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1.1 Probabilistic model

The generative model can be described as follows. There are various players engaged in a tennis
tournament. Matches can be played either as a singles match (Player A vs. Player B) or as doubles
match (Player A and Player B vs. Player C and Player D).

Each player has a latent "strength" value which describes his or her skill at tennis. This quantity
is unobserved for each player, and it is a persistent property in the world. Therefore, the strength
value stays the same across the entire set of matches.

A match is decided by whichever team is stronger. Thus, if it’s just Player A vs. Player B,
the stronger player will win. If it’s a doubles match, the sum of the strengths determines which
team will win. However, there is an additional complication. On occasion (with probability 0.1),
a player becomes lazy, in that he or she doesn’t try very hard for this particular match. For the
purpose of this match, his or her strength is reduced by half. Importantly, this is a temporary
(non-persistent) state which is does not effect the next match.

This completes our generative model of how the data is produced. In this assignment, we will
use Bayesian inference to reason about latent parameters in the model, such as reasoning about a
player’s strength given observations of his or her performance. Let’s dive into the code.

In [ ]: # Import the necessary packages
from __future__ import print_function
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
import random
import numpy as np
from scipy.stats.mstats import pearsonr

1.1.1 Persistent properties

The strength of each player is the only persistent property. In the code below, we create a world
class which stores the persistent states. In this case, it’s simply a dictionary dict_strength that
maps each player’s name to his or her strength. Conveniently, the world class gives us a method
clear that resets the world state, which is useful when we want to clear everything and produce
a fresh sample of the world.

The strength function takes a player’s name and queries the world W for the appropriate
strength value. If it’s a new player, their strength is sampled from a Gaussian distribution (with
µ = 10 and σ = 3) and stored persistently in the world state.

In [ ]: class world():
def __init__(self):

self.dict_strength = {}
def clear(self): # used when sampling over possible world

self.dict_strength = {}

W = world()

def strength(name):
if name not in W.dict_strength:
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W.dict_strength[name] = abs(random.gauss(10,3))
return W.dict_strength[name]

1.1.2 Computing team strength

Next is the lazy function. When the lazy function is called on the name of a particular player, the
answer is computed fresh each time (and is not stored persistently like strength).

The total strength of a team team_strength takes a list of names team and computes the ag-
gregate strength. This is a simple sum across the team members, with a special case for lazy team
members.

In [ ]: def lazy(name):
return random.random() < 0.1

In [ ]: def team_strength(team):
# team : list of names
mysum = 0.
for name in team:

if lazy(name):
mysum += (strength(name) / 2.)

else:
mysum += strength(name)

return mysum

1.1.3 Computing the winner

The winner of a match returns the team with a higher strength value.
Finally, the function beat checks whether team1 outperformed team2 (returning True) or not

(returning False).

In [ ]: def winner(team1,team2):
# team1 : list of names
# team2 : list of names
if team_strength(team1) > team_strength(team2):

return team1
else:

return team2

def beat(team1,team2):
return winner(team1,team2) == team1

2 Probabilistic inference

Problem 1 (15 points)
Your first task is to complete the missing code in the rejection_sampler function below to per-

form probabilistic inference in the model. You give it a list of function handles list_f_conditions
which represent the data we are conditioning on, and thus these functions must evaluate to True
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Figure 1: Screenshot of a single player tournament. The winner of
each match is indicated by a laurel wreath.

In this paper, we use Church (Goodman et al., 2008), as an
instantiation of the PLoT, to explain aspects of people’s flex-
ible concept use, and use the ping pong scenario as a simple
case study to illustrate our key points while admitting quanti-
tative empirical evaluation. In two separate experiments, we
test the predictions of our modeling approach by examining
people’s inferences based on complex patterns of causal evi-
dence. We conclude by pointing out areas of research that are
likely to benefit from this modeling framework.

Modeling probabilistic inferences in Church

Figure 1 shows an example of the inference task that partic-
ipants faced in the experiments which we will describe below.
What representation would be needed to (a) be sensitive to the
statistical nature of the evidence and (b) capture the abstract,
symbolic structure that remains invariant between this partic-
ular situation and other similar situations that could involve
different players and different outcomes? Figure 2 shows the
Church code that we used to model people’s inferences about
a player’s strength based on the results of ping pong tourna-
ments. We chose the ping pong environment because it can
be summarized by a relatively simple but rich set of concepts
that support productive inferences from a variety of evidence
in a variety of situations. We will first introduce the Church
language and then explain how this representation captures
our intuitive concepts of ping pong.

Church is based on the l-calculus, with a syntax inher-
ited from the LISP family of languages (McCarthy, 1960).
Thus operators precede their arguments, and are written in-
side grouping parentheses: (+ 1 2). We use define to
assign values to symbols in our program and lambda for cre-
ating functions. We could, for example, create a function
double that takes one number as an input and returns its
double. The code would look like this: (define double
(lambda (x) (+ x x))). What differentiates Church from
an ordinary programming language is the inclusion of random
primitives. For example, the function (flip 0.5) can be in-
terpreted as a simple coin flip with a weight outputting either

(mh-query 1000 100 ;Monte Carlo Inference
  ;CONCEPTS         
  (definedefine personstrengthpersonstrength (memmem (lambdalambda (person) (gaussian 10 3))))
  (definedefine lazylazy (memmem (lambdalambda (person game) (flipflip 0.1))))
  (definedefine (teamstrengthteamstrength team game)
    (sumsum (mapmap (lambdalambda (person)
                (ifif (lazy person game)
                   (/ (personstrength person) 2)
                   (personstrength person)))
                 team)))
  (definedefine (winnerwinner team1 team2 game)
    (ifif (< (teamstrength team1 game)
        (teamstrength team2 game))
        'team2 'team1))
  ;QUERY
  (personstrength 'A)
  ;EVIDENCE
  (andand
    (= 'team1 (winner '(TG) '(NG) 1))
    (= 'team1 (winner '(NG) '(AS) 2))
    (= 'team1 (winner '(NG) '(BL) 3))
    (lazy '(NG) 1) ;additional evidence, used in Experiment 2
  )
)

Figure 2: Church model of the ping pong scenario.

true or false. Every time the function is called, the coin is
flipped afresh. A Church program specifies not a single com-
putation, but a distribution over computations, or sampling
process. This sampling semantics (see Goodman et al., 2008,
for more details) means that composition of probabilities is
achieved by ordinary composition of functions, and it means
that we may specify probabilistic models using all the tools
of representational abstraction in a modern programming lan-
guage.

We now turn to describing the concepts (see CONCEPTS in
Figure 2) that are required to represent the ping pong do-
main (Figure 1). This simple sports domain is built around
people, teams and games. In Church, we can use symbols
as placeholders for unspecified individuals of these types.
This means that we do not need to define in advance how
many people participate, what the size of the teams will be,
or how many games a tournament will have. We define an
individual player’s strength, personstrength, via a func-
tion that draws from a Gaussian distribution with M = 10
and SD = 3. The memoization operator mem ensures that the
strength value assigned to a person is persistent and does not
change between games. We next make the assumption that
players are sometimes lazy. The chance of a person being
lazy in a particular game is 10%, specified by using the func-
tion flip with a weight of 0.1. As mentioned above, we
also want to allow for the possibility that individual players
form teams – we thus need the overall strength of a team,

Table 1: Modeling assumptions.

concept description assumption

personstrength strength of normally distributed,
a player persistent property

lazy chance that p(lazy) = 10%,
a player is lazy not persistent

teamstrength strength of individual strengths
a team combine additively

winner winner of a team with greater
match strength wins

Probabilistic programs / probabilistic programming

(example from homework; Goodman et al., 2015)
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(e.g., game matches 
and who won)

inference

How strong is Bob?
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• Probabilistic program: A probabilistic model defined in a 
structured description language (much like a programming 
language) using random programming primitives.

• Due to random primitives, every time the program executes it 
returns a different output.

• Probabilistic programs are a generalization of Bayesian networks, 
and many of the other Bayesian models we have discussed.

• Especially convenient when the prior is too complex to write down 
as a set of hypotheses, or the model is awkward or impossible to 
write as a Bayesian network.

Probabilistic programs / probabilistic programming



Probabilistic programs: A simple example

DEMOS_probprog

April 2, 2018

1 Examples with probabilistic programs

In [1]: # Import the necessary packages
from __future__ import print_function
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
import random
import numpy as np
from scipy.stats.mstats import zscore

In [ ]: def flip(theta=0.5):
return random.random() < theta

A = flip()
B = flip()
C = flip()
D = A + B + C

In [2]: class world():
def __init__(self):

self.generate()
def generate(self): # used when sampling over possible world

self.A = flip()
self.B = flip()
self.C = flip()
self.D = self.A + self.B + self.C

In [5]: W = world()
def rejection_sampler(f_return, list_f_conditions, nsamp=10000):

# Input
# f_return : function handle that grabs the variable of interest when executed
# list_f_conditions: list of conditions (function handles) that we are assuming are True
# nsamp : number of samples (10000)
# Output
# samples : (as a numpy-array) of length nsamp

samples = []
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Preliminary definitions

Simple probabilistic program

Bayesian inference

P (D) P (A|D = 3) P (A|D � 2)

(again, notice productivity reasoning)

Example from Noah 
Goodman and Josh 
Tenenbaum 
https://probmods.org/

(flip a coin with ‘theta’ chance of heads)

Key idea: A probabilistic program is 
a generative process for producing 
data
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Probabilistic program or Bayesian network?

In this case, the probabilistic program can be straightforwardly 
represented as a Bayesian network, although the program 
representation conveys more information.



Probabilistic programs: Another example
Simple probabilistic program (yet more complex than before)

Bayesian inference

P (D)
P (A|D � 2)

DEMOS_probprog

April 2, 2018

1 Examples with probabilistic programs

In [1]: # Import the necessary packages
from __future__ import print_function
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
import random
import numpy as np
from scipy.stats.mstats import zscore

In [21]: def flip(theta=0.5):
return random.random() < theta

A = flip()
B = flip()
C = flip()
D = A + B + C

A = flip()
B = flip()
C = flip()
if C:

D = A + B + C
else:

E = flip()
F = (2*flip())**2
D = A + B + C +E + F

4
6

In [18]: class world():
def __init__(self):

self.generate()
def generate(self): # used when sampling over possible world
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if C is True:

if C is False:

Bayesian networks (graphical models) do not have a mechanism 
for adding additional variables, and they lack general control 
structures that are relevant in both cognitive science and data 
science applications (if statements, for loops, while loops, 
recursion, etc.)



1.1 Probabilistic model

The generative model can be described as follows. There are various players engaged in a tennis
tournament. Matches can be played either as a singles match (Player A vs. Player B) or as doubles
match (Player A and Player B vs. Player C and Player D).

Each player has a latent "strength" value which describes his or her skill at tennis. This quantity
is unobserved for each player, and it is a persistent property in the world. Therefore, the strength
value stays the same across the entire set of matches.

A match is decided by whichever team is stronger. Thus, if it’s just Player A vs. Player B,
the stronger player will win. If it’s a doubles match, the sum of the strengths determines which
team will win. However, there is an additional complication. On occasion (with probability 0.1),
a player becomes lazy, in that he or she doesn’t try very hard for this particular match. For the
purpose of this match, his or her strength is reduced by half. Importantly, this is a temporary
(non-persistent) state which is does not effect the next match.

This completes our generative model of how the data is produced. In this assignment, we will
use Bayesian inference to reason about latent parameters in the model, such as reasoning about a
player’s strength given observations of his or her performance. Let’s dive into the code.

In [ ]: # Import the necessary packages
from __future__ import print_function
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
import random
import numpy as np
from scipy.stats.mstats import pearsonr

1.1.1 Persistent properties

The strength of each player is the only persistent property. In the code below, we create a world
class which stores the persistent states. In this case, it’s simply a dictionary dict_strength that
maps each player’s name to his or her strength. Conveniently, the world class gives us a method
clear that resets the world state, which is useful when we want to clear everything and produce
a fresh sample of the world.

The strength function takes a player’s name and queries the world W for the appropriate
strength value. If it’s a new player, their strength is sampled from a Gaussian distribution (with
µ = 10 and σ = 3) and stored persistently in the world state.

