Lecture 12: Computational Cognitive Modeling

Causal Interventions, Active Learning, and Bounded Rationality

email address for instructors:
instructors-ccm-spring2022@nyuccl.org

course website:
https://brendenlake.github.io/CCM-site/



Today: Learning by doing!

Three Parts:

1. Interventions - The logic of experimentation
2. Active learning - learning by doing!

3. Resource Rational Models - how limited cognitive
minds and implement complex inference schemes



Part 1: Interventions and causation



The Ladder of Causation

e Pearl (2018) articulates value of causal models for reasoning in
terms of enabling a “ladder” (or hierarchy) of forms of inference
going beyond associative inferences

Bottom rung:
e [raditional statistical methods

® Associative inferences e.g.:
- The probability | have a symptom given that | have a disease

- The probability | have a disease given that | have a symptom

- The chance of a particular election result given the recent
poll

- The odds that a sentence contains the word “be” given that
it contains the word “the”

- The association between a personality measure
performance in some task

3. COUNTERFACTUALS

ACTIVITY:
QUESTIONS:

EXAMPLES:

Imaymaing, Retrospection, Understandiogs

1W7har 3f T bad desie ... 72 WWhy?
(Was it X rthar caused Y7 Whar if X had not
occurredr Whar if 1 had acted differentyr)

Was it the aspirin that stopped my headacher
Would Kennedy be alive i Oswald had nor
killed him? \X"hat if T had not smoked for the
lasr 2 vearsy

ACTIVITY:
QUESTIONS:

EXAMPLES:

2. INTERVENTION

Doing, Intervening

Woarif Tdo...2 Houw?
(What would Y beaf Tdo X2
How can I make XY happen?)

If 1 take aspicia, will myv headache be cured?
What if we ban cigarettes?

1. ASSOCIATION

ACTIVITY:
QUESTIKONS:

EXAMPLES:

Sceing, Observing

W hat i 1 vee ...7
(How are the var:ables related?
How would seemg X change my belwef in Y72)

Whar does a symprom rell me abour a diseaser
Whar does a survey rell us about rthe
clection resultse
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Intervention

e (Causal judgments are fundamentally about "difference
making” (Lewis, Woodward, Hume)

- That is, about what will happen if you do something
(that might not have otherwise occurred)

e Not “Do joggers have lower blood pressure on average?”
but “Will | lower my blood pressure if | take up jogging?”

® |t's a different question. The answer turns on a different
kind of evidence.

e Not data obtained by comparing natural joggers to natural
non-joggers...

- ....but obtained by forcing some non-joggers to jog,
and/or forcing some joggers to not jog

- Manipulating something in the situation and seeing
what difference it makes

- In other words, running an experiment!




Intervention in CBNs

e All of these variables are pairwise associated

e But each variable actually has only 0-2 causes
- Ceterius paribus, the more variables in a CBN, the
greater the chance that an an observed (unconditional) \*®
association is due to shared ancestor rather than a \@

direct connection

Nodes/ @
- E.g. Xo’s parent is X7’s great grandparent

e Markov condition: Variables are (only) independent of their Edges %

non descendants conditional on their parents

- Question: What would it take to make Xg9 and X7
independent here?

- Answer: Observing X1, X2 or X4



Intervention in CBNs

e The vast majority of associations we observe are
spurious!

- Divorce rates in Main ~ Per capita consumption of
margarine (r=.993***)

- Annual deaths by drowning in swimming pools ~
Nicholas Cage Movies (r=.666""")

- Letters in Scripp’s National Spelling Bee ~ Number of
people killed by venomous spiders (r=.806""%)

- US crude oil imports from Norway ~ Drivers killed in
collisions with trains (r=.955"*")

http://www.tylervigen.com/spurious-correlations
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http://www.tylervigen.com/spurious-correlations

Interventions

@ Lifestyle/genetic G
factors
VS.
O—C@ OO , @

Jogging Blood pressure

e Pearl (?000) incorporated idea of evidence produced by our actions through
notion of an “intervention”

¢ Intuition: When you manipulate something, roughly speaking, you are
reaching into the system and changing a variable’s value

- By setting a variable to a specific value, you override whatever value it
would have taken naturally

® This temporarily disconnects “intervened on” variables from their normal
causes



Interventions as graph surgery

Lifestyle/genetic
factors

@
" Tt
Jogging
o ?

e |[f we want to know if jogging affects blood pressure

Blood pressure

e \We can make someone (or many people) jog and see if their blood pressure changes relative
to baseline

- or equally, compare people we have forced to jog against people we have forced not to
Jog

e We express this experiment in the CBN framework by drawing a new edge from outside the
graph

- indicating our influence comes from outside or “exogenous” to the model (as opposed to
“endogenous" = within the model)



Interventions as graph surgery

Lifestyle/genetic
factors

No

L 4

Jogging ’\

o Lot .
unc @ n ° Blood pressure
|

e QOur intervention temporarily severs all normal incoming connections (here the
influence of our lifestyle and genetics on probability of being a jogger)

e Graphically this is represented by “graph surgery” — i.e. we have bypassed
jogging’s normal causes

e Downside: this jogging behaviour is now uninformative about lifestyle &
genetic factors (because we made them do it)

e Upside: Now we can interpret any change to blood pressure as a causal
effect!




