Sobel, Tenenbaum, & Gopnik, in press)

have demonstrated backward blocking empirically in young chil-
dren. In one experiment (Sobel et al., in press, Experiment 2), 3-
and 4-year-olds were introduced to the blicket detector in the same
manner as in the Gopnik et al. (2001) experiments. They were told
that some blocks were blickets and that blickets make the machine
go. In a pretest, children saw that some blocks, but not others,
made the machine go, and the active objects were labeled as
blickets. Then children were shown two new blocks (A and B).
In one condition, the control, inference condition, A and B were

placed on the detector together twice, and the detector responded
both times. Then children observed that Object A did not activate
the detector by itself. In the other condition, the backward blocking
condition, children saw that two new blocks, A and B, activated
the detector together twice. Then they observed that Block A did
activate the detector by itself. In both conditions, children were
then asked whether each block was a blicket and were asked to
make the machine go (see Figure 13).

Figure 12. Procedure used in Gopnik et al. (2001, Experiment 3).
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Probilistic programs and program induction
the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters
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Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.
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Training item with model’s five best parses

Test items

 

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).
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Figure 3: Novel questions generated by the probabilistic model. Across four contexts, five model questions are
displayed, next to the two most informative human questions for comparison. Model questions were sampled
such that they are not equivalent to any in the training set. The natural language translations of the question
programs are provided for interpretation. Questions with lower energy are more likely according to the model.
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for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate
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Human or Machine?

Fig. 5. Generating new exemplars. Humans and machines were given an image of a novel character
(top) and asked to produce new exemplars.The nine-character grids in each pair that were generated by
a machine are (by row) 1, 2; 2, 1; 1, 1.
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though, we also do not include a successor function, mean-
ing a function which maps the representation of N to the
representation of N + 1. While neither a successor function
or a Mod-N function is assumed, both can be constructed
in this representational system.

3.4. Hypothesis space for the model

The hypothesis space for the learning model consists of
all ways these primitives can be combined to form lambda
expressions—lexicons—which map sets to number words.
This therefore provides a space of exact numerical mean-
ings. In a certain sense, the learning model is therefore
quite restricted in the set of possible meanings it will con-
sider. It will not ever, for instance, map a set to a different
concept or a word not on the count list. This restriction is
computationally convenient and developmentally plausi-
ble. Wynn (1992) provided evidence that children know
number words refer to some kind of numerosity before
they know their exact meanings. For example, even chil-
dren who did not know the exact meaning of ‘‘four’’
pointed to a display with several objects over a display
with few when asked ‘‘Can you show me four balloons?’’
They did not show this patten for nonsense word such as
‘‘Can you show me blicket balloons?’’ Similarly, children
map number words to some type of cardinality, even if
they do not know which cardinalities (Lipton & Spelke,
2006; Sarnecka & Gelman, 2004). Bloom and Wynn

(1997) suggest that perhaps this can be accounted for by
a learning mechanism that uses syntactic cues to deter-
mine that number words are a class with a certain
semantics.

However, within the domain of functions which map
sets to words, this hypothesis space is relatively unre-
stricted. Some example hypotheses are shown in Fig. 1.
The hypothesis space contains functions with partial
numerical knowledge—for instance, hypotheses that have
the correct meaning for ‘‘one’’ and ‘‘two’’, but not ‘‘three’’
or above. For instance, the 2-knower hypothesis takes an
argument S, and first checks if (singleton? S) is true—if S
has one element. If it does, the function returns ‘‘one’’. If
not, this hypothesis returns the value of (if (doubleton? S)
‘‘two’’ undef). This expression is another if-statement, one
which returns ‘‘two’’ if S has two elements, and undef
otherwise. Thus, this hypothesis represent a 2-knower
who has the correct meanings for ‘‘one’’ and ‘‘two’’, but
not for any higher numbers. Intuitively, one could build
much more complex and interesting hypotheses in this
format—for instance, ones that check more complex prop-
erties of S and return other word values.

Fig. 1 also shows an example of a CP-knower lexicon.
This function makes use of the counting routine and recur-
sion. First, this function checks if S contains a single ele-
ment, returning ‘‘one’’ if it does. If not, this function calls
set-difference on S and (select S). This has the effect of
choosing an element from S and removing it, yielding a

Fig. 1. Example hypotheses in the LOT. These include subset-knower, CP-knower, and Mod-N hypotheses. The actual hypothesis space for this model is
infinite, including all expressions which can be constructed in the LOT.
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Open questions

• How does a computationally limited, time constrained, noisy/wet/squish brain perform 
sophisticated (probabilistic) inferences?