In [ ]: class world():
def __init__(self):

self.dict_strength = {}
def clear(self): # used when sampling over possible world

self.dict_strength = {}

W = world()

def strength(name):
if name not in W.dict_strength:

2

W.dict_strength[name] = abs(random.gauss(10,3))
return W.dict_strength[name]

1.1.2 Computing team strength

Next is the lazy function. When the lazy function is called on the name of a particular player, the
answer is computed fresh each time (and is not stored persistently like strength).

The total strength of a team team_strength takes a list of names team and computes the ag-
gregate strength. This is a simple sum across the team members, with a special case for lazy team
members.

In [ ]: def lazy(name):
return random.random() < 0.1

In [ ]: def team_strength(team):
# team : list of names
mysum = 0.
for name in team:

if lazy(name):
mysum += (strength(name) / 2.)

else:
mysum += strength(name)

return mysum

1.1.3 Computing the winner

The winner of a match returns the team with a higher strength value.
Finally, the function beat checks whether team1 outperformed team2 (returning True) or not

(returning False).

In [ ]: def winner(team1,team2):
# team1 : list of names
# team2 : list of names
if team_strength(team1) > team_strength(team2):

return team1
else:

return team2

def beat(team1,team2):
return winner(team1,team2) == team1

2 Probabilistic inference

Problem 1 (15 points)
Your first task is to complete the missing code in the rejection_sampler function below to per-

form probabilistic inference in the model. You give it a list of function handles list_f_conditions
which represent the data we are conditioning on, and thus these functions must evaluate to True
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Each player has a latent "strength" value which describes his or her skill at tennis. This quantity
is unobserved for each player, and it is a persistent property in the world. Therefore, the strength
value stays the same across the entire set of matches.

A match is decided by whichever team is stronger. Thus, if it’s just Player A vs. Player B,
the stronger player will win. If it’s a doubles match, the sum of the strengths determines which
team will win. However, there is an additional complication. On occasion (with probability 0.1),
a player becomes lazy, in that he or she doesn’t try very hard for this particular match. For the
purpose of this match, his or her strength is reduced by half. Importantly, this is a temporary
(non-persistent) state which is does not effect the next match.

This completes our generative model of how the data is produced. In this assignment, we will
use Bayesian inference to reason about latent parameters in the model, such as reasoning about a
player’s strength given observations of his or her performance. Let’s dive into the code.

In [ ]: # Import the necessary packages
from __future__ import print_function
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
import random
import numpy as np
from scipy.stats.mstats import pearsonr

1.1.1 Persistent properties

The strength of each player is the only persistent property. In the code below, we create a world
class which stores the persistent states. In this case, it’s simply a dictionary dict_strength that
maps each player’s name to his or her strength. Conveniently, the world class gives us a method
clear that resets the world state, which is useful when we want to clear everything and produce
a fresh sample of the world.

The strength function takes a player’s name and queries the world W for the appropriate
strength value. If it’s a new player, their strength is sampled from a Gaussian distribution (with
µ = 10 and σ = 3) and stored persistently in the world state.

In [ ]: class world():
def __init__(self):

self.dict_strength = {}
def clear(self): # used when sampling over possible world

self.dict_strength = {}

W = world()

def strength(name):
if name not in W.dict_strength:
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Figure 1: Screenshot of a single player tournament. The winner of
each match is indicated by a laurel wreath.

In this paper, we use Church (Goodman et al., 2008), as an
instantiation of the PLoT, to explain aspects of people’s flex-
ible concept use, and use the ping pong scenario as a simple
case study to illustrate our key points while admitting quanti-
tative empirical evaluation. In two separate experiments, we
test the predictions of our modeling approach by examining
people’s inferences based on complex patterns of causal evi-
dence. We conclude by pointing out areas of research that are
likely to benefit from this modeling framework.

Modeling probabilistic inferences in Church

Figure 1 shows an example of the inference task that partic-
ipants faced in the experiments which we will describe below.
What representation would be needed to (a) be sensitive to the
statistical nature of the evidence and (b) capture the abstract,
symbolic structure that remains invariant between this partic-
ular situation and other similar situations that could involve
different players and different outcomes? Figure 2 shows the
Church code that we used to model people’s inferences about
a player’s strength based on the results of ping pong tourna-
ments. We chose the ping pong environment because it can
be summarized by a relatively simple but rich set of concepts
that support productive inferences from a variety of evidence
in a variety of situations. We will first introduce the Church
language and then explain how this representation captures
our intuitive concepts of ping pong.

Church is based on the l-calculus, with a syntax inher-
ited from the LISP family of languages (McCarthy, 1960).
Thus operators precede their arguments, and are written in-
side grouping parentheses: (+ 1 2). We use define to
assign values to symbols in our program and lambda for cre-
ating functions. We could, for example, create a function
double that takes one number as an input and returns its
double. The code would look like this: (define double
(lambda (x) (+ x x))). What differentiates Church from
an ordinary programming language is the inclusion of random
primitives. For example, the function (flip 0.5) can be in-
terpreted as a simple coin flip with a weight outputting either

(mh-query 1000 100 ;Monte Carlo Inference
  ;CONCEPTS         
  (definedefine personstrengthpersonstrength (memmem (lambdalambda (person) (gaussian 10 3))))
  (definedefine lazylazy (memmem (lambdalambda (person game) (flipflip 0.1))))
  (definedefine (teamstrengthteamstrength team game)
    (sumsum (mapmap (lambdalambda (person)
                (ifif (lazy person game)
                   (/ (personstrength person) 2)
                   (personstrength person)))
                 team)))
  (definedefine (winnerwinner team1 team2 game)
    (ifif (< (teamstrength team1 game)
        (teamstrength team2 game))
        'team2 'team1))
  ;QUERY
  (personstrength 'A)
  ;EVIDENCE
  (andand
    (= 'team1 (winner '(TG) '(NG) 1))
    (= 'team1 (winner '(NG) '(AS) 2))
    (= 'team1 (winner '(NG) '(BL) 3))
    (lazy '(NG) 1) ;additional evidence, used in Experiment 2
  )
)

Figure 2: Church model of the ping pong scenario.

true or false. Every time the function is called, the coin is
flipped afresh. A Church program specifies not a single com-
putation, but a distribution over computations, or sampling
process. This sampling semantics (see Goodman et al., 2008,
for more details) means that composition of probabilities is
achieved by ordinary composition of functions, and it means
that we may specify probabilistic models using all the tools
of representational abstraction in a modern programming lan-
guage.

We now turn to describing the concepts (see CONCEPTS in
Figure 2) that are required to represent the ping pong do-
main (Figure 1). This simple sports domain is built around
people, teams and games. In Church, we can use symbols
as placeholders for unspecified individuals of these types.
This means that we do not need to define in advance how
many people participate, what the size of the teams will be,
or how many games a tournament will have. We define an
individual player’s strength, personstrength, via a func-
tion that draws from a Gaussian distribution with M = 10
and SD = 3. The memoization operator mem ensures that the
strength value assigned to a person is persistent and does not
change between games. We next make the assumption that
players are sometimes lazy. The chance of a person being
lazy in a particular game is 10%, specified by using the func-
tion flip with a weight of 0.1. As mentioned above, we
also want to allow for the possibility that individual players
form teams – we thus need the overall strength of a team,

Table 1: Modeling assumptions.

concept description assumption

personstrength strength of normally distributed,
a player persistent property

lazy chance that p(lazy) = 10%,
a player is lazy not persistent

teamstrength strength of individual strengths
a team combine additively

winner winner of a team with greater
match strength wins

From Homework: Reasoning about tennis with 
probabilistic programs

(see Goodman et al., 2015)
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Figure 2: Mean strength estimates (grey bars) and model predictions (black bars) for
the single player (left) and two-player tournaments (right). The top row shows strength
judgments for cases in which the player won her game(s). The bottom row shows weak-
ness judgments for cases in which the player lost. Numbers above the bars correspond
to the patterns described in Tables 1 and 2. Error bars are ± 1 SEM.

stenberg & Goodman, 2012). In Experiment 1, participants’ task was to estimate an
individual player’s strength based on the outcomes of different games in a ping pong
tournament. Participants were told that they will make judgments after having seen sin-
gle player and two-player tournaments. The different players in a tournament could be
identified by the color of their jersey as well as their initials. In each tournament, there
was a new set of players. Participants were given some basic information about the
strength of the players which described some of the modeling assumptions we made.
That is, participants were told that individual players have a fixed strength which does
not vary between games and that all of the players have a 10% chance of not playing
as strongly as they can in each game. This means that even if a player is strong, he can
sometimes lose against a weaker player.3

Table 1 shows the patterns of evidence that were used for the single player tourna-
ments. Table 2 shows the patterns for the two-player tournaments. In all tournaments,
participants were asked to judge the strength of player A. For the single player tourna-
ments, we used four different patterns of evidence: confounded evidence in which A
wins repeatedly against B, strong and weak indirect evidence where A only wins one
match herself but B either continues to win or lose two games against other players
and diverse evidence in which A wins against three different players. For each of those
patterns, we also included a pattern in which the outcomes of the games were exactly
reversed. For the two player tournaments, we used six different patterns of evidence: In
some situations A was always in the same team as B (confounded with partner) while
in other situations A repeatedly played against the same player E (confounded with

opponent). As in the single player tournaments, we also had patterns with mostly indi-
rect evidence about the strength of A by having his partner in the first game, B, either
win or lose against the same opponents with different teammates (weak/strong indirect

3Demos of the experiments can be accessed here:
http://web.mit.edu/tger/www/demos/BPP_demos.html

10

0

0.5

1

1.5

A wins

s
tr

e
n

g
th

1 3 5 7

0

0.5

1

1.5

A loses

w
e
a
k
n

e
s
s

confounded strong
indirect

weak
indirect

diverse

2 4 6 8

(a) Single player tournament

0

0.5

1

1.5

A wins

s
tr

e
n

g
th

9 11 13 15 17 19

0

0.5

1

1.5

A loses

w
e
a
k
n

e
s
s

confounded
partner

confounded
opponent

strong
indirect

weak
indirect

diverse round
robin

10 12 14 16 18 20

(b) Two-player tournament

Figure 2: Mean strength estimates (grey bars) and model predictions (black bars) for
the single player (left) and two-player tournaments (right). The top row shows strength
judgments for cases in which the player won her game(s). The bottom row shows weak-
ness judgments for cases in which the player lost. Numbers above the bars correspond
to the patterns described in Tables 1 and 2. Error bars are ± 1 SEM.

stenberg & Goodman, 2012). In Experiment 1, participants’ task was to estimate an
individual player’s strength based on the outcomes of different games in a ping pong
tournament. Participants were told that they will make judgments after having seen sin-
gle player and two-player tournaments. The different players in a tournament could be
identified by the color of their jersey as well as their initials. In each tournament, there
was a new set of players. Participants were given some basic information about the
strength of the players which described some of the modeling assumptions we made.
That is, participants were told that individual players have a fixed strength which does
not vary between games and that all of the players have a 10% chance of not playing
as strongly as they can in each game. This means that even if a player is strong, he can
sometimes lose against a weaker player.3

Table 1 shows the patterns of evidence that were used for the single player tourna-
ments. Table 2 shows the patterns for the two-player tournaments. In all tournaments,
participants were asked to judge the strength of player A. For the single player tourna-
ments, we used four different patterns of evidence: confounded evidence in which A
wins repeatedly against B, strong and weak indirect evidence where A only wins one
match herself but B either continues to win or lose two games against other players
and diverse evidence in which A wins against three different players. For each of those
patterns, we also included a pattern in which the outcomes of the games were exactly
reversed. For the two player tournaments, we used six different patterns of evidence: In
some situations A was always in the same team as B (confounded with partner) while
in other situations A repeatedly played against the same player E (confounded with

opponent). As in the single player tournaments, we also had patterns with mostly indi-
rect evidence about the strength of A by having his partner in the first game, B, either
win or lose against the same opponents with different teammates (weak/strong indirect

3Demos of the experiments can be accessed here:
http://web.mit.edu/tger/www/demos/BPP_demos.html

10

Table 1: Patterns of observation for the single player tournaments. Note: An additional
set of 4 patterns was included for which the outcomes of the games were reversed. The
bottom row shows the omniscient commentator’s information in Experiment 2. For
example, in the confounded case, player B was lazy in the second game.

confounded strong indirect weak indirect diverse
evidence evidence evidence evidence

(1,2) (3,4) (5,6) (7,8)

A > B A > B A > B A > B
A > B B > C B < C A > C
A > B B > D B < D A > D

lazy,game: B,2 B,1 B,1 C,2

Note: A > B means that A won against B.

