Computational Cognitive Modeling

Probabilistic programming, program induction, and language of thought models

Brenden Lake & Todd Gureckis

course website: https://brendenlake.github.io/CCM-site/

Probabilistic programs / probabilistic programming

```
class world():
    def __init__(self):
        self.dict_strength = {}
    def clear(self): # used when sampling over possible world
        self.dict_strength = {}
```

```
def strength(name):
    if name not in W.dict_strength:
```

```
def lazy(name):
    return random.random() < 0.1</pre>
```

```
def team_strength(team):
    # team : list of names
    mysum = 0.
    for name in team:
        if lazy(name):
            mysum += (strength(name) / 2.)
        else:
            mysum += strength(name)
    return mysum
```



```
def winner(team1,team2):
    # team1 : list of names
    # team2 : list of names
    if team_strength(team1) > team_strength(team2):
        return team1
    else:
        return team2

def beat(team1,team2):
    return winner(team1,team2) == team1
```

(example from homework; Goodman et al., 2015)

Probabilistic programs / probabilistic programming

Stochastic program (known structure)

Data

(e.g., game matches and who won)

```
class world():
   def __init__(self):
        self.dict_strength = {}
   def clear(self): # used when sampling over possible world
        self.dict_strength = {}
```

def strength(name): if name not in W.dict_strength:

```
def lazy(name):
    return random.random() < 0.1</pre>
```

How strong is Bob? inference

Probabilistic programs / probabilistic programming

- Probabilistic program: A probabilistic model defined in a structured description language (much like a programming language) using random programming primitives.
- Due to random primitives, every time the program executes it returns a different output.
- Probabilistic programs are a generalization of Bayesian networks, and many of the other Bayesian models we have discussed.
- Especially convenient when the prior is too complex to write down as a set of hypotheses, or the model is awkward or impossible to write as a Bayesian network.

Probabilistic programs: A simple example

Preliminary definitions

def flip(theta=0.5): (flip a
 return random.random() < theta</pre>

(flip a coin with 'theta' chance of heads)

Simple probabilistic program

Key idea: A probabilistic program is a generative process for producing data

Bayesian inference

Probabilistic program or Bayesian network?

In this case, the probabilistic program can be straightforwardly represented as a Bayesian network, although the program representation conveys more information.

Probabilistic programs: Another example

Simple probabilistic program (yet more complex than before)

Bayesian inference

F

Probabilistic program or Bayesian network? if C is True: A = flip()С В B = flip()C = flip()if C: D = A + B + Celse: if C is False: E = flip()F = (2*flip())*2С Ε D = A + B + C + E + F

Bayesian networks (graphical models) do not have a mechanism for adding additional variables, and they lack general control structures that are relevant in both cognitive science and data science applications (if statements, for loops, while loops, recursion, etc.)

From Homework: Reasoning about tennis with probabilistic programs

```
class world():
    def __init__(self):
        self.dict_strength = {}
    def clear(self): # used when sampling over possible world
        self.dict_strength = {}
```

```
def strength(name):
    if name not in W.dict_strength:
```

```
def lazy(name):
    return random.random() < 0.1</pre>
```

```
def team_strength(team):
    # team : list of names
    mysum = 0.
    for name in team:
        if lazy(name):
            mysum += (strength(name) / 2.)
        else:
            mysum += strength(name)
        return mysum
```

```
def winner(team1,team2):
    # team1 : list of names
    # team2 : list of names
    if team_strength(team1) > team_strength(team2):
        return team1
    else:
        return team2
def beat(team1,team2):
```

Based on the above results, how strong do you think player TG is?

ОК

Info

strong

```
return winner(team1,team2) == team1
```

very weak

(see Goodman et al., 2015)

Reasoning about tennis with probabilistic programs

(see Gerstenberg et al., 2012; Goodman et al., 2015)

Bayesian network formulation depends on set of players

Each specification of the teams changes the Bayes net structure, and thus an additional modeling mechanism is needed to construct the Bayes nets.

Example probabilistic programming languages and software

Stan

Program induction

Program induction

- Data is generated from an unknown program, where unlike standard probabilistic programming, we don't know the structure of the program.
- Prior over programs is usually defined by assuming a set of programming primitives and combination operations, which is also referred to as a "Language of thought" model in cognitive science (a la Jerry Fodor)
- More analogous to "structure learning" for Bayesian networks, where we are searching for the right causal model that generated the data.

Language of thought / program induction in Python

📮 piantado / LOTlib		⊙ ₩a	atch - 13	🛨 Unstar	21 § Fork 14						
<> Code () Issues 6 () Pu	ull requests 0	Projects 0 🔲 Wiki	Insights								
Lanugage of Thought (LOT) models in Python.											
© 1,303 commits	🖗 3 branches	♥ 0 releases	≗≗ 10 c	contributors		ಶ್ತೆ GPL-3.0					
Branch: master - New pull request			Create new file	Upload files	Find file	Clone or download -					
piantado added languages; revised search and model											
Documentation	updated input to exa	ample data		2 years ag							
LOTlib	added languages; re	evised search and model		10 months ago							
.gitignore	update gitignore wit	h double-star syntax		2 years ago							
	initial commit			5 years ago							
MAJOR-CHANGES.txt	extreme simplification	on of proposals		2 years ago							
README.md	updated Readme		a year ago								
Test.sh	Revert "Revert "Mer	ge remote-tracking branch '	origin/master''''			2 years ago					

