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Probabilistic programs / probabilistic programming

\&Aﬂéyy .
class world(): Y

\ v
def __init__(self): L& ‘M'

self.dict_strength = {}

def clear(self): # used when sampling over possible world AN Iml - m
self .dict_strength = {}

Info |

Based on the above results, how strong do you think player @is?

e | —
weak strong
def strength(name): OK

if name not in W.dict_strength:

def winner (teaml,team?2):

def lazy(name) : # teaml : list of mames

return random.random() < 0.1 # team2 : list of names
if team_strength(teaml) > team_strength(team?2):

return teaml

def team_strength(team) : else:
# team : list of mames return team?2
mysum = O.
for name in team: def beat(teaml,team?):
if lazy(name): return winner (teaml,team?) == teaml
mysum += (strength(name) / 2.)
else:

mysum += strength(name)
return mysum

(example from homework; Goodman et al., 2015)



Probabilistic programs / probabilistic programming

class world():
def __init__(self):
self .dict_strength = {}

StOChaStlc program def clear(self): # used when sampling over possible world
(known structure) self.dict_strength = {}

def strength(name) :
if name not in W.dict_strength:

def lazy(name):
return random.random() < 0.1
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Based on the above results, how strong do you think player @is?

ey | | —
weak strong

OK




Probabilistic programs / probabilistic programming

e Probabilistic program: A probabilistic model defined in a
structured description language (much like a programming
language) using random programming primitives.

e Due to random primitives, every time the program executes it
returns a different output.

e Probabilistic programs are a generalization of Bayesian networks,
and many of the other Bayesian models we have discussed.

e Especially convenient when the prior is too complex to write down
as a set of hypotheses, or the model is awkward or impossible to
write as a Bayesian network.



Preliminary definitions

Probabilistic programs: A simple example

def flip(theta=0.5):
return random.random() < theta

Simple probabilistic program

Bayesian inference

frequency

A =

B
C =
D

flip()
flip()
flip()

A+B+C

P(D)
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(flip a coin with ‘theta’ chance of heads)

Key idea: A probabilistic program is
a generative process for producing

data

(again, notice productivity reasoning)
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Probabilistic program or Bayesian network?

A= flip()

s @A) ®  (c
C = flip(Q)

D=A+B+C

O

In this case, the probabilistic program can be straightforwardly
represented as a Bayesian network, although the program
representation conveys more information.



Probabilistic programs: Another example

Simple probabilistic program (yet more complex than before)

A = flip()
B = flip()
C = flip()
1f C:
D=A+B+C
else:
E = flip()
F = (2+f1lip()) **2
D=A+B+C+E + F

Bayesian inference
P(A|D > 2
P(D) (AlD 2 2)
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Probabilistic program orw

if Cis True:

b = £11p0) ® ® ©
B = flip()
C = flip()
1if C:

D-h+B+C O
else: | if C is False:

E = flip()

F = (2%xflip())*%2

D=A+B+C+E + F

Bayesian networks (graphical models) do not have a mechanism
for adding additional variables, and they lack general control
structures that are relevant in both cognitive science and data
science applications (if statements, for loops, while loops,
recursion, etc.)



From Homework: Reasoning about tennis with

probabilistic programs ]

@
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class world(): /N

\ v
def __init__(self): L& ‘M'

self.dict_strength = {}

def clear(self): # used when sampling over possible world \\ ‘m. . ‘m.
self.dict_strength = {}

Based on the above results, how strong do you think player @is?

e | —
weak strong
def strength(name): OK

if name not in W.dict_strength:

def winner (teaml,team?2):

def lazy(name) : # teaml : list of mames

return random.random() < 0.1 # team2 : list of names
if team_strength(teaml) > team_strength(team?2):

return teaml

def team_strength(team): else:
# team : list of mames return team?2
mysum = O.
for name in team: def beat(teaml,team2):

if lazy(name):
mysum += (strength(name) / 2.)
else:

return winner (teaml,team?2) == teaml

mysum += strength(name)
return mysum

(see Goodman et al., 2015)



Reasoning about tennis with probabilistic programs

confounded strong indirect weak indirect diverse
evidence evidence evidence evidence
(1,2) (3.4) (5,6) (7,8)

A > B A > B A > B A > B

A > B B > C B <C A >C

A > B B >D B <D A >D
< singles games doubles games
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e
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model judgements

(see Gerstenberg et al., 2012; Goodman et al., 2015)



Bayesian network formulation depends on set of players

Each specification of the teams changes the Bayes net structure, and thus an
additional modeling mechanism is needed to construct the Bayes nets.

Strength

Strength

sample anew for each game




Example probabilistic programming languages
and software

IO | 6

pyro

Stan



Program induction

Prior .
distribution Hypothesis 1 Hypothi&s 3. |
A S . (if (singleton? S) S . (if (singleton? S)
over “one” “one”
(u nkn Own) (next (L (set-difference S undef)
pOSSibIe | (select S)))))
Hypothesis 2
programs
A S . (if (singleton? S) Hypothesis N ...
“one”
(if (doubleton? S)
program “two”’
generates undef)) o
data Wthh IS the
right program?
“six” “HWo”
S Most likely
Data (D) ® to have
g generated
@ the data?

“one!!