• How do these noisy/wet/squishy neurons hook up in neural networks and maintain 
stability and function, even under damage or disease?

• How does the mind and brain learn, represent and reason with rich structural 
representations (graphs, trees, programs, etc.)?  These representations sometimes 
seems as antithetical to brain processes (e.g., neural networks) but we are on verge 
of seeing massive convergence in approaches.



More open questions

• How can recent advances in AI best advance computational cognitive modeling? How 
can recent advances in computational cognitive modeling best advance AI?

• Many human abilities lack compelling computational models:
- scene understanding
- language understanding
- creativity
- general purpose problem solving
- learning new video games
- commonsense reasoning, etc.

• How do deep learning, reinforcement learning, Bayesian modeling, graphical models, and 
probabilistic programming fit together? Is there are unifying computational framework for 
understanding human intelligence?

• How can understanding the structure of the cognitive system (e.g., the algorithmic or 
computational level) help us interpret the function and organization of the human brain?
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Open Questions in Computational Cognitive Modeling



How do deep learning, reinforcement learning, Bayesian modeling, 
graphical models, and probabilistic programming fit together? Is there are 
unifying computational framework for understanding human intelligence?



How do deep learning, reinforcement learning, Bayesian modeling, 
graphical models, and probabilistic programming fit together? Is there are 
unifying computational framework for understanding human intelligence?

deep learning + reinforcement learning = deep RL
deep learning + Bayesian modeling = Bayesian deep learning
deep learning + symbolic modeling = neuro-symbolic modeling



Probabilistic programs and program induction
the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters
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Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.
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Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).
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for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate
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Fig. 5. Generating new exemplars. Humans and machines were given an image of a novel character
(top) and asked to produce new exemplars.The nine-character grids in each pair that were generated by
a machine are (by row) 1, 2; 2, 1; 1, 1.
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“six” “two”

though, we also do not include a successor function, mean-
ing a function which maps the representation of N to the
representation of N + 1. While neither a successor function
or a Mod-N function is assumed, both can be constructed
in this representational system.

3.4. Hypothesis space for the model

The hypothesis space for the learning model consists of
all ways these primitives can be combined to form lambda
expressions—lexicons—which map sets to number words.
This therefore provides a space of exact numerical mean-
ings. In a certain sense, the learning model is therefore
quite restricted in the set of possible meanings it will con-
sider. It will not ever, for instance, map a set to a different
concept or a word not on the count list. This restriction is
computationally convenient and developmentally plausi-
ble. Wynn (1992) provided evidence that children know
number words refer to some kind of numerosity before
they know their exact meanings. For example, even chil-
dren who did not know the exact meaning of ‘‘four’’
pointed to a display with several objects over a display
with few when asked ‘‘Can you show me four balloons?’’
They did not show this patten for nonsense word such as
‘‘Can you show me blicket balloons?’’ Similarly, children
map number words to some type of cardinality, even if
they do not know which cardinalities (Lipton & Spelke,
2006; Sarnecka & Gelman, 2004). Bloom and Wynn

(1997) suggest that perhaps this can be accounted for by
a learning mechanism that uses syntactic cues to deter-
mine that number words are a class with a certain
semantics.

However, within the domain of functions which map
sets to words, this hypothesis space is relatively unre-
stricted. Some example hypotheses are shown in Fig. 1.
The hypothesis space contains functions with partial
numerical knowledge—for instance, hypotheses that have
the correct meaning for ‘‘one’’ and ‘‘two’’, but not ‘‘three’’
or above. For instance, the 2-knower hypothesis takes an
argument S, and first checks if (singleton? S) is true—if S
has one element. If it does, the function returns ‘‘one’’. If
not, this hypothesis returns the value of (if (doubleton? S)
‘‘two’’ undef). This expression is another if-statement, one
which returns ‘‘two’’ if S has two elements, and undef
otherwise. Thus, this hypothesis represent a 2-knower
who has the correct meanings for ‘‘one’’ and ‘‘two’’, but
not for any higher numbers. Intuitively, one could build
much more complex and interesting hypotheses in this
format—for instance, ones that check more complex prop-
erties of S and return other word values.

Fig. 1 also shows an example of a CP-knower lexicon.
This function makes use of the counting routine and recur-
sion. First, this function checks if S contains a single ele-
ment, returning ‘‘one’’ if it does. If not, this function calls
set-difference on S and (select S). This has the effect of
choosing an element from S and removing it, yielding a

Fig. 1. Example hypotheses in the LOT. These include subset-knower, CP-knower, and Mod-N hypotheses. The actual hypothesis space for this model is
infinite, including all expressions which can be constructed in the LOT.