E README.md

LOTlib

LOTIb is a Python 2 library for implementing "language of thought" models. A LOTIb model specifies a set of primitives and captures learning as inference over compositions of those primitives in order to express complex concepts. LOTIb permits lambda expressions, meaning that learners can come up with abstractions over compositions and define new Motivation: We need more than Bayesian networks to represent complex, real causal processes for generating data

same causal process

(Figure credit: Hinton & Nair, 2006)

Is it growing too close to my house? How will it grow if I trim it?

different examples

neural net caption generation: "A group of people standing on top of a beach"

Case study: Learning new handwritten letters

RESEARCH

RESEARCH ARTICLES

COGNITIVE SCIENCE

Human-level concept learning through probabilistic program induction

Brenden M. Lake,^{1*} Ruslan Salakhutdinov,² Joshua B. Tenenbaum³

People learning new concepts can often generalize successfully from just a single example, yet machine learning algorithms typically require tens or hundreds of examples to perform with similar accuracy. People can also use learned concepts in richer ways than conventional algorithms—for action, imagination, and explanation. We present a computational model that captures these human learning abilities for a large class of simple visual concepts: handwritten characters from the world's alphabets. The model represents concepts as simple programs that best explain observed examples under a Bayesian criterion. On a challenging one-shot classification task, the model achieves human-level performance while outperforming recent deep learning approaches. We also present several "visual Turing tests" probing the model's creative generalization abilities, which in many cases are indistinguishable from human behavior.

espite remarkable advances in artificial intelligence and machine learning, two aspects of human conceptual knowledge have eluded machine systems. First, for most interesting kinds of natural and manmade categories, people can learn a new concept from just one or a handful of examples, whereas standard algorithms in machine learning require tens or hundreds of examples to perform similarly. For instance, people may only need to see one example of a novel two-wheeled vehicle (Fig. 1A) in order to grasp the boundaries of the

new concept, and even children can make meaningful generalizations via "one-shot learning" (1-3). In contrast, many of the leading approaches in machine learning are also the most data-hungry, especially "deep learning" models that have achieved new levels of performance on object and speech recognition benchmarks (4-9). Second, people learn richer representations than machines do, even for simple concepts (Fig. 1B), using them for a wider range of functions, including (Fig. 1, ii) creating new exemplars (10), (Fig. 1, iii) parsing objects into parts and relations (11), and (Fig. 1, iv) creating new abstract categories of objects based on existing categories (12, 13). In contrast, the best machine classifiers do not perform these additional functions, which are rarely studied and usually require specialized algorithms. A central challenge is to explain these two aspects of human-level concept learning: How do people learn new concepts from just one or a few examples? And how do people learn such abstract, rich, and flexible representations? An even greater challenge arises when putting them together: How can learning succeed from such sparse data yet also produce such rich representations? For any theory of

¹Center for Data Science, New York University, 726 Broadway, New York, NY 10003, USA. ²Department of Computer Science and Department of Statistics, University of Toronto, 6 King's College Road, Toronto, ON M5S 3G4, Canada. ³Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. ***Corresponding author. E-mail: brenden@nyu.edu**

Standard machine learning approach: Deep neural network with large amounts of data