Program induction

e Data is generated from an unknown program, where unlike
standard probabilistic programming, we don’t know the
structure of the program.

e Prior over programs is usually defined by assuming a set
of programming primitives and combination operations,
which is also referred to as a “Language of thought” model
iIn cognitive science (a la Jerry Fodor)

 More analogous to “structure learning” for Bayesian
networks, where we are searching for the right causal
model that generated the data.



Language of thought / program induction in Python

[l piantado / LOTlib ®Watch~ 13  sUnstar 21  YFork 14

<> Code Issues 6 Pull requests 0 Projects 0 Wiki Insights

Lanugage of Thought (LOT) models in Python.

O 1,303 commits I 3 branches © 0 releases 22 10 contributors sls GPL-3.0

|
Branch: master ~ New pull request Create new file  Upload files = Find file
H piantado added languages; revised search and model Latest commit 83b9933 on Jul 4, 2017
i Documentation updated input to example data 2 years ago
i LOTlib added languages; revised search and model 10 months ago
=) .gitignore update gitignore with double-star syntax 2 years ago
=) LICENSE initial commit 5 years ago
=] MAJOR-CHANGES.txt extreme simplification of proposals 2 years ago
=] README.md updated Readme a year ago
=) Test.sh Revert "Revert "Merge remote-tracking branch ‘origin/master" 2 years ago

README.md

LOTlib

LOTIib is a Python 2 library for implementing "language of thought" models. A LOTIlib model specifies a set of primitives
and captures learning as inference over compositions of those primitives in order to express complex concepts. LOTIlib
permits lambda expressions, meaning that learners can come up with abstractions over compositions and define new



Motivation: We need more than Bayesian
networks to represent complex, real causal
processes for generating data

same causal process different examples

| 2| &
2 _, BpB

(Figure credit: Hinton & Nair, 2006)

2 1)

Is it growing too
close to my house?

How will it grow if | trim it?

neural net caption gene‘rétib'n:
“A group of people standing on top of a beach”



Case study: Learning new handwritten letters

RESEARCH

RESEARCH ARTICLES

COGNITIVE SCIENCE

Human-level concept learning
through probabilistic
program induction

Brenden M. Lake,'* Ruslan Salakhutdinov,? Joshua B. Tenenbaum?

People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to
perform with similar accuracy. People can also use learned concepts in richer ways than
conventional algorithms—for action, imagination, and explanation. We present a
computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.

espite remarkable advances in artificial
intelligence and machine learning, two
aspects of human conceptual knowledge
have eluded machine systems. First, for
most interesting kinds of natural and man-
made categories, people can learn a new concept

from just one or a handful of examples, whereas
standard algorithms in machine learning require
tens or hundreds of examples to perform simi-
larly. For instance, people may only need to see
one example of a novel two-wheeled vehicle
(Fig. 1A) in order to grasp the boundaries of the

A ii) B i)

new concept, and even children can make mean-
ingful generalizations via “one-shot learning”
(I-8). In contrast, many of the leading approaches
in machine learning are also the most data-hungry,
especially “deep learning” models that have
achieved new levels of performance on object
and speech recognition benchmarks (4-9). Sec-
ond, people learn richer representations than
machines do, even for simple concepts (Fig. 1B),
using them for a wider range of functions, in-
cluding (Fig. 1, ii) creating new exemplars (10),
(Fig. 1, iii) parsing objects into parts and rela-
tions (1), and (Fig. 1, iv) creating new abstract
categories of objects based on existing categories
(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of

ICenter for Data Science, New York University, 726
Broadway, New York, NY 10003, USA. 2Department of
Computer Science and Department of Statistics, University
of Toronto, 6 King's College Road, Toronto, ON M5S 3G4,
Canada. Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, MA 02139, USA.

*Corresponding author. E-mail: brenden@nyu.edu
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Standard machine learning approach: Deep neural
network with large amounts of data

Output classes
01 2.
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Slide credit: Yann LeCun
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MNIST:

10 classes of
handwritten digits
6,000 examples each

Filter bank + non-linearity
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Max pooling

Layer 2: 12 feature maps
Filter bank + non-linearity

Max pooling

Layer 1: 4 feature maps
Filter bank + non-linearity



People learn knowledge from less data

less data more knowledge

People can learn a new concept from a People can apply their knowledge flexibly
single image. to new tasks.
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Omnlglot stimulus set
(https://github.com/brendenlake/omniglot)
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https://github.com/brendenlake/omniglot
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Probabilistic program induction model of concept learning

primitives

(1D curvelets, 2D
patches, 3D geons,

2

actions, sounds, etc.)

sub-parts 9, —>D
N/
2,

relation:
attached along

object template

0 latent program
[ raw binary image

attached along

renderer  prior on parts,
—> —> | Bayes’ rule relations, etc.
P(I6)P(6
N poin) = PUOPO)
P(I)
Y (A
N Y N
relation: ‘i) relation:

attached at start

type level z/l,\g /\ /\
token level

exemplars

raw data
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Task: “Generate a new example”
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(@ clear ey |

5 clear ) |

3 clear ) |
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5 clear ) |
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(@ clear e [
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35 clear e |

3 clear ) | (™

(@ clear Y (™ )