Finally, we specify how the winner of a game is determined. We simply say the the
team wins who has the greater overall strength:

(define winner

(mem (lambda (team1 team2 game)

(if (< (teamstrength team1 game) (teamstrength team2 game))

‘team1 ‘team2))))

This set of function definitions specifies a simple lexicon of concepts for reasoning
about the ping pong domain.

The way in which we can define new concepts (e.g. teamstrength) based on previ-
ously defined concepts (personstrength and lazy) illustrates one form of compositionality
in Church. The set of concept definitions refers to people (teams, etc.) without hav-
ing to declare a set of possible people in advance: instead we apply generic functions
to placeholder symbols that will stand for these people. That is, the concepts may
be further composed with symbols and each other to describe specific situations. For
instance, the inference in Figure 1 can be described by:

(query

...CONCEPTS...

;The query:

(personstrength ‘TG)

;The evidence:

(and

(= ‘team1 (winner ‘(TG) ‘(NG) 1))

(= ‘team1 (winner ‘(NG) ‘(AS) 2))

(= ‘team1 (winner ‘(NG) ‘(BL) 3))))

Here ...CONCEPTS... is shorthand for the definitions introduced above—a lexicon of con-
cepts that we may use to model people’s inferences about a player’s strength not only
in the situation depicted in Figure 1 but in a multitude of possible situations with vary-
ing teams composed of several people, playing against each other with all thinkable
combinations of game results in different tournament formats. This productive exten-
sion over different possible situations including different persons, different teams and
different winners of each game, renders the Church implementation a powerful model
for human reasoning.

We wanted to explore how well our simple Church model predicts the inferences
people make, based on complex patterns of evidence in different situations (cf. Ger-
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though, we also do not include a successor function, mean-
ing a function which maps the representation of N to the
representation of N + 1. While neither a successor function
or a Mod-N function is assumed, both can be constructed
in this representational system.

3.4. Hypothesis space for the model

The hypothesis space for the learning model consists of
all ways these primitives can be combined to form lambda
expressions—lexicons—which map sets to number words.
This therefore provides a space of exact numerical mean-
ings. In a certain sense, the learning model is therefore
quite restricted in the set of possible meanings it will con-
sider. It will not ever, for instance, map a set to a different
concept or a word not on the count list. This restriction is
computationally convenient and developmentally plausi-
ble. Wynn (1992) provided evidence that children know
number words refer to some kind of numerosity before
they know their exact meanings. For example, even chil-
dren who did not know the exact meaning of ‘‘four’’
pointed to a display with several objects over a display
with few when asked ‘‘Can you show me four balloons?’’
They did not show this patten for nonsense word such as
‘‘Can you show me blicket balloons?’’ Similarly, children
map number words to some type of cardinality, even if
they do not know which cardinalities (Lipton & Spelke,
2006; Sarnecka & Gelman, 2004). Bloom and Wynn

(1997) suggest that perhaps this can be accounted for by
a learning mechanism that uses syntactic cues to deter-
mine that number words are a class with a certain
semantics.

However, within the domain of functions which map
sets to words, this hypothesis space is relatively unre-
stricted. Some example hypotheses are shown in Fig. 1.
The hypothesis space contains functions with partial
numerical knowledge—for instance, hypotheses that have
the correct meaning for ‘‘one’’ and ‘‘two’’, but not ‘‘three’’
or above. For instance, the 2-knower hypothesis takes an
argument S, and first checks if (singleton? S) is true—if S
has one element. If it does, the function returns ‘‘one’’. If
not, this hypothesis returns the value of (if (doubleton? S)
‘‘two’’ undef). This expression is another if-statement, one
which returns ‘‘two’’ if S has two elements, and undef
otherwise. Thus, this hypothesis represent a 2-knower
who has the correct meanings for ‘‘one’’ and ‘‘two’’, but
not for any higher numbers. Intuitively, one could build
much more complex and interesting hypotheses in this
format—for instance, ones that check more complex prop-
erties of S and return other word values.

Fig. 1 also shows an example of a CP-knower lexicon.
This function makes use of the counting routine and recur-
sion. First, this function checks if S contains a single ele-
ment, returning ‘‘one’’ if it does. If not, this function calls
set-difference on S and (select S). This has the effect of
choosing an element from S and removing it, yielding a

Fig. 1. Example hypotheses in the LOT. These include subset-knower, CP-knower, and Mod-N hypotheses. The actual hypothesis space for this model is
infinite, including all expressions which can be constructed in the LOT.
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in this representational system.

3.4. Hypothesis space for the model

The hypothesis space for the learning model consists of
all ways these primitives can be combined to form lambda
expressions—lexicons—which map sets to number words.
This therefore provides a space of exact numerical mean-
ings. In a certain sense, the learning model is therefore
quite restricted in the set of possible meanings it will con-
sider. It will not ever, for instance, map a set to a different
concept or a word not on the count list. This restriction is
computationally convenient and developmentally plausi-
ble. Wynn (1992) provided evidence that children know
number words refer to some kind of numerosity before
they know their exact meanings. For example, even chil-
dren who did not know the exact meaning of ‘‘four’’
pointed to a display with several objects over a display
with few when asked ‘‘Can you show me four balloons?’’
They did not show this patten for nonsense word such as
‘‘Can you show me blicket balloons?’’ Similarly, children
map number words to some type of cardinality, even if
they do not know which cardinalities (Lipton & Spelke,
2006; Sarnecka & Gelman, 2004). Bloom and Wynn

(1997) suggest that perhaps this can be accounted for by
a learning mechanism that uses syntactic cues to deter-
mine that number words are a class with a certain
semantics.

However, within the domain of functions which map
sets to words, this hypothesis space is relatively unre-
stricted. Some example hypotheses are shown in Fig. 1.
The hypothesis space contains functions with partial
numerical knowledge—for instance, hypotheses that have
the correct meaning for ‘‘one’’ and ‘‘two’’, but not ‘‘three’’
or above. For instance, the 2-knower hypothesis takes an
argument S, and first checks if (singleton? S) is true—if S
has one element. If it does, the function returns ‘‘one’’. If
not, this hypothesis returns the value of (if (doubleton? S)
‘‘two’’ undef). This expression is another if-statement, one
which returns ‘‘two’’ if S has two elements, and undef
otherwise. Thus, this hypothesis represent a 2-knower
who has the correct meanings for ‘‘one’’ and ‘‘two’’, but
not for any higher numbers. Intuitively, one could build
much more complex and interesting hypotheses in this
format—for instance, ones that check more complex prop-
erties of S and return other word values.

Fig. 1 also shows an example of a CP-knower lexicon.
This function makes use of the counting routine and recur-
sion. First, this function checks if S contains a single ele-
ment, returning ‘‘one’’ if it does. If not, this function calls
set-difference on S and (select S). This has the effect of
choosing an element from S and removing it, yielding a

Fig. 1. Example hypotheses in the LOT. These include subset-knower, CP-knower, and Mod-N hypotheses. The actual hypothesis space for this model is
infinite, including all expressions which can be constructed in the LOT.
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Hypothesis 1

Hypothesis 2

Hypothesis 3

Hypothesis N  …

program 
generates 
data Which is the 

right program?

Most likely 
to have 
generated 
the data?



Program induction

• Data is generated from an unknown program, where unlike 
standard probabilistic programming, we don’t know the 
structure of the program.

• Prior over programs is usually defined by assuming a set 
of programming primitives and combination operations, 
which is also referred to as a “Language of thought” model 
in cognitive science (a la Jerry Fodor)

• More analogous to “structure learning” for Bayesian 
networks, where we are searching for the right causal 
model that generated the data.



Language of thought / program induction in Python



an airplane is parked on the 
tarmac at an airport

a group of people standing on 
top of a beach

a woman riding a horse on a 
dirt road

Figure 6: Perceiving scenes without intuitive physics, intuitive psychology, compositionality, and
causality. Image captions are generated by a deep neural network (Karpathy & Fei-Fei, 2015) using
code from github.com/karpathy/neuraltalk2. Image credits: Gabriel Villena Fernández (left),
TVBS Taiwan / Agence France-Presse (middle) and AP Photo / Dave Martin (right). Similar
examples using images from Reuters news can be found at twitter.com/interesting jpg.

same properties is important for e�cient representation and quick learning of the game. Further,
new levels may contain di↵erent numbers and combinations of objects, where a compositional
representation of objects – using intuitive physics and intuitive psychology as glue – would aid in
making these crucial generalizations (Figure 2D).

Deep neural networks have at least a limited notion of compositionality. Networks trained for
object recognition encode part-like features in their deeper layers (Zeiler & Fergus, 2014), whereby
the presentation of new types of objects can activate novel combinations of feature detectors.
Similarly, a DQN trained to play Frostbite may learn to represent multiple replications of the
same object with the same features, facilitated by the invariance properties of a convolutional
neural network architecture. Recent work has shown how this type of compositionality can be
made more explicit, where neural networks can be used for e�cient inference in more structured
generative models (both neural networks and 3D scene models) that explicitly represent the number
of objects in a scene (Eslami et al., 2016). Beyond the compositionality inherent in parts, objects,
and scenes, compositionality can also be important at the level of goals and sub-goals. Recent
work on hierarchical-DQNs shows that by providing explicit object representations to a DQN, and
then defining sub-goals based on reaching those objects, DQNs can learn to play games with sparse
rewards (such as Montezuma’s Revenge) by combining these sub-goals together to achieve larger
goals (Kulkarni, Narasimhan, Saeedi, & Tenenbaum, 2016).

We look forward to seeing these new ideas continue to develop, potentially providing even richer
notions of compositionality in deep neural networks that lead to faster and more flexible learning.
To capture the full extent of the mind’s compositionality, a model must include explicit represen-
tations of objects, identity, and relations – all while maintaining a notion of “coherence” when
understanding novel configurations. Coherence is related to our next principle, causality, which is
discussed in the section that follows.

26

same causal process different examples

(Figure credit: Hinton & Nair, 2006)

…

Is it growing too 
close to my house?

How will it grow if I trim it?

neural net caption generation:
“A group of people standing on top of a beach”

Motivation: We need more than Bayesian 
networks to represent complex, real causal 

processes for generating data



Case study: Learning new handwritten letters
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Human-level concept learning
through probabilistic
program induction
Brenden M. Lake,1* Ruslan Salakhutdinov,2 Joshua B. Tenenbaum3

People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to
perform with similar accuracy. People can also use learned concepts in richer ways than
conventional algorithms—for action, imagination, and explanation. We present a
computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.

D
espite remarkable advances in artificial
intelligence and machine learning, two
aspects of human conceptual knowledge
have eluded machine systems. First, for
most interesting kinds of natural andman-

made categories, people can learn a new concept

from just one or a handful of examples, whereas
standard algorithms in machine learning require
tens or hundreds of examples to perform simi-
larly. For instance, people may only need to see
one example of a novel two-wheeled vehicle
(Fig. 1A) in order to grasp the boundaries of the

new concept, and even children canmake mean-
ingful generalizations via “one-shot learning”
(1–3). In contrast, many of the leading approaches
inmachine learning are also themost data-hungry,
especially “deep learning” models that have
achieved new levels of performance on object
and speech recognition benchmarks (4–9). Sec-
ond, people learn richer representations than
machines do, even for simple concepts (Fig. 1B),
using them for a wider range of functions, in-
cluding (Fig. 1, ii) creating new exemplars (10),
(Fig. 1, iii) parsing objects into parts and rela-
tions (11), and (Fig. 1, iv) creating new abstract
categories of objects based on existing categories
(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of
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1Center for Data Science, New York University, 726
Broadway, New York, NY 10003, USA. 2Department of
Computer Science and Department of Statistics, University
of Toronto, 6 King’s College Road, Toronto, ON M5S 3G4,
Canada. 3Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, MA 02139, USA.
*Corresponding author. E-mail: brenden@nyu.edu

Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (i) classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]
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Y LeCun
Convolutional Network

[LeCun et al. NIPS 1989]

Filter Bank +non-linearity

Filter Bank +non-linearity

Pooling

Pooling

Filter Bank +non-linearity

0 1 2... 9

Max pooling

Filter bank + non-linearity

Filter bank + non-linearity

Output classes

Max pooling

Filter bank + non-linearity

Layer 1: 4 feature maps

Layer 2: 12 feature maps

zj

Slide credit: Yann LeCun

Standard machine learning approach: Deep neural 
network with large amounts of data

MNIST:
10 classes of 
handwritten digits
6,000 examples each



People can learn a new concept from a 
single image.

less data more knowledge
People can apply their knowledge flexibly 

to new tasks.