Slide credit: Yann LeCun

People learn knowledge from less data

J	ٱ	ا ل	b	А	Ç	ব্য	ত	ট	Π	Х	で	π	ξ .	-)(-	٦	רר	7	Г	5	至	78	ħ	H	Ģ	И.	ද්ධ	Δ	۰ſ	\wedge	ମ୍ବ	4	ㅈ	Ş	ද	व
Ľ	.7	\$	d	p	더	ঠ	শ	न	Ч	5	R	۲Ľ	7	5.	Э	J	Ч	I	3	$\widehat{\varphi}$	Q	X	\heartsuit	K	佑	୪	ρ	ռ	Ċ	ב	চ	শ	त	अ	ल्
N	X	°To	0	M	E	Ģ	G	স	×	5	N	• • •	-	~ .		Tr	- 1		ч	-	0		5	^	R	ひょ	\cap	ſ	፝	ㅈ	野	η	Æ	Ч	٩
2	A	م م	n	d	ष्प	ম	চ্	Ð	Ρ	۲		(Dr	nr	nig	0	t s	stir	ηι	ılu	S	se	et		12	Ø	С	ል	۲	3	7	P	ኻ	Ħ	ፈ
٩٦	2	义	Т	9	Ч	ቆ	5	2	В	H	(<u>htt</u>	ps	://g	ithu	<u>ub.</u>	cor	n/b	rer	nde	<u>nla</u>	ke/	<u>om</u>	nic	lot)4	Ħ	σ	Г	4	μ Π	Г	न्	म	आ	रु
m	d	z	ž	Ŀ	\$	4	Л	1	£	כ	-	_													(J	শ	AT A	3	5	υ	็ก	ພ	Д	ಟ
h	ス	d	X	ж	Ū	\bigtriangleup	\mathcal{N}	2	Σ	ж	ᡏᠮ	11	冚	Σ	ش	ب	Ċ	งภา	261	ວກ	ഖ	ഏ	ത	Fi	<u>.</u> 7.	12.	rу	ヱ	ਣ	0	2	ſŊ	ຽ	53	も
h	2	p	ዎ	X	4		7		لو	Ш	ग	2∏	9	Ж	ئ	Ċ	١	ວ	ହନ	พา	ദ	ഷ	ß	Ĵ	<u>.</u>	21	Б	ant.	モ	ጲ	h	ደ	ಆ	z	బ
รี	2	p	L	P	G	X	Þ	гР	7	E	0	T	0	U	ظ	ۈ	ث	W	บ	พฦ	Un	0	ம	7	5	λĊ	រ	Д	ч	Ð	сh	Π	Å	പ് :	ಭು
Ч	d	વ્ય	R	à	¢	4	F	F	Fr	ਹ	2Ш	E	11	6	S	Ś	ک	ນ	w	2 ମା	ബ	Р	m	57	30	<u>₹</u> つ	3	ਖ	ਮ	ф	00	ጸ	ਜ	ಡ	ພ
S	ጽ	4	Ы		Ē	'n	1)	υ	Ĺ	6	n	U	5	42	-1‡1	g	m	٨	η	শ	10	21	÷.	\square	J	_ L	<u>گ</u>	φ	<u>۱</u>	2	∇	1,1	\$ [.]	4	X
	5	á	œ٦	ユ	<u>10</u>	7	ጚ	ተ	ป่า	hı	r	N.	2	q	μL\$1		Ţ	17	5	ਸ	T	(٦. بريد	e	Y	C	°T	Ľ	۲۴	、	/	\checkmark	3	5	l
ۍ ሆ	Б	æ	д		_	A	4	ל	9	2	้น	dy	3		16	200	JТ	\sim	nc	on	te		2	\sim	\checkmark	_	ĵ	٩٦٩	2	1	小		ġ	8	Ŷ
٦	۰. بل	Ŗ	ц	E	ш	0	ዿ	k	q	ัน	0	e G	N	~	יר 20)T '08	00 anl		ch	ið Noh		DC.	\checkmark	щ	-1	Se	5	07	1/	1/		$\overline{\diamond}$	7	Þ
٦,	ታ	X	P	<u> </u>	±	ф	ω	Т	ð	η	111	٢.	5	2	20	ex	an	ιμι	es	69	C		7:	1	17	Ъ	У	Ň	j	1	٦,	く	2	Ļ	Ğ
j	P	í	S	અ	ન	S	5	F	Ц	4	X	১ ১	vs V	٦	አ	0	৵	E	ব	Pr	1	N	Ъ Ж	0	ഡ	ബ	7	Ц		5	5	8	3	ړ ل	Ч
0	Y	m	33	દ્ય	21	20	+1	32	Ч	ž	'n	5	አ	5	1×	6	G	ਲ	л	ц г	HA	15	Ш	و	ച്	ല	h	כו	=	ĸ	n	L	ጭ	**	Roe
t	ŕ	5	Ĩ.c.	な	Ř	5	ں د	20	Ъ,	Ĭ	, h	Ъ	٦	2	7		7	폱	لح	য	×	ŝ	÷	• 0	ണ	ہے	5	¥	Y	Ъ	÷	2	ш	പ	Ð
6	Ŵ	ĸ	સ	u	٤٢	5	3	20	P	y	n.	บ	ז	5	ń	5	ť	т Т	व	Ę	Ъ	17	Æ	ഞ	S	0	$\overline{\mathbb{V}}$	1	. 7	~	1	e	ক্ষ	å	막
n	q	7	5	2	59	a	7.7.7	5	$\overline{}$	Ц	تے ہے	ን	Ś	5	ч С	ۍ	, 4	Ę	D	독	E	۲۵۸ ۲	X	ഷ	01	ജ	13	Ξ	Δ	ŕ	1	. 7	Е	3	a
HHA	11	H	с Ър	۲-	Ъ	ୁ ଅକ୍ୟ	1720	2	م	า าภา	η	ຍ	ನ	లె	b	V	4	N.S.	มั	B	£	0	$\hat{\mathbf{O}}$	ਨ	द्य	ч	5	М	51	E E	- 3	ਲ	1	<u> </u>	ين
, hu	719	, 汕	አገ	10 70	Ъ	Ś	ຸງກ	۰ ال	10	2	, 1.n	 ಮ	ເ ກ)	्र च	¦- ሰ	ŝ	י ז	N	0	1	X	+	X	ষ	त	ক্ষ	ন	21	5	3	ක	າ	ع	ά	1
R	HAN	LH	7	5	ر ۲	1	າເບ	1(2))	າຕາເ	21	יאט זרטי	ಹ ಸ	23	¥.	T	Q	ы Л		ر ج	ч Þ	Ψ	r 1	•	9ī	भ	ह	5 C	G	5	ಹ	ले		4		ጉ ጉ
ر ۱	4	-4	B	, C	B	~~^	ງກ	າກ	102	20	() ()	 ज	ς Ω	ਹ ਨ ਾ	ו ב	1	, Ь		5	Y	т П	Ť	° A	ल	л	a Z	5	a	00	с С	1.3	ಆನ	~	<u>ل</u> ت	2
, м	Н	L.	Ст.		Υ Ξ	2	25	าค	100	21 2 D	20	931	3	ದ ಗ		++	Ь	M	11	/ Т	- Т	⊥ ++		ন্য	যা	с Т	E S	N	5	22	ᅏ	<u>ਨ</u>	~ (5
M	$\hat{\mathbf{D}}$	P	บ น	x	8	ر ۲	α V	p	5	2		₩	e.	5	7	∩ ∩	5	//I	Щ	مر		4	5	יו <i>י</i> ב . :	Ч	-1	K	9	U Π		2		Z	tr	1
r 1 D	U U	Г И		7	T L	T :	/ +	с П	20	5	20	Я И	Z Z	~	N)	c	5		0	۹ 0	1	+	Б		· · ·		5 F	1	R		 	<u> </u>	2	ט ע	L L
Б		-	1	7	U	1	1	Ч	0.	ι.	\mathcal{L}	ע	-M.	R	00	5	U	()	ĹĹ	۲	-	+	1				C	Ч	P	Ш	<u>1017</u> ,			C	Ø