‘Do’ calculus

Lifestyle/genetic
factors

Blood pressure

e Formally we write this using Pearl’s ‘Do|.]” operator

® |nstead of observing a sample of P(B|J) we are now observing a sample of
P(B|Do|J])

e |[f we find a statistical difference, i.e. P(BU) o P(B‘DO[JD for any level of B or J

- Or equally i P(B|DolJ]) # P(B|Do[=J]) for any level of B or J

e Then we can conclude that J — B

- i.e. that jogging causally influences blood pressure



Real world example

Example: Established correlation between having ‘h pylori’ bacteria
and stomach ulcer but what is the causality?

Common
cause

H pylori
Bacteria

’/( TR
£ ¥
)

Barry Marshall
Australian physiologist




Experimental interventions

® Primary mechanism of science - Intervene
systematically on world, bringing about atypical
situations that reveal causality

CaptionedGif.com
- Fire some particles at one another
- Mix some stuff together

- Assign subjects to different groups/conditions

® Repeat (or control) procedure enough to Al X
overwhelm statistical noise conTRoL GRoUP ouT oF ConTRoL GROUP

e \What was unusual about Barry Marshall’s
experiment?

- N=1



Interventions as experiments

I8 PVC Pipe

13 Binder Clip
e (19 %'.nll'llc Clamp
S Al

® Psychology and medicine are particularly tough
domains for causal inference

. &
14 Alligator Chip
01 Al Rod

- Universal causal effects often small & noisy relative
to individual differences

- And numerous factors that likely to produce
spurious effects if allowed to “corrupt” interventions

12 Wood Block
06 Paper Clip

07 5KV Test lecad
16 Screw

11 Washer

| | A physics
e A typical “natural science” protocol seeks to hold every experiment
conceivable confounding factor constant except what

IS being manipulated and what is being observed

Population is splitinto 2 Outcomes for both
groups by random lot groups are measured

-

A psychology experiment

® This is not generally possible for psychology
experiments

® Nor is a homogenous sample desirable, since we want
results that generalise to the heterogeneous population




Interventions as experiments

® Problem: Intervention protocols can easily be leaky
e Example: You want to know if a new treatment is effective

- You randomly assign your participants ¢/, you blind them to
which condition they are in ¢ but you are aware of their
assignment as you introduce the study to them

- This introduces another potential leak — Experimenters’
beliefs affect participants’ beliefs affecting outcomes &
systematically correlated with the treatment

Knowledge Belief
experimenter participant
Myriad Random G G e How can we ensure that experimenters’ beliefs about

condition assignment do not affect experiment outcomes

lifestyle / genetic ,
factors £

ORS

e Answer: Double blind, so condition is hidden from both

l,
6 - Q experimenter and participant until after the study

Treatment

Outcome



Interim Summary

® /nterventions are manipulations of a system that can reveal causal
directionality by disconnecting variables from their normal causes

e Causal Bayesian Networks + ‘Do’ calculus provide a handy way to
formalise this

® They clarify why interventions must be “surgical” to be
informative

- |l.e. must “set” the relevant variable without disturbing normal
causes or introducing “leaks”



Interim Summary

® |n science, we normally call our interventions “experiments”

- Next we’ll touch on how CBNs allow us to achieve Optimal
Experimental Designs (OED, Atkinson & Donev, 1992)

® Experiments use protocols that reproduce setting many times
with minimal variability apart from the factor being manipulated

® |n psychology experiments, typically there are many factors that
cannot be fixed

- but we can temporarily surgically detach from them by
randomisation

e Randomised Controlled Trials (RCTs) are held to be the “gold
standard” of scientific evidence (Cartwright, 2017)

y

Nancy Cartwright
Important American
Philosopher




Interventions in individual cognition

ACTIVITY:
QUESTIONS:

= SEEINGE =

71'"\‘ |

||
!