People learn knowledge from less data

generating 
new examples

generating 
new concepts

parsing



1600+ concepts
20 examples each

 Omniglot stimulus set
(https://github.com/brendenlake/omniglot)

https://github.com/brendenlake/omniglot
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Human drawings



the number of subparts ni, for each part i = 1, ...,
k, from their empirical distributions asmeasured
from the background set. Second, a template for
a part Si is constructed by sampling subparts

from a set of discrete primitive actions learned
from the background set (Fig. 3A, i), such that
the probability of the next action depends on
the previous. Third, parts are then grounded as

parameterized curves (splines) by sampling the
control points and scale parameters for each
subpart. Last, parts are roughly positioned to
begin either independently, at the beginning,
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Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I (m) for m = 1, ..., M.
The function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings
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-1794-646 -1276

Training item with model’s five best parses

Test items

 

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). For classification, each program was refit to three new test images
(left in image triplets), and the best-fitting parse (top right) is shown
with its image reconstruction (bottom right) and classification score (log
posterior predictive probability). Subpart breaks are shown as black dots.
(B) Nine human drawings of three characters (left) are shown with their
ground truth parses (middle) and best model parses (right).
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ground truth parses (middle) and best model parses (right).
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token level
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relations, etc.

P (✓|I) = P (I|✓)P (✓)

P (I)

Probabilistic program induction model of concept learning



Task: “Generate a new example”
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A “visual Turing test” for generating new examples
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machine generated
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Task: “Generate a new character from the same alphabet”

3 seconds 
remaining
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A “visual Turing test” for generating new concepts
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A “visual Turing test” for generating new concepts



A B A B A B

A “visual Turing test” for generating new concepts



A B A B A B

machine generated

A “visual Turing test” for generating new concepts
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1250 primitives
scale selective
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Learning a prior distribution over programs
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✓
I

latent program
raw binary image...

connected 

relation

inferenceraw data

object template

strokes

sub-strokes

I

P (✓|I) = P (I|✓)P (✓)

P (I)

Bayes’ rule

such that

Discrete (K=5) approximation to posterior

P (✓|I) ⇡
PK

i=1 wi�(✓ � ✓[i])
PK

i=1 wi

wi / P (✓[i]|I)

primitives

renderer prior on programs

Intuition: Fit strokes to the observed pixels 
as closely as possible, with these 
constraints:
• fewer strokes
• high-probability primitive sequence 
• use relations
• stroke order
• stroke directions

Approximate probabilistic inference
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Step 3:  Top-down fitting with gradient-based optimization
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Figure SI-2: Illustration of the random walk choosing between three potential moves, after drawing
the topmost vertical edge (in the direction of the black arrow) and reaching a new decision point.
The three potential trajectories are fit with the smoothest spline that stays within the image ink and
does not deviate more than 3 pixels in any direction from the original trajectory (thick yellow line).
Given these smoothed trajectory options, move a) has a local angle of 0 degrees (computed between
the blue and purple vectors), move b) is 28 degrees, and move c) is 47 degrees.

where ✓A is the angle associated with action (Figure SI-2) and � is a constant. Two other possible
actions, picking up the pen and re-tracing a trajectory, pay a cost of 45 and 90 degrees respectively.
If the pen is in lifted position, the random walk must pick a node to put the pen down on to start the
next stroke. To bias the random walk towards completing the drawing efficiently, the start node is
chosen in proportion to 1/b� , where b is the number of new (unvisited) edges branching from that
node.

This random walk process is repeated many times to generate a range of candidate parses. Random
walks are generated until 150 parses or 100 unique strokes, shared across all of the parses, have been
sampled. Limiting the number of unique strokes is a natural criterion, since sub-parsing these strokes
is a computational bottleneck, as described in the next section. Larger values of the constants � and
� are better for parsing complex characters, since low stochasticity is critical for finding smooth
parses in a tremendous search space. But smaller values of � and � are better for simple characters,
where the algorithm has the computational resources to more exhaustively explore the parse space.
To get the best of both, different values of � and � are sampled before starting each random walk,
producing both low and high entropy random walks as candidates.

SI-5.3 Searching for sub-strokes

Before any candidate parse can be scored as a complete motor programs (Eq. 5), the strokes must
be sub-divided into sub-strokes. To do so, the strokes in each random walk are smoothed while
enforcing that the trajectories stay within the original ink (as in Figure SI-2), in order to correct for
spurious curves that arise from thinning algorithms (see Figure SI-2a for an example). The smoothed
strokes are then parsed into sub-strokes by running a simple greedy search for each stroke trajectory.
During search, operators add, remove, perturb, or replace pauses along the trajectory to form sub-
strokes. To score the quality of the decomposition, the sub-strokes are fit with splines, classified as
primitives zi, and scored by the generative model for strokes

P (x(m)
i , y(m)

i , zi) = P (zi)
niY

j=1

P (y(m)
ij |yij)P (yij |zij)

Z
P (x(m)

ij |xij)P (xij |zij) dxij , (SI-2)

where yi is approximated by setting it equal to y(m)
i . There is also a hard constraint that the spline

approximation to the original trajectory can miss its target by no more than 3 pixels.

After the search process is run for each stroke trajectory, each candidate motor program with vari-
ables  and ✓(m) is fully-specified and tracks the image structure relatively closely. Thus, the prior
score P (✓(m)| )P ( ) is used to select the K best candidates to progress to the next stage of search,
which fine-tunes the motor programs.
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the number of subparts ni, for each part i = 1, ...,
k, from their empirical distributions asmeasured
from the background set. Second, a template for
a part Si is constructed by sampling subparts

from a set of discrete primitive actions learned
from the background set (Fig. 3A, i), such that
the probability of the next action depends on
the previous. Third, parts are then grounded as

parameterized curves (splines) by sampling the
control points and scale parameters for each
subpart. Last, parts are roughly positioned to
begin either independently, at the beginning,
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Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I (m) for m = 1, ..., M.
The function f (·, ·) transforms a subpart sequence and start location into a trajectory.
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Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). For classification, each program was refit to three new test images
(left in image triplets), and the best-fitting parse (top right) is shown
with its image reconstruction (bottom right) and classification score (log
posterior predictive probability). Subpart breaks are shown as black dots.
(B) Nine human drawings of three characters (left) are shown with their
ground truth parses (middle) and best model parses (right).
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the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters
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Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.
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Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).
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• Writing experience influences 
perception
(Freyd, 1983;  Tse & Cavanagh, 2000; Knoblich & Prinz, 2001; 
James & Gauthier, 2009).

• Writing experience changes the functional 
specialization of visual cortex for letters.
(James & Atwood, 2009; James, 2010)

• Motor areas of cortex respond to static letters.
(Anderson et al., 1990; Loncamp et al., 2003; James & Gauthier, 2006; 
Longcamp et al., 2006; Longcamp et al., 2010 )

• Inferring the dynamics from static 
letters.
(Babcock & Freyd, 1988)

Behavioral evidence Neuroimaging evidence

Do people represent static characters by their causal dynamics?

same causal process different examples

(Figure credit: Hinton & Nair, 2006)



One-shot classification performance
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A “visual Turing test” for generating new concepts
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A “visual Turing test” for generating new concepts



Generating new 
concepts

(unconstrained)

Alphabet

Human or Machine?

Generating new concepts
(from type)

Alphabet

Human or Machine?

Human or Machine?

Human or Machine?

Generating new examples
 (dynamic)

Human
or Machine?

More large-scale behavioral experiments

59% correct in visual Turing test
6 of 30 judges above chance

49% correct in visual Turing test
8 of 35 judges above chance

51% correct in
 visual Turing test

2 of 25 judges
 above chance



type level

C
Canvas

yi, xi

Part

procedure GENERATETYPE
C  0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C  frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
  {, y1:, x1:}
return  . Return concept type

1

pr
oc

ed
ur

e
GENERAT

ET
YPE

C
 
0

.
Ini

tia
liz

e bla
nk

im
ag

e ca
nv

as

whi
le
tr
ue

do
[y i
, x
i]
 

GENERAT
EP

ART(
C
)
.

Sam
ple

pa
rt

loc
ati

on
&

pa
ra

mete
rs

C
 
f re

nd
er
(y
i,
x i
, C
)

.
Ren

de
r p

ar
t to

im
ag

e ca
nv

as

v i
⇠
p(
v
| C

)

.
Sam

ple
ter

mina
tio

n ind
ica

tor

if
v i

th
en

br
ea

k

.
Te

rm
ina

te
sa

mple

 
 
{
, y
1:

, x
1:

}

re
tu

rn
 

.
Retu

rn
co

nc
ep

t ty
pe

1

token level

Image
I

procedure GENERATETYPE
C  0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C  frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
  {, y1:, x1:}
return  . Return concept type

1

location model  p(y ∣ C)

CN ML

stroke model  

CN LST

y

C

attenti
p(y)

p(Δ1)

p(Δ2 ∣ Δ1)

p(ΔT ∣ Δ1:T−1)
…C

Recent developments: Generative neuro-symbolic programs

<latexit sha1_base64="BzdmTBaOPKNNo8T+7aB4dnNINwc="></latexit>

procedure GENERATETYPE
C  0 . Initialize blank canvas
for i = 1, . . . ,1 do

xi  GENERATEPART(C) . Sample part from neural net
C  RENDER (yi, xi, C) . Update canvas
vi  TERMINATE?(C) . Sample termination indicator
if vi then

break . Terminate sample
  {i, x1:i, y1:i, }
return  . Return concept type

<latexit sha1_base64="tiI13Ku4tclo4OjFtd93WSQ3XQo="></latexit>

procedure GENERATEBIKE
w1  GENERATEWHEEL()
w2  GENERATEWHEEL()
f  ??GENERATEFRAME()
C  ATTACH(w1, w2, f)
p GENERATEPEDALS()
h GENERATECHAIN()
C  ??ATTACH(C, p, h)
. . .
I  RENDER(C)
return GENERATETOKEN( )

Feinman, R. and Lake, B. M. (2021). Learning Task-General Representations with Generative 
Neuro-Symbolic Modeling. International Conference on Learning Representations (ICLR))
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a b s t r a c t

In acquiring number words, children exhibit a qualitative leap in which they transition
from understanding a few number words, to possessing a rich system of interrelated
numerical concepts. We present a computational framework for understanding this induc-
tive leap as the consequence of statistical inference over a sufficiently powerful represen-
tational system. We provide an implemented model that is powerful enough to learn
number word meanings and other related conceptual systems from naturalistic data. The
model shows that bootstrapping can be made computationally and philosophically well-
founded as a theory of number learning. Our approach demonstrates how learners may
combine core cognitive operations to build sophisticated representations during the course
of development, and how this process explains observed developmental patterns in num-
ber word learning.

! 2011 Elsevier B.V. All rights reserved.