Probabilistic program induction model of concept learning

Task: "Generate a new example"

Task: "Generate a new character from the same alphabet"

Ш	E	7	E	M				
J	Ħ	2	አ	Ţ				

3 seconds remaining

machine generated

machine generated

Probabilistic program induction

Probabilistic program induction

Learning a prior distribution over programs

learned action primitives

● 000-0	€000-0	● 000-0	● 000-0	€000-0	€000-0	€000-0	● 000-0	€000-0	●0000
• • •	مممو	ممم	~~~~	0000	••••	مممو	°Ç°°	•0000	800°
6 000	000 0	J 00-0		•	0-00-0°		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•00	0000
€0000	•0000	0000 0	•°°€	0000	0000 °		م م م	oooo	\$
•000	•••••	°مم	••••		\$	•\$000	\circ	•2000	• 8 6
$^{\circ}$	° ● ○ ○ ○	م م م	م موم		€-00 ⁰⁰	2000	•0000	•-0° 0°	
••••	Ŷ	•~~~	• •	~~• ~	- Co	•000 ⁰	g g	••	
00000	● ₀₀₀ 0	0000	Ş	•℃	° ~ •		0000	L.	°°°°•
0-00	°0000	€ }	•0000	e conce	•	••••	• ذ	•••••	•000
•0000	0000	● 0000	$\mathbf{\hat{\mathbf{v}}}$	• <u>000-0</u>	0 0 0	°~~°	• ⁰⁰⁰⁰ 0	• • • •	000

1250 primitives scale selective translation invariant

learned primitive transitions

Learning a prior distribution over progra

stroke start positions

2

Stroke 1

≥3

number of sub-strokes for a character with κ strokes $\kappa = 1$ $\kappa = 5$ $\kappa = 2$ $\kappa = 3$ $\kappa = 4$ probability 0.5 0.5 0.5 0.5 0.5 0 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 $\kappa = 9$ $\kappa = 10$ $\kappa = 6$ $\kappa = 7$ $\kappa = 8$ 0.5 0.5 0.5 0.5 0.5 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 12345678910 12345678910 1 2 3 4 5 6 7 8 910 number of sub-strokes relations between strokes 2 2 independent (34%) attached at start (5%) attached at end (11%)

global transformations

ъ	म	र्म	म
भ	म	ъ	र्म
ъ	ъ	र्म	ъ
र्फ	ъ	र्म	Б

attached along (50%)

Approximate probabilistic inference

- θ latent program
- raw binary image

renderer prior on programs Bayes' rule $\frac{P(I|\theta)P}{D(I)}$ $P(\theta|I$

Discrete (K=5) approximation to posterior

$$P(\theta|I) \approx \frac{\sum_{i=1}^{K} w_i \delta(\theta - \theta^{[i]})}{\sum_{i=1}^{K} w_i}$$
 such that

such that

$$w_i \propto P(\theta^{[i]}|I)$$

Intuition: Fit strokes to the observed pixels as closely as possible, with these constraints:

- fewer strokes
- high-probability primitive sequence
- use relations
- stroke order
- stroke directions

One-shot classification

Training item with model's five best parses

 $P(I_{new} | I_{old})$

fits

Do people represent static characters by their causal dynamics?

(Figure credit: Hinton & Nair, 2006)

Behavioral evidence

• Writing experience influences perception

(Freyd, 1983; Tse & Cavanagh, 2000; Knoblich & Prinz, 2001; James & Gauthier, 2009).

• Inferring the dynamics from static letters.

(Babcock & Freyd, 1988)

Neuroimaging evidence

- Writing experience changes the functional specialization of visual cortex for letters. (James & Atwood, 2009; James, 2010)
- Motor areas of cortex respond to static letters. (Anderson et al., 1990; Loncamp et al., 2003; James & Gauthier, 2006; Longcamp et al., 2006; Longcamp et al., 2010)

One-shot classification performance

After all models pre-trained on 30 alphabets of characters.

A "visual Turing test" for generating new concepts

A "visual Turing test" for generating new concepts

More large-scale behavioral experiments

Generating new examples (dynamic)

59% correct in visual Turing test 6 of 30 judges above chance

Generating new concepts (from type)

Human or Machine?