M HAREL

EXAMPLES:

3. COUNTERFACTUALS

Imappaoinyr, Retrospection, Understundiogs

1W7hat 3f T had dewe ...7 Wiy?
(Was it X thar cavsed Y7 Whar if X had not
occurredr Whar if 1 had acted differentlyr)

Was it the aspirin that stopped my headacher
Would Kennaedy be alive 1f Oswald had nor
killed him? \What if T had not smoked for the
lasr 2 vearsr

ACTIVITY:
QUESTIONS:

EXAMPLES:

2. INTERVENTION

Doing, Intervenmg

Whar il Tdo...2 Houw?
(What would Y beaf T do X?
ILow can I make Y happen?)

If 1 take aspicic, will myv headache be curedr
What if we ban cigaretres?

ACTIVITY:
QUESTIONS:

EXAMPLES:

1. ASSOCIATION

Sceing, Observing

W hat 3f 1 vee ...7
(How are rhe var:ables relared?
How would seemg X change my belwel in Y7?)

Whar does a symprom rell me abour a diseaser
WYhat daes a survey rell us about the
clection resultse

Interventional evidence tells us the consequences
of “doing” rather than just observing

Seems important... We constantly “do” things!

Conceptually/theoretically related to Reinforcement
Learning

Analogous to how causal assumptions (i.e. powers
and base rates) drive human judgments of structure
from contingencies

Do causal intervention principle drive learning
from our own actions? First study to look at this
was Lagnado & Sloman (2002)...

Recall:

e Classical conditioning: Building associations from

observed contingencies

e Operant conditioning / Reinforcement Learning

(RL): Associating outcomes with actions



Lagnado & Sloman (2002)

e Participants (N=33) infer the causal structure relating 3
variables in 2 within-subjects conditions:

- Condition 1: based on 50 observations

- Condition 2: based on 50 freely chosen interventions

® Jask order and cover story counterbalanced

- Cover story 1: Temperature (low/high), Pressure (low/
high), Rocket launch (no/yes)

- Cover story 2: Acid level (low/high), Ester level (low/
high), Perfume produced (no/yes)

e Participant learning probed through conditional probability
judgments + forced choice between 5 possible causal

structures

Chain 1 Chain 2 Collider Fork 1 Fork 2



Stimuli and predictions

Chain 1 Collider Fork 1 Fork 2
T PR Count/50 P(T,P,R) e Data was actually produced by sol' 1L R|P
O 0 O 25 0.5
1 0 0 5 0.1 ® \Which is (observationally) Markov equivalent to Fork 2
010 0 0 - But all are distinguishable with interventional
T 10 4 0.08 evidence (Condition 2)
O 0O 1 0 0
1 0 1 0 0 - i.e. P(P|Do[T}]) # P(P|Do[—T1) put
0 1 1 0 0 P(T'|Do|P]) = P(T|Do[~P])
1 1 1 16 0.32

B . . .
Observational condition data What did participants think



Results - Observation condition

® |n observation condition, structure judgments were poor!

e Participants overwhelmingly favoured collider, despite
opposite statistical dependencies!

® Suggests insensitivity to subtle observational statistics
(dominant data were [0,0,0] 50% and [1,1,1] 32%)

- Although see Rothe et al (2018) for recent demonstration of .

successful observational structure induction

e Do participants find simultaneous presentations (i.e. P&T at
same time) inconsistent with chain?

Proportion Selected

0.7 1

0.6 1

0.5 1

0.4 1

0.3 1

0.2 7

0.1 1

0+

Observation condition

Chain 1 Chain 2 Collider Fork 1 Fork 2



Results - Intervention condition

0.7 1 | Oobserve \
e |n intervention condition, structure judgments M intervene
improved 5 207
o
e Modal judgment now correct Q 097
3
- Although... intervention judgment pattern - 0419
statistically indistinguishable from random '8 03 4
responding 9o
Q.
| © 0.2 1
- However, plenty of evidence for stronger, more a
normative, interventional inferences 01 4
0T

Chain 1 Chain 2 Collider Fork 1 Fork 2



Results - Conditional probability judgments

e Recall that P screens T off from R . 100 - | Oobserve B intervene |

- ie. T 1L R|P

©
O
L

~ OO
o O
L1

_ P(R|T,P)="P(R|P)

HH

o)
o
I

e Participants do not seem to realise this in observation condition

w H
O O
L1

- i.e. give significantly different conditional probability estimates
for P(R\T, P) and P(R‘P), violating the Markov condition

Mean likelihood rating
N Ol
- -

—
o O
|

e But they do realise this in intervention condition
P(R|T&P) P(R|P)
- l.e. give approximately same probability estimate, consistent
with Markov condition



Summary

® /nterventions are manipulations of a system that can
reveal causal directionality by disconnecting variables
from their normal causes

® Causal Bayesian Networks + ‘Do’ calculus provide a
handy way to formalise this

® People seem to learn more about a simple causal system
when they make interventions themselves than when the
passively observe



Part 2: Active Learning
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Active Learning and Optimal
Experiment Design (OED)

Dominant framework for modeling many kinds
of inquiry in Psychology/Cognitive Science

e.g., categorization, logical reasoning, causal
learning, spatial search, eye movements, rule
learning, ...