35 clear ) |

S clear ) |




A “visual Turing test” for generating new examples
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A “visual Turing test” for generating new examples
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A “visual Turing test” for generating new examples
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A “visual Turing test” for generating new examples

machine generated
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Task: “Generate a new character from the same alphabet”
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A “visual Turing test” for generating new concepts
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A “visual Turing test” for generating new concepts

machine generated
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A “visual Turing test” for generating new concepts
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A “visual Turing test” for generating new concepts

machine generated
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Probabilistic program induction

primitives

(1D curvelets, 2D
patches, 3D geons,

actions, sounds, etc.)

renderer  prior on parts,
Bayes’ rule relations, etc.
b-part —> - P(IlO)P
sub-parts ), D b S POIT) (110)P(0)
NS/ \/ il
g
parts 3 L N L
\ Y N Y N
relation: relation: relation:

attached along
object template

type level

token level m

exemplars

9 latent program
I raw binary image

attached along

attached at start

90UalI8}ul

raw data




Probabilistic program induction

primitives

(1D curvelets, 2D
patches, 3D geons, Q fU

actions, sounds, etc.) A‘

sub-parts

parts

relation:
attached along

object template

type level _/I\

_
pN N
procedure GENERATETYPE
k< P(k) > Sample number of parts
fori=1..xdo
n; < P(n;|k) > Sample number of sub-parts

fOI’j =1..n;do
sij < P(sij]s,;—1)) > Sample sub-part sequence
end for
R; <+ P(R;|S1,..-,Si—1) > Sample relation
end for
¢ — {’{7 R7 S}
return @GENERATETOKEN(2)) > Return program




Probabilistic program induction
primitives

(1D curvelets, 2D
patches, 3D geons, Q fU (ﬂ

actions, sounds, etc.) m /I\ i

Q"D procedure GENERATE TOKEN(%))

sub-parts fori=1...x do
\ / S p(si™|s;) > Add motor variance
'™« (™R, T, ..., ™)
parts 3 > Sample part’s start location
7™ ¢ (L(.m), S.(m>) > Compose a part’s trajectory
\ / / 7 (/
relation: end for
| attached along gb Am) « P(A(M) > Sample affine transform
object template 1M  p(Im)|Tm) | A(m) > Sample image
type level mreturn 7(m)
token level ¢ 3 v NO_U
exemplars 5,1,4 5’*" BL @) '22) ob
raw data 3L ‘5{_ gl Q h q" | |




Learning a prior distribution over programs

learned action primitives learned primitive transitions
seed
I?.fift‘.i?i.‘!?f
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scale selective
translation invariant



Learning a prior distribution over programs

number of strokes stroke start positions
0 1 2 3 4 5 6 7 8 9 10 S'[I’Oke 1 2 23
number of sub-strokes for a character with K strokes global transformations
1 k=1 K= 2 1 K=3 1 K =4 1 K=29 L
% 0.5 0.5 0.5 | 0.5 | 0.5 | é E> * é
0!!!!:?7?% Ol!g:m 0 12345678910 0 12345678910 0 12345678910 é g é
1 K =0 1 k=17 1 k=38 1 k=9 1 k=10
| ‘ ‘ | | S

0.5 0.5 0.5 0.5 0.5 B > * é

0 12345678910 0 12345678910 0 12345678910 0 12345678910 0 12345678910 c

number of sub-strokes £ t é D 7

relations between strokes

@\@ oy o

independent (34%) attached at start (5%) attached at end (1 1%) attached along (50%)
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Approximate probabilistic inference

primitives D

£

sub-strokes

strokes 3
object template 3

/

AER
N/

relation

connected

!

raw data I 3L

inference

@ latent program
| raw binary image

renderer prior on programs
P(I6)P(6)
P(I)
Discrete (K=5) approximation to posterior
P(O|]) ~ ==——
such that Zi:l Wi

w; < P(0T)

Bayes’ rule

P(O|T) =

Intuition: Fit strokes to the observed pixels
as closely as possible, with these

constraints:

e fewer strokes

* high-probability primitive sequence
* use relations

e stroke order

¢ stroke directions




Approximate probabilistic inference

Step |:characters as undirected graphs

@

Step 2: guided random parses

more likely less likely
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Step 3: Top-down fitting with gradient-based optimization
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Human-level concept learning

the speed of learning the richness of representation
parsing

generating
new concepts
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Human drawings

o M

Human parses Machine parses
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Human drawings

Human parses Machine parses
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Human drawings
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Human-level concept learning

the speed of learning the richness of representation
parsing

generating
new concepts
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One-shot classification

Training item with model’s five best parses
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Do people represent static characters by their causal dynamics?

same causal process different examples

A2
? ->

(Figure credit: Hinton & Nair, 2006)

Neuroimaging evidence

Behavioral evidence

* Writing experience changes the functional

specialization of visual cortex for letters.
(James & Atwood, 2009; James, 2010)

* Writing experience influences

perception
(Freyd, 1983; Tse & Cavanagh, 2000; Knoblich & Prinz, 2001;
James & Gauthier, 2009).

e Inferring the dynamics from static * Motor areas of cortex respond to static letters.
(Anderson et al., 1990; Loncamp et al., 2003; James & Gauthier, 2006;

letters. Longcamp et al., 2006; Longcamp et al., 2010 )

(Babcock & Freyd, 1988) /”/ / Z //



B People B sPL

Error rate (%)

One-shot classification performance

After all models pre-trained on 30 alphabets of characters.