Alphabet

υ

49% correct in visual Turing test 8 of 35 judges above chance

Generating new concepts (unconstrained)

51% correct in visual Turing test 2 of 25 judges above chance

Recent developments: Generative neuro-symbolic programs

Feinman, R. and Lake, B. M. (2021). Learning Task-General Representations with Generative Neuro-Symbolic Modeling. International Conference on Learning Representations (ICLR))

Case study: Numerical concept learning and cognitive development

Cognition 123 (2012) 199-217

Bootstrapping in a language of thought: A formal model of numerical concept learning

Steven T. Piantadosi^{a,*}, Joshua B. Tenenbaum^b, Noah D. Goodman^c

^a Department of Brain and Cognitive Sciences, University of Rochester, United States

^b Department of Brain and Cognitive Sciences, MIT, United States

^c Department of Psychology, Stanford University, United States

A R T I C L E I N F O

Article history: Available online 26 January 2012

Keywords: Number word learning Bootstrapping Cognitive development Bayesian model Language of thought CP transition

ABSTRACT

In acquiring number words, children exhibit a qualitative leap in which they transition from understanding a few number words, to possessing a rich system of interrelated numerical concepts. We present a computational framework for understanding this inductive leap as the consequence of statistical inference over a sufficiently powerful representational system. We provide an implemented model that is powerful enough to learn number word meanings and other related conceptual systems from naturalistic data. The model shows that bootstrapping can be made computationally and philosophically wellfounded as a theory of number learning. Our approach demonstrates how learners may combine core cognitive operations to build sophisticated representations during the course of development, and how this process explains observed developmental patterns in number word learning.

© 2011 Elsevier B.V. All rights reserved.

Children's development of numerical concepts

"Give-a-number" task

"Give me two" "Give me three"

(Wynn, 1990; Wynn, 1992)

Children's development of numerical concepts

Children progress through a series of stages

 "one-knower", "two-knower," "three-known," "four-knower" (sometimes), and then "cardinal-principle knower"

Example: "two knower"

Children's development of numerical concepts

- Critically, children can count well-beyond the range of their "knower" status, yet they don't understand the meaning of the numbers.
- Transition from "N-knower" to "CP-knower" happens around 3.5

		Su	ccess pa	ittern		Number of children	Mean age	Counting ability		
	1	2	3	.' 5	6			Mean	(range)	
			E ,*			1	2:8	3.00	(3-3)	
one-knower	+	c 770	_	-	-	3	3:0	4.67	(3-6)	
	+	-1.	-	-	-	2	2:11	4.50	(3-6)	
	+	-ł	u ķ .	_	_	4	3:5	5.75	(5-6)	
nree-кnower CP-knower	+	+	+	+	+	7	3:7	6.00	(6-6)	

Patterns of success in give-a-number task in Experiment 3

Note: "+" indicates success on a numerosity; "-" indicates failure.

(data from Wynn, 1990)

Programming primitives allowed in the language of thought model

Functions mapping sets to truth values

(singleton? X) (doubleton? X) (tripleton? X)

Functions on sets

(set-difference X Y) (union X Y) (intersection X Y) (select X)

Logical functions

(and P Q) (or P Q) (not P) (if P X Y)

Functions on the counting routine

(next W) (prev W) (equal-word? W V)

Recursion

(L S)

Returns true iff the set *X* has exactly one element Returns true iff the set *X* has exactly two elements Returns true iff the set *X* has exactly three elements

Returns the set that results from removing *Y* from *X* Returns the union of sets *X* and *Y* Returns the intersect of sets *X* and *Y* Returns a set containing a single element from *X*

Returns TRUE if *P* and *Q* are both true Returns TRUE if either *P* or *Q* is true Returns TRUE iff *P* is false Returns *X* iff *P* is true, *Y* otherwise

Returns the word after *W* in the counting routine Returns the word before *W* in the counting routine Returns TRUE if *W* and *V* are the same word

Returns the result of evaluating the entire current lambda expression on se

(Piantadosi, Tenenbaum & Goodman)

Example hypotheses in a language of thought

example set *S*

One-knower

λS. (if (singleton? S) "one" undef)

Two-knower

CP-knower

λ S . (if (singleton? S) "one" (if (doubleton? S) "two" undef))

Three-knower

 $\lambda~S$. indicates a function that takes a set S as an argument.

λ S . (if (singleton? S) "one" (if (doubleton? S) "two" (if (tripleton? S) "three" undef)) λ S . (if (singleton? S) "one" (next (L (set-difference S (select S)))))

Singular-Plural

Mod-5

λS. (if (singleton? S) "one" "two")
$$\begin{split} \lambda \ S \ . \ (if \ (or \ (singleton? \ S) \\ (equal-word? \ (L \ (set-difference \ S) \\ (select \ S)) \\ ``five")) \\ ``one" \\ (next \ (L \ (set-difference \ S \\ (select \ S))))) \end{split}$$

Defining a prior distribution over programs

(a "Probabilistic Language of Thought")

Probabilistic model over programs

Example L

 λS . (if (singleton? S) "one" undef)

Probabilistic model

prior on programs *L* (defined with probabilistic grammar)

Data (*D*)

"six"

"two"

P(L)

Noisy likelihood where right number is usually returned, but with some noise

Bayes' rule for learning programs $P(L|D) = \frac{P(D|L)P(L)}{P(D)}$

Learning as program induction

Results: Program induction model follows a similar developmental trajectory

undef))