Core metaphor/hypothesis

People are intuitive scientists and their
information-seeking actions are
optimal experiments

Inspired by statistical work on ‘actual’
experiment design (e.g., Fedorov, 1972; Good,

1950; Lindley, 1956)




What is active learning?

The study of situations in which people have control over the
iInformation they see

- Higher level cognition:

- Asking pertinent questions (Rothe et al, 2018)
- Querying a category
- Googling stuff

- Emailing your lecturer about the midterms let me GO Ogle that for you

- Playlng “20 questlons” “Guess who” or “Battleshlp

—_— =S — — — — |

- DeS|gn|ng an informative experlment a.k.a. Optimal ! GoodleSeachy (almEssinaluckys)
Experimental Design (OED, Atkinson & Donev,1992) h

| = Choosing what test to run next (e.g. medical diagnosis, fault
finding)

- Taking an action to see what its effects are...




What isn’t active learning?

® Being active while learning (e.g. Hillman et al,
2008)

® Brain training (e.g. Ball et al, 2002)

8
0c)
0
Z
Lu
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The advantages of active learning

e |f done well, active learning speeds up learning

® | earners focus on what they’re unsure about so

experience less redundant evidence & accuracy increases —— Passive (Random)
more rapid| ~ :
PIEY = Ne - Self-Directed
— ' |
- l.e. if you moved your eyes at random it would take ' ‘ (Uncertainty Sampling)
longer to establish what is infront of you —
. . . ..% Occasionally referred to
- If you took random actions it would take a long time to S as the “banana curve”
discover relevant causal relations é =
K%,
® |n causal context, choosing right interventions necessary % B
to make progress O | =TT tcercrorottenccreses

e But what makes one intervention (question/query/ U 100 200 300
test/action) more informative than another? How Training Trials

might we measure this?
(From Gureckis & Markant, 2012)



Choosing interventions

¢ (Foreshadowing) answer: We can use information theory
- But best illustrated via an experiment / example... Coin slot

® Coenen, Ruggeri, Bramley & Gureckis (2019)

- Participants interact with a mysterious magic switch Switches
box with:

Lights
- Several switches that be set on (1) or off (0)
- Alight bank that might turn on (1) or not (0) Onfoff toggle

- A testing toggle and coin slot for paying for tests



Choosing interventions

Original switch box

(Coenen et al, 2019 Exp 1
+ developmental tasks next week,
+ Built by Neil & Todd)

v

Coin slot

Coin
Slot

Variables:
Switches

Switches

Activation
Toggle

Lights !

O

On/off toggl ' '
n/off toggle Online task version

(Coenen et al, 2019 Exp 2-4)



“Sparse” condition

“only one of the switches works”

® 50 6 possible causal hypotheses (+: working, -: not

working):
Y PR, ® And 64 possible
- ha[-,4,-,--,- Interventions:
- hai--+,--,- - Do[0,0,0,0,0,0
- half-- -, - Do[1,0,0,0,0,0
- hsi[-,--- 4, - Do[0,1,0,0,0,0;
-  he[-,--,-m, +] - Do[0,0,1,0,0,0]
- Do[0,0,0,1,0,0
- Do[0,0,0,0,1,0
- Do[0,0,0,0,0,1°
- Do[1,1,0,0,0,0

AG - DO[1!1!151!1,1]

OIOIOIOINIO



“Sparse” condition

“only one of the switches works”

’]1::+ ,,,,,,,,,,,

e \What would you do? :§++
e Try one switch at a time? '14+
N5:[-,=5,= 4,

- e.g. Do[1,0,0,0,0,0], then Do[0,1,0,0,0,0], then Do[0,0,1,0,0,0] o A

until you observe light ( . )

- When ,, you've found the working switch...

- This will work...

- But much can you expect to win with this approach?

- Best case £5 (if its the 1st switch you test)

- Worst case £1 (if its the 5th switch you test)
- Or if its none of the first 5 (then it must be the 6th)
- On average... £2.50
e (Can you do better?