Program induction models Deep neural networks
(no causality)

Deep Siamese Convnet
(Koch, Zemel, Salakhutdinov. 2015)

L Deep Convnet
Hierarchical Deep

BPL Lesion (wrong prior)
BPL Lesion (no compositionality)
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Human-level concept learning

the speed of learning the richness of representation
parsing

generating
new concepts
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A “visual Turing test” for generating new concepts
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A “visual Turing test” for generating new concepts
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More large-scale behavioral experiments

Generating new examples Generating new concepts Generating new
(dynamic) (from type) concepts
(unconstrained)
1—{ m‘ Ton Alphabet |
JMmM I ¢ Z Human or Machine?
A T IaE B x| |
. /1|56
Human Human or Machine?
or Machine? | | , :R M s T,
a4\ W T Human or Machine?
59% correct in visual Turing test =Tl A
6 of 30 judges above chance
9 Alphabet & A0y
’T\ é’( a Fh O 51% correct in
Mm H W f\ Z.( visual Turing test
2 of 25 judges
Human or Machine? above chance
M| |V a

A Ul A

49% correct in visual Turing test
8 of 35 judges above chance




Recent developments: Generative neuro-symbolic programs

Feinman, R. and Lake, B. M. (2021). Learning Task-General Representations with Generative
Neuro-Symbolic Modeling. International Conference on Learning Representations (ICLR))

procedure GENERATETYPE

C<+0 > Initialize blank canvas
Canvas * forizl,...,OOdo
C x; < GENERATEPART(C) > Sample part from neural net
C' <+ RENDER (y;,x;,C) > Update canvas
v; < TERMINATE?(C) > Sample termination indicator
if v; then
break > Terminate sample
GENERATEPART
Y <= {4, 1.4, Y1, |
J return GENERATETOKEN(2)) > Return concept type
Part S GENERATEPART(C)
Vis X; p(A)
location model p(y | C) stroke model “e
type level

———————— p(y)
token level B
- -

=% [x] [X




Case study: Numerical concept learning and
cognitive development

Cognition 123 (2012) 199-217
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Bootstrapping in a language of thought: A formal model
of numerical concept learning

Steven T. Piantadosi ®*, Joshua B. Tenenbaum °, Noah D. Goodman €

4 Department of Brain and Cognitive Sciences, University of Rochester, United States
b Department of Brain and Cognitive Sciences, MIT, United States
¢ Department of Psychology, Stanford University, United States

ARTICLE INFO ABSTRACT

Article history: In acquiring number words, children exhibit a qualitative leap in which they transition

Available online 26 January 2012 from understanding a few number words, to possessing a rich system of interrelated
numerical concepts. We present a computational framework for understanding this induc-

Keywords: tive leap as the consequence of statistical inference over a sufficiently powerful represen-

Number word learning tational system. We provide an implemented model that is powerful enough to learn

Bootstrapping

number word meanings and other related conceptual systems from naturalistic data. The
Bayesian model model shows that bootstrapping can pe made computationally and philosophically well-
Language of thought found'ed as a theow of numbfer learmng. Our gpproach demonstra'Fes how'learners may
CP transition combine core cognitive operations to build sophisticated representations during the course
of development, and how this process explains observed developmental patterns in num-
ber word learning.

Cognitive development

© 2011 Elsevier B.V. All rights reserved.




Children’s development of numerical concepts

i i “Give-a-number” task
i “Give me two”

“Give me three”

wv @

(Wynn, 1990; Wynn, 1992)



Children’s development of numerical concepts

Children progress through a series of stages
“one-knower”, “two-knower,” “three-known,” “four-knower”
(sometimes), and then “cardinal-principle knower”

Example: “two knower”

give me one: i
give me two: & i

avesorree: @) on @ @ - ®

(inconsistent; arbitrary response beyond “two”)

o

o

o



Children’s development of numerical concepts

- Critically, children can count well-beyond the range of their “knower”
status, yet they don’t understand the meaning of the numbers.
» Transition from “N-knower” to “CP-knower” happens around 3.5

Patterns of success in give-a-number task in Experiment 3

e gt m et — i wem = i = e it v vm e mmn

Success pattern Counting ability
- - Number of iViean e m
1 2 3 'S 6 children age Mean (range)
o - - - - 1 2:8 3.00 (3-3)
one-knower * - - - - 3 3:0 4.67 (3-6)
woknower ¥ 1 - -~ 2 2:11 4.50 (3-6)
three-knower + + + - - 4 3:5 5.75 (5-6)
+ + + + + 7 3:7 6.00 (6-6)
CP-knower _ L e

RS D e e ot ey —. i e e e vm e —— s = e s = —— a e -

Note: “+” indicates success on a nUMErosity; “—" incicawes faiiure.