204 S.T. Piantadosi et al. / Cognition 123 (2012) 199–217



type level

C
Canvas

yi, xi

Part

procedure GENERATETYPE
C  0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C  frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
  {, y1:, x1:}
return  . Return concept type
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procedure GENERATETYPE
C  0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C  frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
  {, y1:, x1:}
return  . Return concept type
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procedure GENERATETYPE
C  0 . Initialize blank canvas
for i = 1, . . . ,1 do

xi  GENERATEPART(C) . Sample part from neural net
C  RENDER (yi, xi, C) . Update canvas
vi  TERMINATE?(C) . Sample termination indicator
if vi then

break . Terminate sample
  {i, x1:i, y1:i, }
return  . Return concept type
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procedure GENERATEBIKE
w1  GENERATEWHEEL()
w2  GENERATEWHEEL()
f  ??GENERATEFRAME()
C  ATTACH(w1, w2, f)
p GENERATEPEDALS()
h GENERATECHAIN()
C  ??ATTACH(C, p, h)
. . .
I  RENDER(C)
return GENERATETOKEN( )



How can understanding the structure of the cognitive system (e.g., the 
algorithmic or computational level) help us interpret the function and 
organization of the human brain?



Directly relate operational definitions of psychological constructs to 
the brain: 

Classic approach



Model-based fMRI

   

• Novelty bonuses (Kakade & Dayan, 2002) 

• Daw Novelty study
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Brain mapping of semantic space
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children’s experience, and the coding of experience for
the network finesses some important issues. However,
we argue that the training data capture two essential fea-
tures. First, many types of naturally occurring things
have a hierarchical similarity structure, as Quillian
noticed; and second, from exposure to examples of
objects children learn just what the similarities are and
how they can be exploited.

The Rumelhart model can show how learning can
shape not only overt responses, but also internal repre-
sentations. A special set of internal or hidden units,
labelled ‘representation’ units, was included between the
input units for the individual concepts and the large
group of hidden units that combine the concept and
relation information. When the network is initialized,
the patterns of activation on the representation units are
weak and random, owing to the random initial connec-
tion weights, but gradually these patterns become 
differentiated, recapitulating the general-to-specific
progression seen in many developmental studies. The
simulation results in FIG. 4 show that patterns represent-
ing the different concepts are similar at the beginning
of training, but gradually become differentiated in
waves. One wave of differentiation separates plants from
animals. The next waves differentiate birds from fish,
and trees from flowers. Later waves differentiate the
individual objects. The process is continuous, but there
are periods of stability punctuated by relatively rapid
transitions also seen in many other developmental
models54,56,59, reminiscent of the seemingly stage-like
character of many aspects of cognitive development62.

Rumelhart focused on showing how this network
recapitulates Quillian’s hierarchical representation of
concepts, but in a different way than Quillian envi-
sioned it — in the pattern of similarities and differences
among the internal representations of the various con-
cepts, rather than in the form of explicit ‘ISA’ links. This
characteristic of the model is clearly brought out in the
hierarchical clustering analysis of the representations of
the concepts (FIG. 4b). Rumelhart also showed how the
network could generalize what it knows about familiar
concepts to new ones. He introduced the network to a
new concept,‘sparrow’, by adding a new input unit with
0-valued connections to the representation units. He
then presented the network with the input–output pair
‘sparrow–ISA–bird/animal/living thing’. Only the con-
nection weights from ‘sparrow’ to the representation
units were allowed to change. As a result, ‘sparrow’ pro-
duced a pattern of activation similar to that already used
for the robin and the canary. Rumelhart then tested the
responses of the network to other questions about the
sparrow, by probing with the inputs ‘sparrow–CAN’,
‘sparrow–HAS’ and ‘sparrow–IS’. In each case the net-
work activated output units corresponding to shared
characteristics of the other birds in the training set
(CAN grow, CAN move, CAN fly; HAS skin, HAS
wings, HAS feathers), and produced very low activation
of output units corresponding to attributes not charac-
teristic of any animals. Attributes varying between the
birds and attributes possessed by other animals received
intermediate degrees of activation. This behaviour is a

compared to the correct output (activation of ‘grow’,
‘move’,‘fly’ and ‘sing’ should be 1, and activation of other
output units should be 0). The connection weights are
then adjusted to reduce the difference between the tar-
get and the obtained activations. The set of training
experiences includes one for each concept–relation pair,
with the target specifying all valid completions consis-
tent with FIG. 1.