34



“Sparse” condition

“only one of the switches works”

N1: [+,

N2:[-, 4,55,

e Try half the “remaining” switches each time? 3[4+,
Nai[-,,- 4+,

- e.g. Do[1,1,1,0,0,0] e e

- If ., hshs he. Then Do[1,0,0,0,0,0] UHERRES +

- If ., hzahs. You'’re done! (it must be h+)
Otherwise Do[0,1,0,0,0,0]

- If ., hs. You’re done (it must be hy)
Otherwise k4 you’re also done (it must be hs)

- If not, ki k2 hs. Then Do[0,0,0,1,0,0]

- If ., hs hs. You're done! (it must be ha)
Otherwise Dol0,0,0,0,1,0]

- If ., he. You're done (it must be hs)
Otherwise hs you’re also done (it must be h)

35



“Sparse” condition

“only one of the switches works”

¢ Try half the “remaining” switches each time?

R
‘ -
:‘gg,‘,“‘f,;\';';, The Classic Mystery Face Game
&

- But much can you expect to win with this approach?

J'Q- 55 »
B

1SN

’ .

- Best case £4 (if you isolate the working switch in 2 tests)

- Worst case £3 (if you need a third test)

- On average you'll make ~£3.40!
e A kind of “divide and conquer” strategy
e Known as the “split half heuristic” (Nelson et al, 2013)

- Also optimal approach here + in games like Guess Who (i.e. ask
about gender first since it cuts the field down by half)

36



“Dense” condition

‘“all but one of the switches works”

® 50 6 possible causal hypotheses (+: working, -: not

working):
O SR, ® And 64 possible
- hoi[+,-,+,+,+,+ Interventions:
- hsi[+,+,-,+,+,+] - Do[0,0,0,0,0,0]
- hai[+,+,+,-,+,+] - Do[1,0,0,0,0,0]
- hsi[+,+,+,+,-,+ - Dol[0,1,0,0,0,0
- hel[+,+,+,+,+,-] - Do[0,0,1,0,0,0]
- Do[0,0,0,1,0,0]
- Do[0,0,0,0,1,0
- Do[0,0,0,0,0,1’
- Do[1,1,0,0,0,0

- Do[1,1,1,1,1,1]

37



“Dense” condition

‘“all but one of the switches works”

e \What would you do?
e Try one switch at a time?

- e.g. Do[1,0,0,0,0,0], then Do[0,1,0,0,0,0], then
Do[0,0,1,0,0,0] until you observe no lights ( . )

- When ., you’ve found the broken switch...

- This will work...
e (Can you do better?

® No! This is actually the only strategy that will work at all
here.

e |[f you turn on more than one switch then the lights
always come on, no matter which hypothesis is true, so
you will learn nothing...

38



What did people do?

T e [ e

)
e 10
©
o>
O
G O
al

| . —

Test Test Other Test Test Other
One Multiple One Multiple

e Exp 1 (N=30). Accuracy very high: 100% in sparse, 80% in dense condition

® Most participants in Sparse condition switch at least 2-5 switches on first trial and then 1 or 2
of the remainder on next trial (see paper for more complex “strategy classification”)

e All but one participant in Dense condition switches 1 on first trial
39



What did people do?

Condition . Dense Sparse

C 100

7.5
5.0 -
2.5

0.0+
10.0 1

Outcome:
Light

Coin
Slot

o N
O O,
| |

Variables:
Switches

o N
o O

10.0 A
Activation
Toggle

Participants

N
&

ok
o
1

o N
o O,

10.0 1
7.5 1
5.0 1
2.5 1
0.0-

I
|
]
I
|
= N .: e Exp 2 (N=130). Similar patterns as number of

e o T 1 o'lo switches increases (increasing pressure to be
No. Switches tested on first trial efficient with interventions)

40



Information

Why was the Test Multiple strategy more efficient in the sparse
condition?

- |t narrowed the option set more rapidly...

- In other words: It reduced uncertainty about the true hypothesis
more quickly

® How can we measure uncertainty?

l

=)
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\
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| \’ , T3
.9- '/' ! =L,
VAR
3 9 y““-.‘
)\‘5’_‘).-/ 'y
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® \We often use a measure called “Information Entropy” (Shannon, 1948)

- Based on loose analogy to thermodynamic entropy Iin physics

Claude Shannon
Bell Telephones
Employee /
Cryptographer

- Where high entropy means disorder

Low

High

thermodynamic
entropy = order

&=

thermodynamic
entropy = chaos



Information

e Entropy (or uncertainty): A measure of how unsure you
are about the state of a random variable (i.e. something
represented by a probability distribution)

Z P(s)log, P

seS

® Technical interpretation: How “surprised” you'd be, on
average, when you find out the true value

- We’ve met lots of random variables already

- You could measure the entropy of any of them...