(data from Wynn, 1990)



Programming primitives allowed in the
language of thought model

Functions mapping sets to truth values

(singleton? X) Returns true iff the set X has exactly one element
(doubleton? X) Returns true iff the set X has exactly two elements
(tripleton? X) Returns true iff the set X has exactly three elements

Functions on sets
(set-difference X Y)

Returns the set that results from removing Y from X

(union X 'Y) Returns the union of sets X and Y
(intersection X Y) Returns the intersect of sets X and Y
(select X) Returns a set containing a single element from X

Logical functions

(and P Q) Returns TRUE if P and Q are both true
(or P Q) Returns TRUE if either P or Q is true
(not P) Returns TRUE iff P is false

(if PXY) Returns X iff P is true, Y otherwise

Functions on the counting routine

(next W) Returns the word after W in the counting routine

(prev W) Returns the word before W in the counting routine

(equal-word? W V) Returns TRUE if W and V are the same word

Recursion

(LS) Returns the result of evaluating the entire current lambda expression on se

(Piantadosi, Tenenbaum & Goodman)



Example hypotheses in a language of thought

example set S One-knower

v @
W e

“One’,

undef)

®

Three-knower

(if (tripleton? S)

)\ S . A S . (if (singleton? S)
indicates a function “one”
that takes a set S as (if (doubleton? S)
an argument. “two”’
“three”
undef))

Singular-Plural

A S . (if (singleton? S)

one
“tWO )))

A S . (if (singleton? S)

Two-knower

A S . (if (singleton? S)
“One )
(if (doubleton? S)
(‘t_WO )

undef))

CP-knower

A S . (if (singleton? S)
“one”
(next (L (set-difference S
(select §)))))

Mod-5

A S . (if (or (singleton? S)
(equal-word? (L (set-difference S)
(select S))
“five”))

“One )
(next (L (set-difference S
(select 5)))))



Defining a prior distribution over programs
(a “Probabilistic Language of Thought”)

w
Formalism used: Word
probabilistic context-free
grammar
B
Boolean
v
(if B the W else W) “‘one” “two”  “three”

NN

(if (singleton? S) then W else W) (it (and B B) W else W)

| -\

(if (singleton? S) then “one” else W) (if (and (True) B) W else W)

v
(if (singleton? S) then “one” else “undefined”)



Probabilistic model over programs

Example L
DaEa.l (D) A S . (if (singleton? S)
SIX “One .
3& 3 i undef)
@ “two,,i Probabilistic model

P(L) prior on programs L
(defined with probabilistic
grammar)

“one”

“one”

P(D\L) Noisy likelihood where
right number is usually returned,
but with some noise

Bayes’ rule for learning programs

P(D|L)P(L)
o A — PILID) = P(D)

®®®®®®®®®



Learning as program induction

Program (L) A S. (if (singleton? S)

“one”
(next (L (set-difference S
(select 5)))))
5 P(D|L)P(L)
D
= P(L|D)=
g FULID) P(D)
O
Q)
“Six” “two”
Data (D) ®s ®

®

E‘one”

| “one”




Posterior probability

Results: Program induction model follows a

0.6 0.8 1.0

0.4

0.2

0.0

similar developmental trajectory

P
= One—-knower
e TWwo—knower
Three—knower
Four—-knower
- = CP-knower
Others
I I [ I [ | I
50 100 150 200 250 300 350

Amount of data

One-knower Two-knower
A S . (if (singleton? S) A S . (if (singleton? S)
“one” “one”
undef’) (if (doubleton? S)
(‘Z_WO »
undef))
Three-knower CP-knower
A S . (if (singleton? S) A S . (if (singleton? S)
“one” “one”
(if (doubleton? S) (next (L (set-difference S
“two” (select S)))))
(if (tripleton? S)
“three”

undef))




Case study: Learning by asking questions

Question Asking as Program Generation

Anselm Rothe! Brenden M. Lake!-2 Todd M. Gureckis'
anselm@nyu.edu brenden@nyu.edu todd.gureckis@nyu.edu
1 Department of Psychology 2Center for Data Science

New York University

Abstract

A hallmark of human intelligence is the ability to ask rich, creative, and revealing
questions. Here we introduce a cognitive model capable of constructing human-
like questions. Our approach treats questions as formal programs that, when exe-
cuted on the state of the world, output an answer. The model specifies a probability
distribution over a complex, compositional space of programs, favoring concise
programs that help the agent learn in the current context. We evaluate our ap-
proach by modeling the types of open-ended questions generated by humans who
were attempting to learn about an ambiguous situation in a game. We find that our
model predicts what questions people will ask, and can creatively produce novel
questions that were not present in the training set. In addition, we compare a num-
ber of model variants, finding that both question informativeness and complexity
are important for producing human-like questions.

1 Introduction

In active machine learning, a learner is able to query an oracle in order to obtain information that is
expected to improve performance. Theoretical and empirical results show that active learning can

Cﬂﬂﬂf‘ ")f‘f‘ll11‘(“;f;f\ﬂ ‘Ff\f‘ o) ‘70?‘1‘D1"7 f\‘F ]Q")fﬂ;ﬂﬁ f’](‘]f(‘ rOﬂD f)1 ‘Ff\?‘ ’'e ) fﬂ‘l;Q‘YT_I A]f]’\l\I‘llTl’\ ;mnrnoo;xrn P Yaler =



How do they
grow their
babies?

~

Why Is he up In
the tree?

What is the

the category
label of this
object?

- J

active learning for people and machines

-

N\

~

What is the
difference between
a shark and a fish?

J

What is the

the category
label of this
object?