Case study: Learning by asking questions

Question Asking as Program Generation

Anselm Rothe¹ anselm@nyu.edu Brenden M. Lake^{1,2} brenden@nyu.edu Todd M. Gureckis¹ todd.gureckis@nyu.edu

¹Department of Psychology ²Center for Data Science New York University

Abstract

A hallmark of human intelligence is the ability to ask rich, creative, and revealing questions. Here we introduce a cognitive model capable of constructing humanlike questions. Our approach treats questions as formal programs that, when executed on the state of the world, output an answer. The model specifies a probability distribution over a complex, compositional space of programs, favoring concise programs that help the agent learn in the current context. We evaluate our approach by modeling the types of open-ended questions generated by humans who were attempting to learn about an ambiguous situation in a game. We find that our model predicts what questions people will ask, and can creatively produce novel questions that were not present in the training set. In addition, we compare a number of model variants, finding that both question informativeness and complexity are important for producing human-like questions.

1 Introduction

In active machine learning, a learner is able to query an oracle in order to obtain information that is expected to improve performance. Theoretical and empirical results show that active learning can speed acquisition for a variety of learning tasks [see 21, for a review]. Although impressive most

active learning for people and machines

rich human questions

Experiment: Free-form question asking

(e.g., Markant & Gureckis, 2012, 2014)

Hidden configuration of ships

sizes

3 ships (blue, purple, red) 3 possible sizes (2-4 tiles) 1.6 million possible configurations

Phase 1: Sampling

Phase 2: Question asking

Is the red ship horizontal?

Constraints

- one word answers
- no combinations

Repeated for 18 different hidden configurations

	Location/standard queries
24	what color is at [row][column]?
24	Is there a snip at [row][column]?
31	Is there a [color_incl_water] the at [row][column]?
1	Region queries
4	Is there any snip in row [row]?
9 5	Is there any part of the [color] ship in row [row]?
5	How many tiles in row [row] are occupied by ships?
1 10	Are there any ships in the bottom half of the grid?
10	Is there any ship in column [column]?
10	Is there any part of the [color] ship in column [column]?
3	Are all parts of the [color] ship in column [column]?
2	How many tiles in column [column] are occupied by ships?
I	Is any part of the [color] ship in the left half of the grid?
105	Ship size queries
185	How many tiles is the [color] ship?
/1	Is the [color] ship [size] tiles long?
8	Is the [color] ship [size] or more tiles long?
2	How many ships are [size] tiles long?
8	Are any ships [size] tiles long?
2	Are all ships [size] tiles long?
2	Are all ships the same size?
2	Do the [color1] ship and the [color2] ship have the same size:
3	Is the [color1] ship longer than the [color2] ship?
3	How many tiles are occupied by snips?
04	Ship orientation queries
94 7	Is the [color] ship horizontal?
/ 2	Are there more herizontal shine then vertical shine?
3 1	Are all shing horizontal?
1	Are all shine verticel?
47	Are the [color1] ship and the [color2] ship perellol?
1	Are the [color1] ship and the [color2] ship parallel?
12	Aujacency queries Do the [color1] ship and the [color2] ship touch?
12	Are any of the shine touching?
0	Does the [color] ship touch any other ship?
9	Does the [color] ship touch both other ships?
Ĺ	Does the [color] ship touch both other ships?
1/	What is the location of one [color] tile?
14 70	At what location is the top left part of the locator ship?
∠ð 5	At what location is the better right part of the [color] ship?
J	At what location is the bottom right part of the [color] ship?

N Location/standard queries

- 24 What color is at [row][column]?
- Is there a ship at [row][column]?
- 31 Is there a [color_incl_water] tile at [row][column]?
 - 10 Is there any ship in column [column]?10 Is there any part of the [color] ship in column [column]?
 - 3 Are all parts of the [color] ship in column [column]?
 - 2 How many tiles in column [column] are occupied by ships?
 - 1 Is any part of the [color] ship in the left half of the grid?

Ship size queries

- 185 How many tiles is the [color] ship?
- 71 Is the [color] ship [size] tiles long?
- 8 Is the [color] ship [size] or more tiles long?
- 5 How many ships are [size] tiles long?
- 8 Are any ships [size] tiles long?
- 2 Are all ships [size] tiles long?
- 2 Are all ships the same size?
- 2 Do the [color1] ship and the [color2] ship have the same size?
- 3 Is the [color1] ship longer than the [color2] ship?
- 3 How many tiles are occupied by ships?

Ship orientation queries

- 94 Is the [color] ship horizontal?
- 7 How many ships are horizontal?
- 3 Are there more horizontal ships than vertical ships?
- 1 Are all ships horizontal?
- 4 Are all ships vertical?
- 7 Are the [color1] ship and the [color2] ship parallel?

Adjacency queries

- 12 Do the [color1] ship and the [color2] ship touch?
- 6 Are any of the ships touching?
- 9 Does the [color] ship touch any other ship?
- 2 Does the [color] ship touch both other ships?

Demonstration queries

- 14 What is the location of one [color] tile?
- 28 At what location is the top left part of the [color] ship?
- 5 At what location is the bottom right part of the [color] ship?