42
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0.75-

0.50 -

0.25 -

0.00 -

0.75-

0.50 -

0.25 -

0.00 -

High uncertainty (3.3 bits)

Low uncertainty (0.74 bits)

s s2 Ss3 s4 sb s6 s7 s8 s9 s10
Hypothesis




Information

¢ |nformation: Current uncertainty - absolute uncertainty

¢ [Information gain: The difference in uncertainty from
before to after receiving some evidence

® Measured in “bits” (+ “bytes”, “Mb” etc)

® Every memory slot in your computer stores 1 bit of
information (either a O or a 1)

- Looking at a memory slot takes you from complete
ignorance P(“0”)=.5 or P(“1”)=.5 to knowing that its i.e.
a P(“1”)=1

e Similarly with a (fair) coin flip, by looking at outcome learn
1 bit of information

43



Measuring information

Information
Entropy

050 2 58

+1.00

Test multiple o= 1.58

+0.58

P(HId1,d2)

0L 1.00

0.25 - | | |

Probability

+1.00

P(HId1,d2,d3)

Switch 1 Switch 2* Switch 3 Switch 4 Switch 5 Switch 6
Hypothesis

44



Measuring information

Test one 075-

strategy

Probability

P(HId1)

P(HId1,d2)

P(HId1,d2,d3)

Switch 1 Switch 2* Switch 3 Switch 4 Switch 5 Switch 6
Hypothesis

45

Information
Entropy

2.58

2.32

2.00

1.58

+0.26

+0.32

+0.42



Interim summary

¢ So information theory captures why some - -
intervention strategies are more or less [l = Which fuse controls i
efficient at resolving a learner’s I=HRstais bathroom llght"”
uncertainty W

® The switch box seems like an unusually
iIdealised case

- Deterministic binary relationships

- Known ‘candidate causes’ and a single
effect

e How often do we face problems like this in
real life?

e But what about experiments looking at more
general causal inference cases?




Strategies of learning (Coenen, Rehder, & Gureckis, 2015)

e Cover story: You work in a computer chip factory. There was an accident and the chips got mixed
up. Test them to help work out which is which. Each chip could be from one of two possible areas
In factory, corresponding to two possible wiring diagrams...

V¥
V¥

\‘u
a

the chip factory task

47



Strategies of learning (Coenen, Rehder, & Gureckis, 2015)

Chip Type 1 Chip Type 2

video of experimental trial
48



Strategies of learning (Coenen, Rehder, & Gureckis, 2015)

experiment 1 procedure

o 105 participants on Amazon
Mechanical Turk

o test “computer chips” given two
hypotheses or wiring diagrams

o Intervene by clicking on chip

Components Which chip diagram

is correct?
o Incentive for efficiency is O O
penalty for every intervention Q. o O)\:O

after the first

o network dynamics are no
background causes, p(effect |
active cause)=0.8

o 27 problem types (pairs of
hypotheses)

49



Strategies of learning (Coenen, Rehder, & Gureckis, 2015)

Which would you intervene on?



Strategies of learning (Coenen, Rehder, & Gureckis, 2015)

O

Which would you intervene on?



Strategies of learning (Coenen, Rehder, & Gureckis, 2015)

* Top component slightly more likely to activate if LHS model is correct (power=.8)
e Also could activate in absence of bottom right component unlike RHS (base rate=0)
e But intervention on bottom right component is much more informative on average

X

Which would you intervene on?



Strategies of learning (Coenen, Rehder, & Gureckis, 2015)

experiment 1 structure tuples

high structure
O O

O O oy oW L O identification
0 o 70 00 630 O 0 020 0" 0 O o accuracy (M = 87%)

10 11 12 13 14 15 16 17 18
T T 0 " o " o o o "o I o o o
o"&oo"@‘o - 0—O>oc>’ OO—»OO"OOO“—O@@O—‘O
frugal interventions (M = 1.6)

‘|9 1500

o’O\o o’O\o o’O\o o’O\o o’O\o o’O\o o’O\o o’O\o

“0‘004—00—1“00’00—»00“000 O O ‘004—0

1000 -

Frequency
o)
o
o

R

| | | | |

1 2 3 4 5
No. of Interventions

o
|

grey boxes = discriminate PTS and IG predictions
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Strategies of learning (Coenen, Rehder, & Gureckis, 2015)

e [ntuitive strategies for learning to learn

1. Information Gain: 2. Positive Testing Strategy:
Compare between Verify a single
multiple hypotheses hypothesis
H1  H2 H 1

(Murphy, 2001; Steyvers et al., 2001) (Klayman & Ha, 1998; Wason, 1960)
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Strategies of learning (Coenen, Rehder, & Gureckis, 2015)