What is the

the category
label of this
object?




Experiment: Free-form question asking

Hidden configuration of ships

3 ships (blue, purple, red)
3 possible sizes (2-4 tiles)
1.6 million possible configurations

Phase 1: Sampling

[}
B  mm.
N

Phase 2: Question asking

s the red ship horizontal? |

Constraints
 one word answers
N0 combinations

Repeated for 18 different hidden configurations




N Location/standard queries
24 What color is at [row][column]?
24 Is there a ship at [row][column]?
31 Isthere a [color_incl_water] tile at [row][column]?
Region queries
4  Is there any ship in row [row]?
9 Is there any part of the [color] ship in row [row]?
5 How many tiles in row [row] are occupied by ships?
1  Are there any ships in the bottom half of the grid?
10  Is there any ship in column [column]?
10 Is there any part of the [color] ship in column [column]?
3 Are all parts of the [color] ship in column [column]?
2 How many tiles in column [column] are occupied by ships?
1  Is any part of the [color] ship in the left half of the grid?
Ship size queries
185 How many tiles is the [color] ship?
71  Is the [color] ship [size] tiles long?
8 Is the [color] ship [size] or more tiles long?
5 How many ships are [size] tiles long?
8  Are any ships [size] tiles long?
2 Are all ships [size] tiles long?
2 Are all ships the same size?
2 Do the [color]] ship and the [color2] ship have the same size?
3 Isthe [colorl] ship longer than the [color2] ship?
3 How many tiles are occupied by ships?
Ship orientation queries
94  Is the [color] ship horizontal?
7 How many ships are horizontal?
3 Are there more horizontal ships than vertical ships?
1  Are all ships horizontal?
4 Are all ships vertical?
7  Are the [color]] ship and the [color2] ship parallel?
Adjacency queries
12 Do the [color]] ship and the [color2] ship touch?
6  Are any of the ships touching?
9  Does the [color] ship touch any other ship?
2 Does the [color] ship touch both other ships?
Demonstration queries
14  What is the location of one [color] tile?
28 At what location is the top left part of the [color] ship?
5 At what location is the bottom right part of the [color] ship?



Location/standard queries
What color 1s at [row][column]?

Is there a ship at [row][column]?
Is there a [color_incl_water] tile at [row][column]?

10  Is there any ship in column [column]?
10 Is there any part of the [color] ship in column [column]?
3 Are all parts of the [color] ship in column [column]?
2 How many tiles in column [column] are occupied by ships?
1  Is any part of the [color] ship in the left half of the grid?
Ship size queries
185 How many tiles is the [color] ship?
71  Is the [color] ship [size] tiles long?
Is the [color] ship [size] or more tiles long?
How many ships are [size] tiles long?
Are any ships [size] tiles long?
Are all ships [size] tiles long?
Are all ships the same size?
Do the [colorl] ship and the [color2] ship have the same size?
Is the [color]] ship longer than the [color2] ship?
How many tiles are occupied by ships?
Ship orientation queries
Is the [color] ship horizontal?
How many ships are horizontal?
Are there more horizontal ships than vertical ships?
Are all ships horizontal?
Are all ships vertical?
Are the [colorl] ship and the [color2] ship parallel?
Adjacency queries
Do the [colorl] ship and the [color2] ship touch?
Are any of the ships touching?
Does the [color] ship touch any other ship?
Does the [color] ship touch both other ships?
Demonstration queries
What is the location of one [color] tile?
At what location is the top left part of the [color] ship?
At what location is the bottom right part of the [color] ship?

W W DN OO Lh OO

N, i N U RNG, I

[Em—
0 \O O\ N

DN —
(U [0 oI AN



N Location/standard queries
24 What color is at [row][column]?
24 Is there a ship at [row][column]?
31 Isthere a [color_incl_water] tile at [row][column]?
Region queries
4  Is there any ship in row [row]?
9 Is there any part of the [color] ship in row [row]?
5 How many tiles in row [row] are occupied by ships?
1  Are there any ships in the bottom half of the grid?
10  Is there any ship in column [column]?
10 Is there any part of the [color] ship in column [column]?
3 Are all parts of the [color] ship in column [column]?

Ship size queries
How many tiles 1s the [color] ship?
Is the [color] ship [size] tiles long?

Is the [color] ship [size] or more tiles long?
How many ships are [size] tiles long?

Are any ships [size] tiles long?

Are all ships [size] tiles long?

Is the [color] ship horizontal?

How many ships are horizontal?

Are there more horizontal ships than vertical ships?
Are all ships horizontal?

Are all ships vertical?

Are the [colorl] ship and the [color2] ship parallel?
Adjacency queries

Do the [colorl] ship and the [color2] ship touch?

Are any of the ships touching?

Does the [color] ship touch any other ship?

Does the [color] ship touch both other ships?
Demonstration queries

What is the location of one [color] tile?