1. Introduction

‘‘We used to think that if we knew one, we knew two,
because one and one are two. We are finding that we must
learn a great deal more about ‘and’.’’ [Sir Arthur
Eddington]

Cognitive development is most remarkable where chil-
dren appear to acquire genuinely novel concepts. One par-
ticularly interesting example of this is the acquisition of
number words. Children initially learn the count list
‘‘one’’, ‘‘two’’, ‘‘three’’, up to ‘‘six’’ or higher, without know-
ing the exact numerical meaning of these words (Fuson,
1988). They then progress through several subset-knower
levels, successively learning the meaning of ‘‘one’’, ‘‘two’’,
‘‘three’’ and sometimes ‘‘four’’ (Lee & Sarnecka, 2010a,
2010b; Sarnecka & Lee, 2009; Wynn, 1990, 1992). Two-
knowers, for example, can successfully give one or two ob-

jects when asked, but when asked for three or more will
simply give a handful of objects, even though they can re-
cite much more of the count list.

After spending roughly a year learning the meanings of
the first three or four words, children make an extraordi-
nary conceptual leap. Rather than successively learning
the remaining number words on the count list—up to infin-
ity—children at about age 3;6 suddenly infer all of their
meanings at once. In doing so, they become cardinal-prin-
cipal (CP) knowers, and their numerical understanding
changes fundamentally (Wynn, 1990, 1992). This develop-
ment is remarkable because CP-knowers discover the ab-
stract relationship between their counting routine and
number-word meanings: they know how to count and
how their list of counting words relates to numerical
meaning. This learning pattern cannot be captured by sim-
ple statistical or associationist learning models which only
track co-occurrences between number words and sets of
objects. Under these models, one would expect that num-
ber words would continue to be acquired gradually, not
suddenly as a coherent conceptual system. Rapid change
seems to require a learning mechanism which comes to

0010-0277/$ - see front matter ! 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cognition.2011.11.005

⇑ Corresponding author.
E-mail address: piantado@mit.edu (S.T. Piantadosi).
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Case study: Numerical concept learning and 
cognitive development



“Give-a-number” task 

“Give me three”
“Give me two”

Children’s development of numerical concepts

(Wynn, 1990; Wynn, 1992) 



Children’s development of numerical concepts
Children progress through a series of stages
• “one-knower”, “two-knower,” “three-known,” “four-knower” 

(sometimes), and then “cardinal-principle knower”

Example: “two knower”

give me one: 

give me two: 

give me three: 

(inconsistent; arbitrary response beyond “two”)

OR OR …



Children’s development of numerical concepts

(data from Wynn, 1990) 

• Critically, children can count well-beyond the range of their “knower” 
status, yet they don’t understand the meaning of the numbers.

• Transition from “N-knower” to “CP-knower” happens around 3.5

Children ‘s understanding of counting 183 

0n at least two-thirds of a child’s trials for that numerosity, the child’s 
was either the correct number according to his or her own 
count list, or the correct number plus or minus one if the 

child had counted aloud from the pile to the number word asked for, 
but had erred in the counting by either double-counting or skipping one 
item. Two-thirds was chosen as ;he criterion for success because many 
children were given three trials of a particular numerosity, so it is a 
natural cut-off point. Children’s final responses were used rather than 

responses because children occasionally corrected a wrong 
ut rarely changed a response that was initially correct. 

responded with that number when asked for other 
merosities no more than half as often, percentage-wise, as he or she 

did when asked for that number itself. For example, a child who gave 
twiirc items 80% of the time when asked for two, was scored consistently 
correct on two only if he or she gave two items no more than 40% of 
the time when asked for one, three, five, and six items. This was to 
prevent children who had a preference for giving, for example, two 
items no matter what they were asked for, from being considered to 
know the meaning of the word “two.” 

Children fell into five groups according to the numerosities at which they 
succeeded. Table 4 shows the number and ages of children in each group, 
and how high the children in each group could count (determined by averag- 

ren’s highest correct counts in the count/how-many task) The criter- 
ion for a correct count in the count/how-many task was the sa:me as that used 
in Experiment 1: Children had to start the count with the first element in 
their own stably ordered list, a.nd were allc-ved a single one-to-one correspon- 
dence or stable-order mistake on sets of three, 
single stable-order mistake w sets of two items. 

Table 4. Patterns of success in give-a-number task in 
_- 

kccess pattern 
_~_--~ -_____ Number of 

1 2 3 .“5 6 children 
___- I 
-. 1 

+ - - _ - 3 
+ -t - - - 2 
+ -I G - - 4 
+ + + + + 7 

~___._ -~. -- - - -- - 

five, anQ six items, and a 

Experiment 3 

Chunting ability 
i&an 
age Mean (range) 

2:s 3.00 (3-3) 
3:o 4.67 (3-6) 
2:1”1 4.50 (3-6) 
3:5 5.75 (5-6) 
3:7 6.00 (6-63 

_-. - . ---- - __ 

Note: “+” indicates success on a numerosity; “-“ intiir,res faiiure. 
CP-knower

three-knower
two-knower
one-knower



The sequence of number words ‘‘one’’, ‘‘two’’, ‘‘three’’,
etc. is known to children before they start to learn the
words’ numerical meanings (Fuson, 1988). In this formal
model, this means that the sequential structure of the
count list of number words should be available to the lear-
ner via some primitive operations. We therefore assume
three primitive operations for words in the counting rou-
tine: next, prev, and equal-word?. These operate on the do-
main of words, not on the domain of sets or numerical
representations. They simply provide functions for moving
forwards and backwards on the count list, and checking if
two words are equal.5

Finally, we allow for recursion via the primitive func-
tion L permitting the learner to potentially construct a
recursive system of word meanings. Recursion has been ar-
gued to be a key human ability (Hauser, Chomsky, & Fitch,
2002) and is a core component of many computational sys-
tems (e.g., Church, 1936). L is the name of the function the
learner is trying to infer and this can be used in the defini-
tion of L itself. That is, L is a special primitive in that it
maps a set to the word for that set according to the current
hypothesis (i.e. the hypothesis where L is being used).
Thus, by including L also as a primitive, we allow the lear-
ner to potentially use their currently hypothesized mean-
ing for L in the definition of L itself. One simple example
of a recursive definition is,

k S ! ðif ðsingleton? SÞ
\one"

ðnext ðL ðselect SÞÞÞÞ:

This returns ‘‘one’’ for sets of size one. If given a set S of size
greater than one, it evaluates (next (L (select S))). Here,

(select S) always is a set of size one since select selects a
single element. L is therefore evaluated the singleton set
returned by (select S). Because L returns the value of the
lambda expression it is used in, it returns ‘‘one’’ on single-
ton sets in this example. This means that (next (L (select S)))
evaluates to (next ‘‘one’’), or ‘‘two’’. Thus, this recursive
function returns the same value as, for instance, kS. (if (sin-
gleton? S) ‘‘one’’ ‘‘two’’).

Note that L is crucially not a successor function. It does
not map a number to its successor: it simply evaluates the
current hypothesis on some set. Naive use of L can give rise
to lambda expressions which do not halt, looping infi-
nitely. However, L can also be used to construct hypotheses
which implement useful computations, including the cor-
rect successor function and many other functions. In this
sense, L is much more basic than a successor function.6

It is worthwhile discussing what types of primitives are
not included in this LOT. Most notably, we do not include a
Mod-N operation as a primitive. A Mod-N primitive might,
for instance, take a set and a number word, and return true
if the set’s cardinality mod N is equal to the number word.7

The reason for not including Mod-N is that there is no inde-
pendent reason for thinking that computing Mod-N is a ba-
sic ability of young children, unlike logical and set
operations. As may be clear, the fact that Mod-N is not in-
cluded as a primitive will be key for explaining why children
make the correct CP inference rather than the generalization
suggested by Rips, Asmuth, and Bloomfield.8 Importantly,

Table 1
Primitive operations allowed in the LOT. All valid compositions of these primitives are potential hypotheses for the model.

Functions mapping sets to truth values
(singleton? X) Returns true iff the set X has exactly one element
(doubleton? X) Returns true iff the set X has exactly two elements
(tripleton? X) Returns true iff the set X has exactly three elements

Functions on sets
(set-difference X Y) Returns the set that results from removing Y from X
(union X Y) Returns the union of sets X and Y
(intersection X Y) Returns the intersect of sets X and Y
(select X) Returns a set containing a single element from X

Logical functions
(and P Q) Returns TRUE if P and Q are both true
(or P Q) Returns TRUE if either P or Q is true
(not P) Returns TRUE iff P is false
(if P X Y) Returns X iff P is true, Y otherwise

Functions on the counting routine
(next W) Returns the word after W in the counting routine
(prev W) Returns the word before W in the counting routine
(equal-word? W V) Returns TRUE if W and V are the same word

Recursion
(L S) Returns the result of evaluating the entire current lambda expression on set S

5 It is not clear that children are capable of easily moving backwards on
the counting list (Baroody, 1984; Fuson, 1984). This may mean that it is
better not to include ‘‘prev’’ as a cognitive operation; however, for our
purposes, ‘‘prev’’ is relatively unimportant and not used in most of the
interesting hypotheses considered by the model. We therefore leave it in
and note that it does not affect the performance of the model substantially.

6 Interestingly, the computational power to use recursion comes for free
if lambda calculus is the representational system: recursion can be
constructed via the Y-combinator out of nothing more than the composi-
tion laws of lambda calculus. Writing L this way, however, is considerably
more complex than treating it as a primitive.

7 That is, if S is the set and jSj = k ! N + w for some integer k, then this
function would return true when applied to S and the word for w.

8 This means that if very young children could be shown to compute
Mod-N easily, it would need to be included as a cognitive primitive, and
would substantially change the predictions of the model. Thus, the model
with its current set of primitives could be argued against by showing that
computing Mod-N is as easy for children as manipulating small sets.
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though, we also do not include a successor function, mean-
ing a function which maps the representation of N to the
representation of N + 1. While neither a successor function
or a Mod-N function is assumed, both can be constructed
in this representational system.

3.4. Hypothesis space for the model

The hypothesis space for the learning model consists of
all ways these primitives can be combined to form lambda
expressions—lexicons—which map sets to number words.
This therefore provides a space of exact numerical mean-
ings. In a certain sense, the learning model is therefore
quite restricted in the set of possible meanings it will con-
sider. It will not ever, for instance, map a set to a different
concept or a word not on the count list. This restriction is
computationally convenient and developmentally plausi-
ble. Wynn (1992) provided evidence that children know
number words refer to some kind of numerosity before
they know their exact meanings. For example, even chil-
dren who did not know the exact meaning of ‘‘four’’
pointed to a display with several objects over a display
with few when asked ‘‘Can you show me four balloons?’’
They did not show this patten for nonsense word such as
‘‘Can you show me blicket balloons?’’ Similarly, children
map number words to some type of cardinality, even if
they do not know which cardinalities (Lipton & Spelke,
2006; Sarnecka & Gelman, 2004). Bloom and Wynn

(1997) suggest that perhaps this can be accounted for by
a learning mechanism that uses syntactic cues to deter-
mine that number words are a class with a certain
semantics.

However, within the domain of functions which map
sets to words, this hypothesis space is relatively unre-
stricted. Some example hypotheses are shown in Fig. 1.
The hypothesis space contains functions with partial
numerical knowledge—for instance, hypotheses that have
the correct meaning for ‘‘one’’ and ‘‘two’’, but not ‘‘three’’
or above. For instance, the 2-knower hypothesis takes an
argument S, and first checks if (singleton? S) is true—if S
has one element. If it does, the function returns ‘‘one’’. If
not, this hypothesis returns the value of (if (doubleton? S)
‘‘two’’ undef). This expression is another if-statement, one
which returns ‘‘two’’ if S has two elements, and undef
otherwise. Thus, this hypothesis represent a 2-knower
who has the correct meanings for ‘‘one’’ and ‘‘two’’, but
not for any higher numbers. Intuitively, one could build
much more complex and interesting hypotheses in this
format—for instance, ones that check more complex prop-
erties of S and return other word values.