Participants fall on a - these fits are real
continuum between IG &
and PTS: -

O.IOO 0.125 050 0.175 1.60

PIS «————— |G

© correlates with:

longer reaction times more correct structure choices
(i.e., thinking) (i.e., optimality)
— e ° 1.0 - ° ° oc' gt o* ¢ °®
E 9000 - r — ,23. ° - . 508 . o oo.‘.:o .:o .is ° oo.
-_§6000— .’ - .' »,‘.. o *° ° .' %oes- ;f. . S
%3000— H"‘T"ﬁL OQT:Q.‘z < 04- : r=.35
0° g, 03 0 %% q o2 % ® . | ! ! !
0.00 0.95 0.50 0.75 100 0.00 0.25 05 0.75 1.00
“pTs G MGE G
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Strategies of learning (Coenen, Rehder, & Gureckis, 2015)

experiment 3: impact of time pressure

e 3 conditions: 4 seconds, 8 seconds, & 60 seconds

Chip Type 1 Chip Type 2

Hypothesis:

f computationa

gz Hourglass to indicate time
/| (and bonus) remaining

capacity influences strategy choice, time

oressure should increase use of PTS compared to |G
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Strategies of learning (Coenen, Rehder, & Gureckis, 2015)

experiment 3 results

20% -
15% -

10% -
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Summary

® Active Learning is a framework for deciding how best to act in order to
support learning

e |t is related to reinforcement learning but the objective function is not
to earn immediately reward but to reduce uncertainty about the world.

e Often leads to more efficient information generating actions

® People seem to use a number of information gathering strategies and
these may be related to the availability of cognitive resources.



Part 3: Sampling and Resource Rational Cognition



Bayesian inference Is hard

Rich, realistic behavior

e |n realistic problems, the number of possible hypotheses can
be huge

— e.g., more than 100,000 clusterings of 10 objects

The goal: A predictive account of behaviorithat can emulate both the

e |nthe worst case, the time required to perform exact Bayesian
et which will hampen hen, - ures orhuman performance, anc inference increases linearly in the number of hypotheses

Why predict? Why emulate? Why emulate failures?

Variables Structures Interventions QOutcomes
Marginal 1 1 3 1
dependencies: 5 3 9 9
Xo (Xio s 3 29 27 4
True causal %D\@/@ PG : : 1 ” 16
SUUCTUNE:  woser ” 6 3781503 729 32
Edges @ P(X=1)=T1 X4 7 1138779265 2187 64
6’4 X, ] 783702329343 6561 128
9 ~1213442000000000 19683 256
X7 10 ~4175099000000000000 59049 012




Rationality vs. Heuristics
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Resource constraints on cognition

Thinking takes time

o

A (Picture-plane pairs)

>

=

Mean reaction time for “'same" pairs (seconds

] A | 8

A

A
20 40 60 AL 100 120 140 WO

Shepard & Metzler (1971)

Learning is slow, forgetting is quick

Pr—

st .BR. . v
& B,
g L l '''' .-e ..-.-.-.-
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.5 f] } .................
s & 0 T¥eisiciaiee..
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e
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Cepeda, Vul, Rohrer, Wixted, Pahler, 2008
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180
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Memory stores are limited
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Sperling (1960)

AVERAGE
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Thinking has a central bottleneck
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Pashler (1994)



Computation-algorithm interface

Computation Process / orithm

P(DIh)P(h)
f P(DIh")P(h"

P(hlD)=

arg max = ’f U(A;h)P(h| D)

Challenges at the intersection of probabilistic
reasoning and cognitive resource constraints:

 How does the mind represent uncertainty?

I T 1 Action

 How do we use limited cognitive resources?




Computation-algorithm interface

* Analytical

l.e., equations, including L
variational methods flx) = me |
(Friston)

eCIgunt

» Tabular / grids ,[A/‘\\\\

e.g., probabilistic
population codes

(Pouget/Ma/Beck)
Rt
LGN .:‘ .J. :0‘.:. ...
» Sampling e /:
(Goodman/Griffiths/Sanborn/ o o
Tenenbaum/Vul, etc.) °© 60 o©




Computation-algorithm interface

These are “fe

S”

These are not “feps”

© o © L= = o o (= (L) L=
N N N S N
oie o \© o o bid oieo/eye P \d pid Pu| [®ie
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e
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0.8} A2 sl 0.15F Human ||

o
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o
n

17,
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L
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m,

Te

A4
A5

A1

0.2

04

0.6
RR predictions

0.8

01

0.05F

AAAAAAA

AAAABAB

AAABAAB
AAABABB

AAABBAB
AAABBBA

AAABBBB
AABBABA
AABBBBB
ABAAAAB
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ABABABB

ABABBAB
ABABBBB
ABBABAB

ABBBAAB
ABBBBBA

BAAABAB

BAABBAB
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BABBBBB

BBAAAAA

BBAAAAB

-

BBABAAA
BBABAAB
BBABABA
BBABABB
BBABBAB
BBABBBA
BBABBBB
BBBAABB

BBAABAB
BBAABBB

Generalization patterns suggest that each individual was not using a
probability distribution over rules, but just one sampled rule.