At what location is the top left part of the [color] ship?
At what location is the bottom right part of the [color] ship?
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N Location/standard queries
24 What color is at [row][column]?
24 Is there a ship at [row][column]?
31 Isthere a [color_incl_water] tile at [row][column]?
Region queries
4  Is there any ship in row [row]?
9 Is there any part of the [color] ship in row [row]?
5 How many tiles in row [row] are occupied by ships?
1  Are there any ships in the bottom half of the grid?
10  Is there any ship in column [column]?
10 Is there any part of the [color] ship in column [column]?
3 Are all parts of the [color] ship in column [column]?
2 How many tiles in column [column] are occupied by ships?
1  Is any part of the [color] ship in the left half of the grid?
Ship size queries
185 How many tiles is the [color] ship?
71  Is the [color] ship [size] tiles long?
Is the [color] ship [size] or more tiles long?
How many ships are [size] tiles long?
Are any ships [size] tiles long?
Are all ships [size] tiles long?
Are all ships the same size?
Do the [colorl] ship and the [color2] ship have the same size?
Is the [color]] ship longer than the [color2] ship?
How many tiles are occupied by ships?
Ship orientation queries
Is the [color] ship horizontal?
How many ships are horizontal?
Are there more horizontal ships than vertical ships?
Are all ships horizontal?
Are all ships vertical?
Are the [colorl] ship and the [color2] ship parallel?
Adjacency queries

W W DN OO Lh OO

N, i N U RNG, I

Demonstration queries
What 1s the location of one [color] tile?

At what location is the top left part of the [color] ship?
At what location 1s the bottom right part of the [color] ship?




How do people think of a question to ask?
question asking as program generation

B am.
.
Game primitives e m
“Size of the blue ship?” “Color at tile A17?” “Orientation of the blue ship?”
( size Blue ) ( color Al ) ( orient Blue )
Primitive opekators
(+ X X ) (= X X )
Novel questions / \
"What is the total size “Are the blue ship and the red
(+ ( =
(+ . ( orient Blue )
( size Blue ) ( orient Red )
( size Red ) )

( size Purple )



Questions as programs

GROUP QUESTION FUNCTION EXPRESSION
location What color is at A1? location (color Al)
Is there a ship at A17 locationA (not (= (color A1) Water))
Is there a blue tile at A17 locationD (= (color A1) Blue)
segmentation  Is there any ship in row 17 row (> (+ (map (A x (and (= (row x) 1) (not (= (color x) Water)))) (set Al ... F6))) 0)
Is there any part of the blue ship in row 17 rowD (> (4 (map (A x (and (= (row x) 1) (= (color x) Blue))) (set Al . ))) 0)
Are all parts of the blue ship in row 17 rowDL (> (4 (map (A x (and (= (row x) 1) (= (color x) Blue))) (set Al ... F6))) 1)
How many tiles in row 1 are occupied by ships? rowNA (+ (map (A x (and (= (row x) 1) (not (= (color x) Water)))) (set A1 .. F6)))
Are there any ships in the bottom half of the grid? rowX2
Is there any ship in column 17 col (> (+ (map (A x (and (= (col x) 1) (not (= (color x) Water)))) (set Al ... F6))) 0)
Is there any part of the blue ship in column 17 colD (> (4 (map (A x (and (= (col x) 1) (= (color x) Blue))) (set Al . ))) 0)
Are all parts of the blue ship in column 17 colDL (> (+ (map (A x (and (= (col x) 1) (= (color x) Blue))) (set Al ... F6))) 1)
How many tiles in column 1 are occupied by ships? colNA (+ (map (A x (and (= (col x) 1) (not (= (color x) Water)))) (set Al .. F6)))
Is any part of the blue ship in the left half of the grid? colX1 .
ship size How many tiles is the blue ship? shipsize (size Blue)
Is the blue ship 3 tiles long? shipsizeD (= (size Blue) 3)
Is the blue ship 3 or more tiles long? shipsizeM (or (= (size Blue) 3) (> (size Blue) 3))
How many ships are 3 tiles long? shipsizeN (+ (map (X x (= (size x) 3)) (set Blue Red Purple)))
Are any ships 3 tiles long? shipsizeDA (> (4 (map (A x (= (size x) 3)) (set Blue Red Purple))) 0)
Are all ships 3 tiles long? shipsizeDL (= (4 (map (A x (= (size x) 3)) (set Blue Red Purple))) 3)
Are all ships the same size? shipsizelL (= (map (X x (size x)) (set Blue Red Purple)))
Do the blue ship and the red ship have the same size? shipsizeX1 (= (size Blue) (size Red))
Is the blue ship longer than the red ship? shipsizeX2 (> (size Blue) (size Red))
How many tiles are occupied by ships? totalshipsize (+ (map (X x (size x)) (set Blue Red Purple)))
orientation Is the blue ship horizontal? horizontal (= (orient Blue) H)
How many ships are horizontal? horizontalN (+ (map (A x (= (orient x) H) (set Blue Red Purple))))
Are there more horizontal ships than vertical ships? horizontalM (> (4 (map (A x (= (orient x) H) (set Blue Red Purple)))) 1)
Are all ships horizontal? horizontalL, (= (+ (map (A x (= (orient x) H) (set Blue Red Purple)))) 3)
Are all ships vertical? verticalL (= (4 (map (A x (= (orient x) H) (set Blue Red Purple)))) 0)
Are the blue ship and the red ship parallel? parallel (= (orient Blue) (orient Red))
touching Do the blue ship and the red ship touch? touching (touch Blue Red)
Are any of the ships touching? touchingA (or (touch Blue Red) (or (touch Blue Purple) (touch Red Purple)))
Does the blue ship touch any other ship? touchingX A (or (touch Blue Red) (touch Blue Purple))
Does the blue ship touch both other ships? touchingX1 (and (touch Blue Red) (touch Blue Purple))
demonstration ~What is the location of one blue tile? demonstration  (draw (select (set Al ... F6) Blue))*
At what location is the top left part of the blue ship? topleft (topleft Blue)
At what location is the bottom right part of the blue ship? bottomright (bottomright Blue)



Defining an infinite set of questions through

compositionality
A
B ‘/N C | O | L.
TRUE FALSE (=CC) (>NN) ... .. (orient C)
(= (color L) C) (> (size C) N) ... (orient Red)

\ l \Is the red ship horizontal or vertical?