Fig. 1 also shows an example of a CP-knower lexicon.
This function makes use of the counting routine and recur-
sion. First, this function checks if S contains a single ele-
ment, returning ‘‘one’’ if it does. If not, this function calls
set-difference on S and (select S). This has the effect of
choosing an element from S and removing it, yielding a

Fig. 1. Example hypotheses in the LOT. These include subset-knower, CP-knower, and Mod-N hypotheses. The actual hypothesis space for this model is
infinite, including all expressions which can be constructed in the LOT.
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Word
W

“one” “two” “three”
…

(if B the W else W)

(if (singleton? S) then W else W)

(if (singleton? S) then “one” else W)

(if (singleton? S) then “one” else “undefined”)

(if (and B B) W else W)

Boolean
B

…

…
(if (and (True) B) W else W)

Defining a prior distribution over programs
(a “Probabilistic Language of Thought”)

Formalism used: 
probabilistic context-free 
grammar



“six”

“two”

“one”
“one”

the correct word (see Lee & Sarnecka, 2010b, 2010a;
Sarnecka & Lee, 2009). If the result is not undef, with high
probability a, we produce the computed number word; with
low probability 1 ! a we produce the another word, choos-
ing uniformly at random from the count list. Thus,

Pðwijti; ci; LÞ ¼

1
N if L yields undef
aþ ð1! aÞ 1

N if L yields wi

ð1! aÞ 1
N if L does not yield wi

8
><

>:

ð5Þ

where N is the length of the count routine.11 This likelihood re-
flects the fact that speakers will typically use the correct number
word for a set. But occasionally, the listener will misinterpret
what is being referred to and will hear an incorrectly paired
number word and set. This likelihood therefore penalizes lexi-
cons which generate words for each set which do not closely fol-
low the observed usage. It also penalizes hypotheses which
make incorrect predictions over those which return undef, mean-
ing that it is better for a learner to remain uncommitted than to
make a strong incorrect predictions.12 The likelihood uses a free
parameter, a, which controls the degree to which the learner is
penalized for data which are not predicted by their hypothesis.

To create data for the learning model, we simulated noisy
pairing of words and sets of objects, where the word fre-
quencies approximate the naturalistic word probabilities
in child-directed speech from CHILDES (MacWhinney,
2000). We used all English transcripts with children aged
between 20 and 40 months to compute these probabilities.
This distribution is shown in Fig. 2. Note that all occurrences
of number words were used to compute these probabilities,
regardless of their annotated syntactic type. This was be-
cause examination of the data revealed many instances in
which it is not clear if labeled pronoun usages actually have
numerical content—e.g., ‘‘give me one’’ and ‘‘do you want
one?’’ We therefore simply used the raw counts of number

words. This provides a distribution of number words much
like that observed cross-linguistically by Dehaene and Meh-
ler (1992), but likely overestimates the probability of ‘‘one’’.
Noisy data that fits the generative assumptions of the model
was created for the learner by pairing each set size with the
correct word with probability a, and with a uniformly cho-
sen word with probability 1 ! a.

3.6. Inference & methods

The previous section established a formal probabilistic
model which assigns any potential hypothesized numerical
system L a probability, conditioning on some observed data
consisting of sets and word-types. This probabilistic model de-
fines the probability of a lambda expression, but does not say
how one might find high-probability hypotheses or compute
predicted behavioral patterns. To solve these problems, we
use a general inference algorithm similar to the tree-substitu-
tion Markov-chain Monte-Carlo (MCMC) sampling used in the
rational rules model (Goodman et al., 2008).

This algorithm essentially performs a stochastic search
through the space of hypotheses L. For each hypothesized
lexicon L, a change is proposed to L by resampling one piece
of a lambda expression in L according to a PCFG. The change
is accepted with a certain probability such that in the limit,
this process can be shown to generate samples from the pos-
terior distribution P (L jW,T,C). This process builds up
hypotheses by making changes to small pieces of the
hypothesis: the entire hypothesis space need not be explic-
itly enumerated and tested. Although the hypothesis space
is in principle infinite, the ‘‘good’’ hypotheses can be found
by this technique since they will be high-probability, and
this sampling procedure finds regions of high probability.

This process is not necessarily intended as an algorithmic
theory for how children actually discover the correct lexicon
(though see Ullman et al., 2010). Children’s actual discovery
of the correct lexicon probably relies on numerous other
cues and cognitive processes and likely does not progress
through such a simple random search. Our model is in-
tended as a computational level model (Marr, 1982), which
aims to explain children’s behavior in terms of how an ide-
alized statistical learner would behave. Our evaluation of
the model will rely on seeing if our idealized model’s degree
of belief in each lexicon is predictive of the correct behav-
ioral pattern as data accumulates during development.

To ensure that we found the highest probability lexi-
cons for each amount of data, we ran this process for one
million MCMC steps, for varying c and amounts of data
from 1 to 1000 pairs of sets, words, and types. This number
of MCMC steps was much more than was strictly necessary
to find the high probability lexicons and children could
search a much smaller effective space. Running MCMC
for longer than necessary ensures that no unexpectedly
good lexicons were missed during the search, allowing us
to fully evaluate predictions of the idealized model. In
the MCMC run we analytically computed the expected
log likelihood of a data point for each lexicon, rather than
using simulated data sets. This allowed each lexicon to
be efficiently evaluated on multiple amounts of data.

Ideally, we would be able to compute the exact posterior
probability of P (L jW,T,C) for any lexicon L. However, Eq. (3)
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Fig. 2. Number word frequencies from CHILDES (MacWhinney, 2000)
used to simulate learning data for the model.

11 The second line is ‘‘aþ ð1! aÞ 1
N’’ instead of just ‘‘a’’ since the correct

word wi can be generated either by producing the correct word with
probability a or by generating uniformly with probability 1 ! a.

12 It would be interesting to computationally study the relationship of
number learning to acquisition of other quantifiers, since they would likely
be other alternatives that could be considered in the likelihood.
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P (D|L)P (L)

P (D)

Bayes’ rule for learning programs

though, we also do not include a successor function, mean-
ing a function which maps the representation of N to the
representation of N + 1. While neither a successor function
or a Mod-N function is assumed, both can be constructed
in this representational system.

3.4. Hypothesis space for the model

The hypothesis space for the learning model consists of
all ways these primitives can be combined to form lambda
expressions—lexicons—which map sets to number words.
This therefore provides a space of exact numerical mean-
ings. In a certain sense, the learning model is therefore
quite restricted in the set of possible meanings it will con-
sider. It will not ever, for instance, map a set to a different
concept or a word not on the count list. This restriction is
computationally convenient and developmentally plausi-
ble. Wynn (1992) provided evidence that children know
number words refer to some kind of numerosity before
they know their exact meanings. For example, even chil-
dren who did not know the exact meaning of ‘‘four’’
pointed to a display with several objects over a display
with few when asked ‘‘Can you show me four balloons?’’
They did not show this patten for nonsense word such as
‘‘Can you show me blicket balloons?’’ Similarly, children
map number words to some type of cardinality, even if
they do not know which cardinalities (Lipton & Spelke,
2006; Sarnecka & Gelman, 2004). Bloom and Wynn

(1997) suggest that perhaps this can be accounted for by
a learning mechanism that uses syntactic cues to deter-
mine that number words are a class with a certain
semantics.

However, within the domain of functions which map
sets to words, this hypothesis space is relatively unre-
stricted. Some example hypotheses are shown in Fig. 1.
The hypothesis space contains functions with partial
numerical knowledge—for instance, hypotheses that have
the correct meaning for ‘‘one’’ and ‘‘two’’, but not ‘‘three’’
or above. For instance, the 2-knower hypothesis takes an
argument S, and first checks if (singleton? S) is true—if S
has one element. If it does, the function returns ‘‘one’’. If
not, this hypothesis returns the value of (if (doubleton? S)
‘‘two’’ undef). This expression is another if-statement, one
which returns ‘‘two’’ if S has two elements, and undef
otherwise. Thus, this hypothesis represent a 2-knower
who has the correct meanings for ‘‘one’’ and ‘‘two’’, but
not for any higher numbers. Intuitively, one could build
much more complex and interesting hypotheses in this
format—for instance, ones that check more complex prop-
erties of S and return other word values.

Fig. 1 also shows an example of a CP-knower lexicon.
This function makes use of the counting routine and recur-
sion. First, this function checks if S contains a single ele-
ment, returning ‘‘one’’ if it does. If not, this function calls
set-difference on S and (select S). This has the effect of
choosing an element from S and removing it, yielding a

Fig. 1. Example hypotheses in the LOT. These include subset-knower, CP-knower, and Mod-N hypotheses. The actual hypothesis space for this model is
infinite, including all expressions which can be constructed in the LOT.
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though, we also do not include a successor function, mean-
ing a function which maps the representation of N to the
representation of N + 1. While neither a successor function
or a Mod-N function is assumed, both can be constructed
in this representational system.

3.4. Hypothesis space for the model

The hypothesis space for the learning model consists of
all ways these primitives can be combined to form lambda
expressions—lexicons—which map sets to number words.
This therefore provides a space of exact numerical mean-
ings. In a certain sense, the learning model is therefore
quite restricted in the set of possible meanings it will con-
sider. It will not ever, for instance, map a set to a different
concept or a word not on the count list. This restriction is
computationally convenient and developmentally plausi-
ble. Wynn (1992) provided evidence that children know
number words refer to some kind of numerosity before
they know their exact meanings. For example, even chil-
dren who did not know the exact meaning of ‘‘four’’
pointed to a display with several objects over a display
with few when asked ‘‘Can you show me four balloons?’’
They did not show this patten for nonsense word such as
‘‘Can you show me blicket balloons?’’ Similarly, children
map number words to some type of cardinality, even if
they do not know which cardinalities (Lipton & Spelke,
2006; Sarnecka & Gelman, 2004). Bloom and Wynn

(1997) suggest that perhaps this can be accounted for by
a learning mechanism that uses syntactic cues to deter-
mine that number words are a class with a certain
semantics.

However, within the domain of functions which map
sets to words, this hypothesis space is relatively unre-
stricted. Some example hypotheses are shown in Fig. 1.
The hypothesis space contains functions with partial
numerical knowledge—for instance, hypotheses that have
the correct meaning for ‘‘one’’ and ‘‘two’’, but not ‘‘three’’
or above. For instance, the 2-knower hypothesis takes an
argument S, and first checks if (singleton? S) is true—if S
has one element. If it does, the function returns ‘‘one’’. If
not, this hypothesis returns the value of (if (doubleton? S)
‘‘two’’ undef). This expression is another if-statement, one
which returns ‘‘two’’ if S has two elements, and undef
otherwise. Thus, this hypothesis represent a 2-knower
who has the correct meanings for ‘‘one’’ and ‘‘two’’, but
not for any higher numbers. Intuitively, one could build
much more complex and interesting hypotheses in this
format—for instance, ones that check more complex prop-
erties of S and return other word values.

Fig. 1 also shows an example of a CP-knower lexicon.
This function makes use of the counting routine and recur-
sion. First, this function checks if S contains a single ele-
ment, returning ‘‘one’’ if it does. If not, this function calls
set-difference on S and (select S). This has the effect of
choosing an element from S and removing it, yielding a

Fig. 1. Example hypotheses in the LOT. These include subset-knower, CP-knower, and Mod-N hypotheses. The actual hypothesis space for this model is
infinite, including all expressions which can be constructed in the LOT.
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only specifies something proportional to this probability.
This is sufficient for the MCMC algorithm, and thus would
be enough for any child engaging in a stochastic search
through the space of hypotheses. However, to compute the
model’s predicted distribution of responses, we used a form
of selective model averaging (Hoeting, Madigan, Raftery, &
Volinsky, 1999; Madigan & Raftery, 1994), looking at all
hypotheses which had a posterior probability in the top
1000 for any amount of data during the MCMC runs. This re-
sulted in approximately 11,000 hypotheses. Solely for the
purpose of computing P (L jW,T,C), these hypotheses were
treated as a fixed, finite hypothesis space. This finite hypoth-
esis space was also used to compute model predictions for
various c and a. Because most hypotheses outside of the
top 1000 are extremely low probability, this provides a close
approximation to the true distribution P (L jW,T,C).

4. Results

We first show results for learning natural numbers from
naturalistic data. After that, we apply the same model to
other data sets.

4.1. Learning natural number

The precise learning pattern for the model depends
somewhat on the parameter values a and c. We first look

at typical parameter values that give the empirically
demonstrated learning pattern, and then examine how ro-
bust the model is to changing these parameters.