Ν	Location/standard queries
24	What color is at [row][column]?
24	Is there a ship at [row][column]?
31	Is there a [color_incl_water] tile at [row][column]?
	Region queries
4	Is there any ship in row [row]?
9	Is there any part of the [color] ship in row [row]?
5	How many tiles in row [row] are occupied by ships?
1	Are there any ships in the bottom half of the grid?
10	Is there any ship in column [column]?
10	Is there any part of the [color] ship in column [column]?
3	Are all parts of the [color] ship in column [column]?
2	How many tiles in column [column] are occupied by ships?
1	Is any part of the [color] ship in the left half of the grid?
	Ship size queries
185	How many tiles is the [color] ship?
71	Is the [color] ship [size] tiles long?
8	Is the [color] ship [size] or more tiles long?
5	How many ships are [size] tiles long?
8	Are any ships [size] tiles long?
2	Are all ships [size] tiles long?
2	Are all ships the same size?
2	Do the [color1] ship and the [color2] ship have the same size?
3	Is the [color1] ship longer than the [color2] ship?
3	How many tiles are occupied by ships?
	Ship orientation queries
94	Is the [color] ship horizontal?
7	How many ships are horizontal?
3	Are there more horizontal ships than vertical ships?
1	Are all ships horizontal?
4	Are all ships vertical?
7	Are the [color1] ship and the [color2] ship parallel?
	Adjacency queries

Demonstration queries

- 14 What is the location of one [color] tile?
- 28 At what location is the top left part of the [color] ship?
 - 5 At what location is the bottom right part of the [color] ship?
How do people think of a question to ask? question asking as program generation

Questions as programs

GROUP	QUESTION	FUNCTION	EXPRESSION
location	What color is at A1?	location	(color A1)
	Is there a ship at A1?	locationA	(not (= (color A1) Water))
	Is there a blue tile at A1?	locationD	(= (color A1) Blue)
segmentation	Is there any ship in row 1?	row	$(> (+ (map (\lambda x (and (= (row x) 1) (not (= (color x) Water)))) (set A1 F6))) 0)$
	Is there any part of the blue ship in row 1?	rowD	$(> (+ (map (\lambda x (and (= (row x) 1) (= (color x) Blue))) (set A1 F6))) 0)$
	Are all parts of the blue ship in row 1?	rowDL	$(> (+ (map (\lambda x (and (= (row x) 1) (= (color x) Blue))) (set A1 F6))) 1)$
	How many tiles in row 1 are occupied by ships?	rowNA	$(+ (map (\lambda x (and (= (row x) 1) (not (= (color x) Water)))) (set A1 F6)))$
	Are there any ships in the bottom half of the grid?	rowX2	
	Is there any ship in column 1?	col	$(> (+ (map (\lambda x (and (= (col x) 1) (not (= (color x) Water)))) (set A1 F6))) 0)$
	Is there any part of the blue ship in column 1?	colD	$(> (+ (map (\lambda x (and (= (col x) 1) (= (color x) Blue))) (set A1 F6))) 0)$
	Are all parts of the blue ship in column 1?	colDL	$(> (+ (map (\lambda x (and (= (col x) 1) (= (color x) Blue))) (set A1 F6))) 1)$
	How many tiles in column 1 are occupied by ships?	colNA	$(+ (map (\lambda x (and (= (col x) 1) (not (= (color x) Water)))) (set A1 F6)))$
	Is any part of the blue ship in the left half of the grid?	colX1	
ship size	How many tiles is the blue ship?	shipsize	(size Blue)
	Is the blue ship 3 tiles long?	shipsizeD	(= (size Blue) 3)
	Is the blue ship 3 or more tiles long?	shipsizeM	(or (= (size Blue) 3) (> (size Blue) 3))
	How many ships are 3 tiles long?	shipsizeN	$(+ (map (\lambda x (= (size x) 3)) (set Blue Red Purple)))$
	Are any ships 3 tiles long?	shipsizeDA	$(> (+ (map (\lambda x (= (size x) 3)) (set Blue Red Purple))) 0)$
	Are all ships 3 tiles long?	shipsizeDL	$(= (+ (map (\lambda x (= (size x) 3)) (set Blue Red Purple))) 3)$
	Are all ships the same size?	shipsizeL	$(= (map (\lambda x (size x)) (set Blue Red Purple)))$
	Do the blue ship and the red ship have the same size?	shipsizeX1	(= (size Blue) (size Red))
	Is the blue ship longer than the red ship?	shipsizeX2	(> (size Blue) (size Red))
	How many tiles are occupied by ships?	totalshipsize	$(+ (map (\lambda x (size x)) (set Blue Red Purple)))$
orientation	Is the blue ship horizontal?	horizontal	(= (orient Blue) H)
	How many ships are horizontal?	horizontalN	$(+ (map (\lambda x (= (orient x) H) (set Blue Red Purple))))$
	Are there more horizontal ships than vertical ships?	horizontalM	$(> (+ (map (\lambda x (= (orient x) H) (set Blue Red Purple)))) 1)$
	Are all ships horizontal?	horizontalL	$(= (+ (map (\lambda x (= (orient x) H) (set Blue Red Purple)))) 3)$
	Are all ships vertical?	verticalL	$(= (+ (map (\lambda x (= (orient x) H) (set Blue Red Purple)))) 0)$
	Are the blue ship and the red ship parallel?	parallel	(= (orient Blue) (orient Red))
touching	Do the blue ship and the red ship touch?	touching	(touch Blue Red)
	Are any of the ships touching?	touchingA	(or (touch Blue Red) (or (touch Blue Purple) (touch Red Purple)))
	Does the blue ship touch any other ship?	touchingXA	(or (touch Blue Red) (touch Blue Purple))
	Does the blue ship touch both other ships?	touchingX1	(and (touch Blue Red) (touch Blue Purple))
demonstration	What is the location of one blue tile?	demonstration	(draw (select (set A1 F6) Blue))*
	At what location is the top left part of the blue ship?	topleft	(topleft Blue)
	At what location is the bottom right part of the blue ship?	bottomright	(bottomright Blue)