(> (size Red) 2)

Is the red ship larger than 2 tiles?

(= (color A1) Red) (= (color Al) Blue)

Is there a red tile at A1? Is there a blue tile at A1?



Question asking as program generation

Example for ideal observer finding the optimal/most informative question:

(+
( +
( * 100 (size Purple) )
( * 10 (size Blue) )

(size Red)

)

Learning a probabilistic generative model of questions:
Goal: predict human questions in novel scenarios
2 :question
f () : features (Expected Info. Gain, length, answer type, etc.)

: trainable parameters L. L.
0 Compositionality is key!
energy:

E(x) =01f1(x) +02fa(x) + - + Ok fr(x)

generative model:

P(x;0) =

exp_g(x)

jE:QVE)(Eﬂcp

—E(x)



Asking novel questions through program generation

Context 7

Context 9

Human

Human

EIG Question/Program
2.44 | How many tiles are occupied by ships?
(++ (map (lambda x (size x)) (set Blue Red Purple)))
1.79 | How many ships are 4 tiles long?
(++ (map (lambda x (== (size x) 4)) (set Blue Red Purple)))
Energy Question/Program
6.53 | What is the column of the bottom right water tile?
(colL (bottomright (coloredTiles Water)))
7.88 | What is the row of the top left purple tile?
(rowL (topleft (coloredTiles Purple)))
8.90 | Are all the ships horizontal?
(all (map (lambda x (== H (orient x))) (set Blue Red Purple)))
10.51 | What is the column of the bottom right of the tiles with the same color as tile 3E?
(colL (bottomright (coloredTiles (color 3E))))
12.89 | Are any of the ship sizes greater than 27
(any (map (lambda x (> (size x) 2)) (set Blue Red Purple)))
EIG Question/Program
1.59 | How many tiles in row 4 are occupied by ships?
(++ (map (lambda y (and (== (rowL y) 4) (not (== (color y) Water)))) (set 1A ... 6F)))
1.56 | How many tiles is the purple ship?

(size Purple)

Energy Question/Program

7.48 | What is the column of the bottom right blue tile?
(colL (bottomright (coloredTiles Blue)))
g.74 | How many tiles have the same color as tile 4A?
(setSize (coloredTiles (color 4A)))
9.94 | What is the top left of all the ship tiles?
(topleft (setDifference (set 1A ... 6F) (coloredTiles Water)))
10.98

What is the color of the top left of the tiles that have the same color as 5C?
(color (topleft (coloredTiles (color 5C))))

‘16.34

Are blue and purple ships touching and red and purple not touching (or vice versa)?
(== (touch Blue Purple) (not (touch Red Purple)))




Asking novel questions through program generation

Context 7

Context 9

Human

Human

EIG Question/Program
2.44 | How many tiles are occupied by ships?
(++ (map (lambda x (size x)) (set Blue Red Purple)))
1.79 | How many ships are 4 tiles long?
(++ (map (lambda x (== (size x) 4)) (set Blue Red Purple)))
Energy Question/Program
6.53 | What is the column of the bottom right water tile?
(colL (bottomright (coloredTiles Water)))
7.88 | What is the row of the top left purple tile?
(rowL (topleft (coloredTiles Purple)))
8.90 | Are all the ships horizontal?
(all (map (lambda x (== H (orient x))) (set Blue Red Purple)))
10.51 | What is the column of the bottom right of the tiles with the same color as tile 3E?
(colL (bottomright (coloredTiles (color 3E))))
12.89 | Are any of the ship sizes greater than 27
(any (map (lambda x (> (size x) 2)) (set Blue Red Purple)))
EIG Question/Program
1.59 | How many tiles in row 4 are occupied by ships?
(++ (map (lambda y (and (== (rowL y) 4) (not (== (color y) Water)))) (set 1A ... 6F)))
1.56 | How many tiles is the purple ship?

(size Purple)

Energy Question/Program

7.48 | What is the column of the bottom right blue tile?
(colL (bottomright (coloredTiles Blue)))
g.74 | How many tiles have the same color as tile 4A?
(setSize (coloredTiles (color 4A)))
9.94 | What is the top left of all the ship tiles?
(topleft (setDifference (set 1A ... 6F) (coloredTiles Water)))
10.98

What is the color of the top left of the tiles that have the same color as 5C?
(color (topleft (coloredTiles (color 5C))))

‘16.34

Are blue and purple ships touching and red and purple not touching (or vice versa)?
(== (touch Blue Purple) (not (touch Red Purple)))
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