Fig. 3 shows learning curves for the behavioral pattern
exhibited by the model for a = 0.75 and log c = !25. This
plot shows the marginal probability of each type of behav-
ior, meaning that each line represents the sum of the pos-
terior probability all hypotheses that show a given type of
behavior. For instance, the 2-knower line shows the sum of
the posterior probability of all LOT expressions which map
sets of size 1 to ‘‘one’’, sets of size 2 to ‘‘two’’, and every-
thing else to undef. Intuitively, this marginal probability
corresponds to the proportion of children who should look
like subset- or CP-knowers at each point in time. This fig-
ure shows that the model exhibits the correct developmen-
tal pattern. The first gray line on the left represents several
different hypotheses which are high probability in the
prior—such as all sets map to the same word, or unde-
fined—and are quickly dispreferred. The model then suc-
cessively learns the meaning of ‘‘one’’, then ‘‘two’’,
‘‘three’’, finally transitioning to a CP-knower which cor-
rectly represents meaning of all number words. That is,
with very little data the ‘‘best’’ hypothesis is one which
looks like a 1-knower, and as more and more data is accu-
mulated, the model transitions through subset-knowers.
Eventually, the model accumulates enough evidence to
justify the CP-knower lexicon that recursively defines all
number words on the count list. At that point, the model
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Fig. 3. (a) shows marginal posteriors probability of exhibiting each type of behavior, as a function of amount of data and (b) shows the same plot on a log y-
axis demonstrating the large number of other numerical systems which are considered, but found to be unlikely given the data.
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though, we also do not include a successor function, mean-
ing a function which maps the representation of N to the
representation of N + 1. While neither a successor function
or a Mod-N function is assumed, both can be constructed
in this representational system.

3.4. Hypothesis space for the model

The hypothesis space for the learning model consists of
all ways these primitives can be combined to form lambda
expressions—lexicons—which map sets to number words.
This therefore provides a space of exact numerical mean-
ings. In a certain sense, the learning model is therefore
quite restricted in the set of possible meanings it will con-
sider. It will not ever, for instance, map a set to a different
concept or a word not on the count list. This restriction is
computationally convenient and developmentally plausi-
ble. Wynn (1992) provided evidence that children know
number words refer to some kind of numerosity before
they know their exact meanings. For example, even chil-
dren who did not know the exact meaning of ‘‘four’’
pointed to a display with several objects over a display
with few when asked ‘‘Can you show me four balloons?’’
They did not show this patten for nonsense word such as
‘‘Can you show me blicket balloons?’’ Similarly, children
map number words to some type of cardinality, even if
they do not know which cardinalities (Lipton & Spelke,
2006; Sarnecka & Gelman, 2004). Bloom and Wynn

(1997) suggest that perhaps this can be accounted for by
a learning mechanism that uses syntactic cues to deter-
mine that number words are a class with a certain
semantics.

However, within the domain of functions which map
sets to words, this hypothesis space is relatively unre-
stricted. Some example hypotheses are shown in Fig. 1.
The hypothesis space contains functions with partial
numerical knowledge—for instance, hypotheses that have
the correct meaning for ‘‘one’’ and ‘‘two’’, but not ‘‘three’’
or above. For instance, the 2-knower hypothesis takes an
argument S, and first checks if (singleton? S) is true—if S
has one element. If it does, the function returns ‘‘one’’. If
not, this hypothesis returns the value of (if (doubleton? S)
‘‘two’’ undef). This expression is another if-statement, one
which returns ‘‘two’’ if S has two elements, and undef
otherwise. Thus, this hypothesis represent a 2-knower
who has the correct meanings for ‘‘one’’ and ‘‘two’’, but
not for any higher numbers. Intuitively, one could build
much more complex and interesting hypotheses in this
format—for instance, ones that check more complex prop-
erties of S and return other word values.

Fig. 1 also shows an example of a CP-knower lexicon.
This function makes use of the counting routine and recur-
sion. First, this function checks if S contains a single ele-
ment, returning ‘‘one’’ if it does. If not, this function calls
set-difference on S and (select S). This has the effect of
choosing an element from S and removing it, yielding a

Fig. 1. Example hypotheses in the LOT. These include subset-knower, CP-knower, and Mod-N hypotheses. The actual hypothesis space for this model is
infinite, including all expressions which can be constructed in the LOT.
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Abstract

A hallmark of human intelligence is the ability to ask rich, creative, and revealing
questions. Here we introduce a cognitive model capable of constructing human-
like questions. Our approach treats questions as formal programs that, when exe-
cuted on the state of the world, output an answer. The model specifies a probability
distribution over a complex, compositional space of programs, favoring concise
programs that help the agent learn in the current context. We evaluate our ap-
proach by modeling the types of open-ended questions generated by humans who
were attempting to learn about an ambiguous situation in a game. We find that our
model predicts what questions people will ask, and can creatively produce novel
questions that were not present in the training set. In addition, we compare a num-
ber of model variants, finding that both question informativeness and complexity
are important for producing human-like questions.

1 Introduction

In active machine learning, a learner is able to query an oracle in order to obtain information that is
expected to improve performance. Theoretical and empirical results show that active learning can
speed acquisition for a variety of learning tasks [see 21, for a review]. Although impressive, most
work on active machine learning has focused on relatively simple types of information requests
(most often a request for a supervised label). In contrast, humans often learn by asking far richer
questions which more directly target the critical parameters in a learning task. A human child might
ask “Do all dogs have long tails?” or “What is the difference between cats and dogs?” [2]. A long
term goal of artificial intelligence (AI) is to develop algorithms with a similar capacity to learn
by asking rich questions. Our premise is that we can make progress toward this goal by better
understanding human question asking abilities in computational terms [cf. 8].

To that end, in this paper, we propose a new computational framework that explains how people con-
struct rich and interesting queries within in a particular domain. A key insight is to model questions
as programs that, when executed on the state of a possible world, output an answer. For example,
a program corresponding to “Does John prefer coffee to tea?” would return True for all possible
world states where this is the correct answer and False for all others. Other questions may return
different types of answers. For example “How many sugars does John take in his coffee?” would
return a number 0, 1, 2, etc. depending on the world state. Thinking of questions as syntactically
well-formed programs recasts the problem of question asking as one of program synthesis. We show
that this powerful formalism offers a new approach to modeling question asking in humans and may
eventually enable more human-like question asking in machines.

We evaluate our model using a data set containing natural language questions asked by human
participants in an information-search game [19]. Given an ambiguous situation or context, our
model can predict what questions human learners will ask by capturing constraints in how humans
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In a warm-up phase participants played five rounds of the
standard Battleship game (i.e., turning over tiles to find the
ships) to ensure understanding of the basic game play. Then,
in the main phase, participants were given the opportunity to
ask free-form questions in 18 trials. We defined 18 different
“contexts” which refer to partially revealed game boards (see
Figure 2A).

At the beginning of a trial, we introduced participants to
a partly revealed game board by letting them click on a pre-
determined sequence of tiles (which are the past queries X

and answers D in Equation 2). We chose this format of tile-
uncovering moves, resembling the warm-up phase, to give
the impression that a human was playing a game that was
paused in an unfinished state. Subsequently, as a comprehen-
sion check, participants were asked to indicate the possible
colors of each covered tile (e.g., whether the tile could be
hiding a piece of the red ship). The task would only continue
after all tiles were indicated correctly (or a maximum of six
guesses were made).

Next, participants were given the following prompt: “If
you had a special opportunity to ask any question about the
grid, ships, or tiles - what would you ask?” (represented as x

in Equation 2). A text box recorded participants’ responses.
The only two restrictions were that combinations of questions
were not allowed (i.e., putting two questions together with
“and” or “or”) and questions had to be answerable with a sin-
gle piece of information (e.g., a word, a number, true/false, or
a single coordinate). Thus, participants could not ask for the
entire latent configuration at once, although their creativity
was otherwise uninhibited. Due to practical limitations par-
ticipants asked only one question per trial, no feedback was
provided and there was no painting phase. We emphasized
to participants that they should ask questions as though they
were playing the game they already had experience with in
the earlier part of the experiment.
Question asking contexts. To produce a variety of different
types of partial knowledge states or “contexts” from which
people could ask questions, we varied the number of uncov-
ered tiles (6 or 12), the number of partly revealed ships (0 to
3), and the number of fully revealed ships (0 to 2). These fac-
tors were varied independently while excluding impossible
combinations leading to a total of 18 contexts/trials.

Results

We recorded 720 questions (18 trials ⇥ 40 participants).
Questions that did not conform with the rules or that were am-
biguous were discarded (13%) along with (3%) which were
dropped due to implementation difficulties. The remaining
605 questions (84%) were categorized by type (see Table 1).
Question content. As a first stage of our analysis, we man-
ually coded commonalities in the meaning of questions in-
dependent of the specific wording used. For example, the
questions “How many squares long is the blue ship?” and
“How many tiles is the blue ship?” have the same meaning

Table 1: The natural language questions obtained in Exp. 1 were
formalized as functions that could be understood by our model. The
table shows a comprehensive list. Column N reports the number of
questions people generated of that type. Questions are organized
into broad classes (headers) that reference different aspects of the
game.

N Location/standard queries
24 What color is at [row][column]?
24 Is there a ship at [row][column]?
31 Is there a [color incl water] tile at [row][column]?

Region queries
4 Is there any ship in row [row]?
9 Is there any part of the [color] ship in row [row]?
5 How many tiles in row [row] are occupied by ships?
1 Are there any ships in the bottom half of the grid?

10 Is there any ship in column [column]?
10 Is there any part of the [color] ship in column [column]?
3 Are all parts of the [color] ship in column [column]?
2 How many tiles in column [column] are occupied by ships?
1 Is any part of the [color] ship in the left half of the grid?

Ship size queries
185 How many tiles is the [color] ship?
71 Is the [color] ship [size] tiles long?
8 Is the [color] ship [size] or more tiles long?
5 How many ships are [size] tiles long?
8 Are any ships [size] tiles long?
2 Are all ships [size] tiles long?
2 Are all ships the same size?
2 Do the [color1] ship and the [color2] ship have the same size?
3 Is the [color1] ship longer than the [color2] ship?
3 How many tiles are occupied by ships?

Ship orientation queries
94 Is the [color] ship horizontal?
7 How many ships are horizontal?
3 Are there more horizontal ships than vertical ships?
1 Are all ships horizontal?
4 Are all ships vertical?
7 Are the [color1] ship and the [color2] ship parallel?

Adjacency queries
12 Do the [color1] ship and the [color2] ship touch?
6 Are any of the ships touching?
9 Does the [color] ship touch any other ship?
2 Does the [color] ship touch both other ships?

Demonstration queries
14 What is the location of one [color] tile?
28 At what location is the top left part of the [color] ship?
5 At what location is the bottom right part of the [color] ship?

for our purposes and were formalized as shipsize(blue), where
shipsize is a function with parameter value blue. Since the
function shipsize also works with red and purple as parameter
values, it represents a cluster of analogous questions. Within
these functional clusters we then considered the frequency by
which such questions were generated across the 18 contexts
to get a sense of participant’s question asking approach (first
column in Table 1).

At a broader level, there are natural groups of question
types (Table 1). While this partitioning is far from the only
possible scheme, it helps to reveal qualitative differences be-
tween questions. An important distinction contrasts loca-

tion/standard queries with rich queries. Location queries
ask for the color of a single tile and are the only question
type afforded by the “standard” Battleship task (Gureckis &
Markant, 2009; Markant & Gureckis, 2012, 2014). Rich
queries incorporate all other queries in Table 1 and reference
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a partly revealed game board by letting them click on a pre-
determined sequence of tiles (which are the past queries X

and answers D in Equation 2). We chose this format of tile-
uncovering moves, resembling the warm-up phase, to give
the impression that a human was playing a game that was
paused in an unfinished state. Subsequently, as a comprehen-
sion check, participants were asked to indicate the possible
colors of each covered tile (e.g., whether the tile could be
hiding a piece of the red ship). The task would only continue
after all tiles were indicated correctly (or a maximum of six
guesses were made).