Goodman, Tenenbaum, Feldman, & Griffiths, 2008



Wisdom of the crowds

Galton, 1907: Vox Populi
How much does an ox weigh?

074 1= Diagram, from the tabular values.
1109
1126
1148
1162 ¢
1174
11351
1188
197 po*
1207
1214
1219
1225
1230 [
1236
1243

Mean was (1206) was closer
to the correct answer (1207)

than any one guess.

1254
1207 [~
1293

t

Benefit of averaging multiple guesses holds so long
as errors are independent samples.

Do we get the same effect withinindividuals?



Wisdom of the crowd within

* What percent of the world’s
airports are in the United

States?

* Saudi Arabia consumes what
percentage of the oil it
produces?

« What percentage of the world’ s
countries have a higher life
expectancy than the United
States? 400

Q

Guess 1

Guess 2
BAverage

700

650

600

550

500

Mean Squared Error

450

Immediate 3-we-ek delay

Benefit of averaging multiple guesses from a single individual:

Estimation errors do not arise only from individual biases,
but reflect sampling under uncertainty.
Vul & Pashler (2008)



The monte carlo principle

The Monte Carlo principle

The expectation of f with respect to P

can be approximated by
1 n
Ero F(0]=— 3 f(X)
=1

where the x. are sampled from P(x)

relative

probability -

samples

chain
over
time

Lifespan

ttotal ‘t

_ 50

ovie gross

200

200

200

200



The monte carlo principle
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Gershman, Vul, & Tenenbaum: 2011



How many samples?

Trivial - no benefit
from precision

How many samples?

A" = arg mjlx; U(A;S)P(S|D).
.

Uncertainty

What does adaptive behavior look like if there is a cost (at least of time)
to drawing new samples (computation)?

Expected utility Decisions Expected utility
decision
-§ 100
N 8
E 10
01 10 100 1000 %0 1 10 1 g
Number of samples (k)

Vul, Goodman, Griffiths, & Tenenbaum (2014)

Just right - aim carefully. 2 Hopeless -

N don’t
bother.
¢ 1
U v
» :
Reward Uncertainty Reward

cost of computation
= cost of thinking




Anchoring and adjustment/Metropolis-Hasting

e |[sthe population of Chicago greater or less than 200,000 >
people? E
a
e Now guess the population of Chicago 500 -
* People give lower estimates when given a lower anchor . N - ] B
(200,000) than a higher anchor (5 million) (Jacowitz & 5 = .
Kahneman, 2005) 8 2501 _,gg ———
= . — N
S —
o :‘.f-—iﬂ?f";g;_
— S — at T —_— *lx)
, L\ - — < O — ‘(_I




Sampling as a mechanism

« Each sampling solution yields Biases

different samples: » Probability matching
Variability across decisions; Vul et al. 2009
Variability across trials; « Anchoring and adjustment

Variability across participants Lieder et al. 2013
* Sequential effects

* Solutions outside of the Sanborn et al. 2010
“convergent” regime:  Garden-pathing
Systematic deviations from Levy et al. 2009
Optimal decisions that will o Dynamics of belief Change
reflect the biases of the Gershman et al. 2012
sampling algorithm. + Memory reproduction

Shi et al. 2010

We now face tradeoffs between the effort of computation, variability, and
bias of answers. These tradeoffs yield tricky meta-cognitive decisions.



Sampling as a mechanism

Three levels of description (David Marr, 1982)

Computational maximize:
Why do things work the way they do? — e
R =1, +tr,++n

What is the goal of the computation?
What are the unifying principles?

Algorthmic I ORD,

What representations can implement

such computations? @ \@ \@ \@
How does the choice of representations @ @ @ @
determine the algorithm? @ @ @

Big reward
. Predicted
Implementational l
How can such a system be built in Y T T Ry O A
R AT 779 SAK AU LM LTI S T Y DR - LAY A
hardware? )
Small reward Predicted
HOW can neurons Carry Out the cue small reward

con |putat10| 1S? il mm
'l‘\ ) .b.' "I'.| g ;. Y l" v G '!". ,‘ . . % £ .' \.. e, g " ’ ’
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