The network is trained through many epochs or suc-
cessive sweeps through the set of training examples.
Only small adjustments to the connection weights are
made after each example is processed, so that learning is
very gradual — akin to the process we believe occurs in
development, as children experience items and their
properties through day-to-day experience. Of course,
the tiny training set used is not fully representative of
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Figure 3 | Our depiction of the connectionist network used by Rumelhart60,61. The network
is used to learn propositions about the concepts shown in FIG. 1. The entire set of units used in
the network is shown. Inputs are presented on the left, and activation propagates from left to
right. Where connections are indicated, every unit in the pool on the left (sending) side projects to
every unit on the right (receiving) side. An input consists of a concept–relation pair; the input
‘canary CAN’ is represented by darkening the active input units. The network is trained to turn on
all those output units that represent correct completions of the input pattern. In this case, the
correct units to activate are ‘grow’, ‘move’, ‘fly’ and ‘sing’. Subsequent analysis focuses on the
concept representation units, the group of eight units to the right of the concept input units.
Adapted, with permission, from REF. 61 © (1993) MIT Press.

raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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than that of IT (12). Comparing a performance-optimized model
to these data would provide a strong test both of its ability to
predict the internal structure of the ventral stream, as well as to
go beyond the direct consequences of category selectivity. We
thus measured the HMO model’s neural predictivity for the V4
neural population (Fig. 5). We found that the HMO model’s
penultimate layer is highly predictive of V4 neural responses
(51:7± 2:3% explained V4 variance), providing a significantly
better match to V4 than either the model’s top or bottom layers.
These results are strong evidence for the hypothesis that V4
corresponds to an intermediate layer in a hierarchical model
whose top layer is an effective model of IT. Of the control
models that we tested, the V2-like model predicts the most V4
variation ð34:1± 2:4%Þ. Unlike the case of IT, semantic models
explain effectively no variance in V4, consistent with V4’s lack of
category selectivity. Together these results suggest that perfor-
mance optimization not only drives top-level output model layers
to resemble IT, but also imposes biologically consistent con-
straints on the intermediate feature representations that can
support downstream performance.

Discussion
Here, we demonstrate a principled method for achieving greatly
improved predictive models of neural responses in higher
ventral cortex. Our approach operationalizes a hypothesis for
how two biological constraints together shaped visual cortex:
(i) the functional constraint of recognition performance and
(ii) the structural constraint imposed by the hierarchical net-
work architecture.

Generative Basis for Higher Visual Cortical Areas. Our modeling
approach has common ground with existing work on neural re-
sponse prediction (27), e.g., the HLN hypothesis. However, in
a departure from that line of work, we do not tune model
parameters (the nonlinearities or the model filters) separately
for each neural unit to be predicted. In fact, with the exception
of the final linear weighting, we do not tune parameters using
neural data at all. Instead, the parameters of our model were
independently selected to optimize functional performance at
the top level, and these choices create fixed bases from which any
individual IT or V4 unit can be composed. This yields a genera-
tive model that allows the sampling of an arbitrary number of

neurally consistent units. As a result, the size of the model does
not scale with the number of neural sites to be predicted—and
because the prediction results were assessed for a random
sample of IT and V4 units, they are likely to generalize with
similar levels of predictivity to any new sites that are measured.

What Features Do Good Models Share? Although the highest-per-
forming models had certain commonalities (e.g., more hierar-
chical layers), many poor models also exhibited these features,
and no one architectural parameter dominated performance
variability (Fig. S3). To gain further insight, we performed an
exploratory analysis of the parameters of the learned HMO
model, evaluating each parameter both for how sensitively it was
tuned and how diverse it was between model mixture components.
Two classes of model parameters were especially sensitive and
diverse (SI Text and Figs. S10 and S11): (i) filter statistics, in-
cluding filter mean and spread, and (ii) the exponent trading off
between max-pooling and average-pooling (16). This observation
hints at a computationally rigorous explanation for experimentally
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Fig. 5. V4 neural predictions. (A) Actual vs. predicted response magnitudes
for a typical V4 site. V4 sites are highly visually driven, but unlike IT sites
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How can recent advances in computational cognitive modeling best 
advance AI?

Many human abilities lack compelling computational models:

•     scene understanding

•     language understanding

•     creativity

•     general purpose problem solving

•     learning new video games

•     commonsense reasoning, etc.