Defining an infinite set of questions through compositionality

Question asking as program generation

Example for ideal observer finding the optimal/most informative question:

```
(+

  ( +

      ( * 100 (size Purple) )

      ( * 10 (size Blue) )

    )

    (size Red)

)
```

Learning a probabilistic generative model of questions:

Goal: predict human questions in novel scenarios

 ${\mathcal X}$: question

 $f(\cdot)$: features (Expected Info. Gain, length, answer type, etc.)

 θ : trainable parameters

Compositionality is key!

energy:

$$\mathcal{E}(x) = \theta_1 f_1(x) + \theta_2 f_2(x) + \dots + \theta_K f_K(x)$$

generative model:

$$P(x;\theta) = \frac{\exp^{-\mathcal{E}(x)}}{\sum_{x' \in X} \exp^{-\mathcal{E}(x')}}$$

Asking novel questions through program generation

Context 7 ABCDEF	EIG 2.44 1.79	Question/ProgramHumanHow many tiles are occupied by ships? (++ (map (lambda x (size x)) (set Blue Red Purple)))HumanHow many ships are 4 tiles long? (++ (map (lambda x (== (size x) 4)) (set Blue Red Purple)))
2 3 4	Energy 6.53 7.88	Question/Program What is the column of the bottom right water tile? (coll (bottomright (coloredTiles Water))) What is the row of the top left purple tile?
5 6	8.90	(rowL (topleft (coloredfles Purple))) Are all the ships horizontal? (all (map (lambda x (== H (orient x))) (set Blue Red Purple)))
	10.51	What is the column of the bottom right of the tiles with the same color as tile 3E? (coll (bottomright (coloredTiles (color 3E))))
	12.89	Are any of the ship sizes greater than 2? (any (map (lambda x (> (size x) 2)) (set Blue Red Purple)))
Context 9 ABCDEF	EIG 1.59 1.56	Question/Program How many tiles in row 4 are occupied by ships? (++ (map (lambda y (and (== (rowL y) 4) (not (== (color y) Water)))) (set 1A 6F))) How many tiles is the purple ship? (size Purple)
2 2 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Energy 7.48 8.74	Question/Program What is the column of the bottom right blue tile? (coll (bottomright (coloredTiles Blue))) How many tiles have the same color as tile 4A?
6	9.94	What is the top left of all the ship tiles? (topleft (setDifference (set 1A 6F) (coloredTiles Water)))
	10.98	What is the color of the top left of the tiles that have the same color as 5C? (color (topleft (coloredTiles (color 5C)))
	16.34	Are blue and purple ships touching and red and purple not touching (or vice versa)?

Asking novel questions through program generation

Context 7 ABCDEF	EIG 2.44 1.79	Question/ProgramHumanHow many tiles are occupied by ships? (++ (map (lambda x (size x)) (set Blue Red Purple)))HumanHow many ships are 4 tiles long? (++ (map (lambda x (== (size x) 4)) (set Blue Red Purple)))
2 3 4	Energy 6.53 7.88	Question/Program What is the column of the bottom right water tile? (coll (bottomright (coloredTiles Water))) What is the row of the top left purple tile?
5 6	8.90	(rowL (topleft (coloredfles Purple))) Are all the ships horizontal? (all (map (lambda x (== H (orient x))) (set Blue Red Purple)))
	10.51	What is the column of the bottom right of the tiles with the same color as tile 3E? (coll (bottomright (coloredTiles (color 3E))))
	12.89	Are any of the ship sizes greater than 2? (any (map (lambda x (> (size x) 2)) (set Blue Red Purple)))
Context 9 ABCDEF	EIG 1.59 1.56	Question/Program How many tiles in row 4 are occupied by ships? (++ (map (lambda y (and (== (rowL y) 4) (not (== (color y) Water)))) (set 1A 6F))) How many tiles is the purple ship? (size Purple)
2 2 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Energy 7.48 8.74	Question/Program What is the column of the bottom right blue tile? (coll (bottomright (coloredTiles Blue))) How many tiles have the same color as tile 4A?
6	9.94	What is the top left of all the ship tiles? (topleft (setDifference (set 1A 6F) (coloredTiles Water)))
	10.98	What is the color of the top left of the tiles that have the same color as 5C? (color (topleft (coloredTiles (color 5C)))
	16.34	Are blue and purple ships touching and red and purple not touching (or vice versa)?

Computational Cognitive Modeling

Probabilistic programming, program induction, and language of thought models

Brenden Lake & Todd Gureckis

course website: https://brendenlake.github.io/CCM-site/