Next, participants were given the following prompt: “If
you had a special opportunity to ask any question about the
grid, ships, or tiles - what would you ask?” (represented as x

in Equation 2). A text box recorded participants’ responses.
The only two restrictions were that combinations of questions
were not allowed (i.e., putting two questions together with
“and” or “or”) and questions had to be answerable with a sin-
gle piece of information (e.g., a word, a number, true/false, or
a single coordinate). Thus, participants could not ask for the
entire latent configuration at once, although their creativity
was otherwise uninhibited. Due to practical limitations par-
ticipants asked only one question per trial, no feedback was
provided and there was no painting phase. We emphasized
to participants that they should ask questions as though they
were playing the game they already had experience with in
the earlier part of the experiment.
Question asking contexts. To produce a variety of different
types of partial knowledge states or “contexts” from which
people could ask questions, we varied the number of uncov-
ered tiles (6 or 12), the number of partly revealed ships (0 to
3), and the number of fully revealed ships (0 to 2). These fac-
tors were varied independently while excluding impossible
combinations leading to a total of 18 contexts/trials.

Results

We recorded 720 questions (18 trials ⇥ 40 participants).
Questions that did not conform with the rules or that were am-
biguous were discarded (13%) along with (3%) which were
dropped due to implementation difficulties. The remaining
605 questions (84%) were categorized by type (see Table 1).
Question content. As a first stage of our analysis, we man-
ually coded commonalities in the meaning of questions in-
dependent of the specific wording used. For example, the
questions “How many squares long is the blue ship?” and
“How many tiles is the blue ship?” have the same meaning

Table 1: The natural language questions obtained in Exp. 1 were
formalized as functions that could be understood by our model. The
table shows a comprehensive list. Column N reports the number of
questions people generated of that type. Questions are organized
into broad classes (headers) that reference different aspects of the
game.

N Location/standard queries
24 What color is at [row][column]?
24 Is there a ship at [row][column]?
31 Is there a [color incl water] tile at [row][column]?

Region queries
4 Is there any ship in row [row]?
9 Is there any part of the [color] ship in row [row]?
5 How many tiles in row [row] are occupied by ships?
1 Are there any ships in the bottom half of the grid?

10 Is there any ship in column [column]?
10 Is there any part of the [color] ship in column [column]?
3 Are all parts of the [color] ship in column [column]?
2 How many tiles in column [column] are occupied by ships?
1 Is any part of the [color] ship in the left half of the grid?

Ship size queries
185 How many tiles is the [color] ship?
71 Is the [color] ship [size] tiles long?
8 Is the [color] ship [size] or more tiles long?
5 How many ships are [size] tiles long?
8 Are any ships [size] tiles long?
2 Are all ships [size] tiles long?
2 Are all ships the same size?
2 Do the [color1] ship and the [color2] ship have the same size?
3 Is the [color1] ship longer than the [color2] ship?
3 How many tiles are occupied by ships?

Ship orientation queries
94 Is the [color] ship horizontal?
7 How many ships are horizontal?
3 Are there more horizontal ships than vertical ships?
1 Are all ships horizontal?
4 Are all ships vertical?
7 Are the [color1] ship and the [color2] ship parallel?

Adjacency queries
12 Do the [color1] ship and the [color2] ship touch?
6 Are any of the ships touching?
9 Does the [color] ship touch any other ship?
2 Does the [color] ship touch both other ships?

Demonstration queries
14 What is the location of one [color] tile?
28 At what location is the top left part of the [color] ship?
5 At what location is the bottom right part of the [color] ship?

for our purposes and were formalized as shipsize(blue), where
shipsize is a function with parameter value blue. Since the
function shipsize also works with red and purple as parameter
values, it represents a cluster of analogous questions. Within
these functional clusters we then considered the frequency by
which such questions were generated across the 18 contexts
to get a sense of participant’s question asking approach (first
column in Table 1).

At a broader level, there are natural groups of question
types (Table 1). While this partitioning is far from the only
possible scheme, it helps to reveal qualitative differences be-
tween questions. An important distinction contrasts loca-

tion/standard queries with rich queries. Location queries
ask for the color of a single tile and are the only question
type afforded by the “standard” Battleship task (Gureckis &
Markant, 2009; Markant & Gureckis, 2012, 2014). Rich
queries incorporate all other queries in Table 1 and reference
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3 All questions

GROUP QUESTION FUNCTION EXPRESSION

location What color is at A1? location (color A1)

Is there a ship at A1? locationA (not (= (color A1) Water))

Is there a blue tile at A1? locationD (= (color A1) Blue)

segmentation Is there any ship in row 1? row (> (+ (map (� x (and (= (row x) 1) (not (= (color x) Water)))) (set A1 ... F6))) 0)

Is there any part of the blue ship in row 1? rowD (> (+ (map (� x (and (= (row x) 1) (= (color x) Blue))) (set A1 ... F6))) 0)

Are all parts of the blue ship in row 1? rowDL (> (+ (map (� x (and (= (row x) 1) (= (color x) Blue))) (set A1 ... F6))) 1)

How many tiles in row 1 are occupied by ships? rowNA (+ (map (� x (and (= (row x) 1) (not (= (color x) Water)))) (set A1 ... F6)))

Are there any ships in the bottom half of the grid? rowX2 ...

Is there any ship in column 1? col (> (+ (map (� x (and (= (col x) 1) (not (= (color x) Water)))) (set A1 ... F6))) 0)

Is there any part of the blue ship in column 1? colD (> (+ (map (� x (and (= (col x) 1) (= (color x) Blue))) (set A1 ... F6))) 0)

Are all parts of the blue ship in column 1? colDL (> (+ (map (� x (and (= (col x) 1) (= (color x) Blue))) (set A1 ... F6))) 1)

How many tiles in column 1 are occupied by ships? colNA (+ (map (� x (and (= (col x) 1) (not (= (color x) Water)))) (set A1 ... F6)))

Is any part of the blue ship in the left half of the grid? colX1 ...

ship size How many tiles is the blue ship? shipsize (size Blue)

Is the blue ship 3 tiles long? shipsizeD (= (size Blue) 3)

Is the blue ship 3 or more tiles long? shipsizeM (or (= (size Blue) 3) (> (size Blue) 3))

How many ships are 3 tiles long? shipsizeN (+ (map (� x (= (size x) 3)) (set Blue Red Purple)))

Are any ships 3 tiles long? shipsizeDA (> (+ (map (� x (= (size x) 3)) (set Blue Red Purple))) 0)

Are all ships 3 tiles long? shipsizeDL (= (+ (map (� x (= (size x) 3)) (set Blue Red Purple))) 3)

Are all ships the same size? shipsizeL (= (map (� x (size x)) (set Blue Red Purple)))

Do the blue ship and the red ship have the same size? shipsizeX1 (= (size Blue) (size Red))

Is the blue ship longer than the red ship? shipsizeX2 (> (size Blue) (size Red))

How many tiles are occupied by ships? totalshipsize (+ (map (� x (size x)) (set Blue Red Purple)))

orientation Is the blue ship horizontal? horizontal (= (orient Blue) H)

How many ships are horizontal? horizontalN (+ (map (� x (= (orient x) H) (set Blue Red Purple))))

Are there more horizontal ships than vertical ships? horizontalM (> (+ (map (� x (= (orient x) H) (set Blue Red Purple)))) 1)

Are all ships horizontal? horizontalL (= (+ (map (� x (= (orient x) H) (set Blue Red Purple)))) 3)

Are all ships vertical? verticalL (= (+ (map (� x (= (orient x) H) (set Blue Red Purple)))) 0)

Are the blue ship and the red ship parallel? parallel (= (orient Blue) (orient Red))

touching Do the blue ship and the red ship touch? touching (touch Blue Red)

Are any of the ships touching? touchingA (or (touch Blue Red) (or (touch Blue Purple) (touch Red Purple)))

Does the blue ship touch any other ship? touchingXA (or (touch Blue Red) (touch Blue Purple))

Does the blue ship touch both other ships? touchingX1 (and (touch Blue Red) (touch Blue Purple))

demonstration What is the location of one blue tile? demonstration (draw (select (set A1 ... F6) Blue))*

At what location is the top left part of the blue ship? topleft (topleft Blue)

At what location is the bottom right part of the blue ship? bottomright (bottomright Blue)

3

Questions as programs
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Question asking as program generation
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Example for ideal observer finding the optimal/most informative question:

Learning a probabilistic generative model of questions:

Lake and Gureckis: Proposal for Huawei

as-programs framework developed in the previous
section. We will use a log-linear modeling frame-
work to learn a distribution over questions where
the probability of a question is a function of its fea-
tures, f1(·), . . . , fK(·). The features will include the
expected information gain (EIG) of a question in the
current context, f1(·), as well as features that encode
program length, answer type, and various grammat-
ical operators. We define the energy of a question x
to be

E(x) = ✓1f1(x) + ✓2f2(x) + · · ·+ ✓KfK(x), (1)

where ✓i is a weight assigned to feature fi. The prob-
ability of a question x is determined by its energy

P (x; ✓) =
exp�E(x)

P
x02X exp�E(x0)

, (2)

where high-energy questions have a lower probabil-
ity of being asked. The distribution has support on
X which is the finite subset of grammar with pro-
grams below a particular length limit, ensuring a
valid probability distribution.
The model can be trained via maximum likelihood

estimation (MLE), with the goal of finding the best
weighting ✓ of the features given the training set.
Gradient ascent can be used to find an approximate
MLE, although computing the gradient requires es-
timating the expected values of the features [21],

EP (fi) =
X

x02X
P (x0; ✓)fi(x

0). (3)

This is an intractable sum that requires enumer-
ating all grammatical questions, but it can be ap-
proximated using techniques for approximate prob-
abilistic inference such as MCMC, importance sam-
pling, etc. A data set of questions will be divided
into a train/test split, and success is determined by
the model’s ability to predict which questions people
asked in the test set (based on the log-likelihood of
the semantic forms).

4.1.2 Extensions to new games

The probabilistic model of question asking can be
evaluated and extended in other ways. In addi-
tion to predicting human questions in new Battle-
ship configurations, the creative capability of the

model can be evaluated by asking it to generate gen-
uinely novel human-like questions, which are high-
probability questions that never appeared in the
training set. Evaluating the quality of these ques-
tions – in terms of their understandability, plausi-
bility, and creativity – provides a strong test of the
productivity of the model, which is a hallmark of the
human ability to ask questions.
We will also explore extensions to other classic

games. This will provide an opportunity to under-
stand how much of the formal machinery is specific
to the Battleship task, and how much is applicable to
other games or goal-directed dialogs, more generally.
For example, we will explore extensions to games
such as “Hangman.” In this game, there is a hidden
word marked by placeholders for each letter. Tra-
ditionally, the person playing the game asks about
the presence of a letter, one at a time, e.g.,“Are
there any ‘A’s?”, after which the game master re-
veals each occurrence of the letter ‘A.’ To study
question-asking in this scenario, we proposed to con-
duct a behavioral experiment, similar to the experi-
ment presented in Section 3.1, to allow for free-form
question asking during a game of Hangman. Possi-
ble questions include queries about types of letters,
“How many vowels does the word contain?”, and
queries about particular letter slots, “What is the
first letter in the word?” As with the data set of Bat-
tleship questions, we would then convert these ques-
tions into programs, before determining the neces-
sary minimal modifications to the Battleship-specific
grammar and feature weights, in order to provide
a working model of this new domain. We would
aim to develop a recipe for applying the model to
a new game/domain, with the aim of re-using as
many pieces as possible. In this way, we can de-
velop general question-asking principles and reduce
the amount of training data needed for each new do-
main.

4.2 Simple goal-directed dialogs

In the previous sections, we considered the task of
one-o↵ question asking while playing board games.
We see these tasks as important case studies for
collecting empirical data, and for developing formal
representations of rich questions – here, structured
LISP-like programs that can be evaluated on possi-
ble game states. These tasks also provide a window
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Figure 3: Novel questions generated by the probabilistic model. Across four contexts, five model questions are
displayed, next to the two most informative human questions for comparison. Model questions were sampled
such that they are not equivalent to any in the training set. The natural language translations of the question
programs are provided for interpretation. Questions with lower energy are more likely according to the model.
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