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Probabilistic graphical models
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Bayesian networks (“Bayes net”)

e Bayesian network: a directed graph

T1 o that represe_nts depgr!dencies b_etween
random variables, giving a concise
@ specification of a joint probability
distribution.
edge
L3 x; and X are e In a well-constructed network, an
parents of x;3 arrow indicates that two variables have

a path of direct (causal) influence.

Factorization of the joint distribution:

e Bayesian networks must be directed,
Pz, 29, 23) = P(21)P(2s) (23|21, o) y

acyclic graphs (DAGs), meaning that
they have no cycles.

e X



Bayesian networks

L
1 ‘ P(z1,...,27) = P(x1)P(z2) P(x3) P(z4|21, 22, 23)
To L3 P(xs5|x1, 23)P(xg|2s)P(27|204, T5)

General formula for factorizing the joint
X4 ‘ Tx distribution over a Bayes net:

P(X) = H P(x;|Parents(z;))
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Slide credit: Christopher Bishop



An example: the alarm network
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Conditional
Probability
Table (CPT)

P(B,E, A, J,M) = P(B)P(E)P(A|B, E)P(J|A)P(M|A)

(particular version from Russell and Norvig)



Evaluating the joint probability of data

P(E)
0.002

We use the decomposed joint

0.95 distribution to evaluate the probability
= of a setting of all of the variables.
0.601

1 0.70
0 0.01

P(B,E, A, J, M) = P(B)P(E)P(A|B, E)P(J|A)P(M|A)

What is the probability that there is no burglary or earthquake, and
yet the alarm rings and both John and Mary call?

P(B=0,E=0,A=1,J=1,M=1)
— P(B=0)P(E=0)P(A=1B=0,E=0)P(J=1|A=1)P(M =1|A = 1)
— 0.999 % 0.998 * 0.001 * 0.9 0.7 = 0.00063



Example: Bayesian networks for understanding categorization

Causal mechanisms are important in
— f(X) everyday categorization and reasoning. Is
useful to think of the function f(the
T \ representation for a specific category)
output  prediction Image as a Bayesian network?
function feature

data representation of category predicted labels
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A Causal-Model Theory of Conceptual Representation and Categorization

Bob Rehder
New York University

This article presents a theory of categorization that accounts for the effects of causal knowledge that
relates the features of categories. According to causal-model theory, people explicitly represent the
probabilistic causal mechanisms that link category features and classify objects by evaluating whether
they were likely to have been generated by those mechanisms. In 3 experiments, participants were taught
causal knowledge that related the features of a novel category. Causal-model theory provided a good
quantitative account of the effect of this knowledge on the importance of both individual features and
interfeature correlations to classification. By enabling precise model fits and interpretable parameter
estimates, causal-model theory helps place the theory-based approach to conceptual representation on
equal footing with the well-known similarity-based approaches.

For the last several decades, research on the topic of categori-
zation has focused on the problem of learning new categories via
examples of category members, that is, from empirical observa-
tions. The result has been a host of categorization models that are
based on representational ideas such as central prototypes, stored
exemplars, and variabilized rules, and on processing principles
such as similarity, that have considerable explanatory power and
experimental support. More recently, the influence of the prior
“theoretical” knowledge that learners often contribute to their
representations of categories has also been a topic of study (Carey,
1985; Keil, 1989; Murphy & Medin, 1985; Schank, Collins, &
Hunter, 1986). For example, people not only know that birds have
wings and that they can fly and build nests in trees, but also that
birds build nests in trees because they can fly, and fly because they
have wings. Many people even believe that morphological features
of birds such as wings are ultimately caused by the kind of DNA
that birds possess. However, in comparison with the development
of models accounting for the effects of empirical observations,
there has been relatively little development of formal models to
account for the effects of such prior knowledge (although see Heit,
1994; Heit & Bott, 2000; Pazzani, 1991; Rehder & Murphy, in
press; Sloman, Love, & Ahn, 1998).

features (Rehder, 1999; Waldmann, Holyoak, & Fratianne, 1995).
Further, according to this theory, people use causal models to
determine a new object’s category membership.

In this article, causal-model theory is applied to two outstanding
problems in the domain of categorization research. The first prob-
lem concerns determining the importance, or weight, that individ-
ual features have on establishing category membership. Since the
popularization of the notion of probabilistic categories in the
1970s, it has usually been assumed that features of a category vary
regarding their influence on category membership (Hampton,
1979; Rosch, 1973; Rosch & Mervis, 1975; Smith & Medin,
1981). Indeed, formal models of categorization have formalized
the manner in which a feature’s weight is influenced by its per-
ceptual saliency (Lamberts, 1995, 1998) and by the frequency with
which it appears in category members and nonmembers (Nosof-
sky, 1986; Reed, 1972; Rosch & Mervis, 1975; Shepard, Hovland,
& Jenkins, 1961). However, these models do not account for the
fact that feature weights are also determined by a categorizer’s
domain theories. For instance, Medin and Shoben (1988) have
found that straight bananas are rated as better members of the
category bananas than straight boomerangs are of the category
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Artificial categorization task

Task: Learn and make predictions about a new category, e.g., “Lake Victoria Shrimp”

Four binary features

F1: High amounts of ACh neurotransmitter.
Fo: Long-lasting flight response.

F3: Accelerated sleep cycle.

F4: High body weight.

Base rate information: 75% of Lake Victoria Shrimp have each
feature, e.g., 75% have feature F4



Artificial categorization task

participants assigned to one of two conditions

chain (causal framing) condition
(P (F)™(F)
C b b b

free parameters c, b (background mechanism)
and m (causal strength)

Fi—F>

Fo—F3

Fa—F4

A high quantity of the ACh neurotransmitter causes
a long-lasting flight response. The duration of the
electrical signal to the muscles is longer because of
the excess amount of neurotransmitter.

A long-lasting flight response causes an accelerated
sleep cycle. The long-lasting flight response causes
the muscles to be fatigued, and this fatigue triggers

the shrimp’s sleep center.

An accelerated sleep cycle causes a high body
weight. Shrimp habitually feed after waking, and
shrimp on an accelerated sleep cycle wake three
times a day instead of once.

F1: High amounts of ACh neurotransmitter.
F2: Long-lasting flight response.
Fs: Accelerated sleep cycle.

F4: High body weight.

control condition (no
causal framing)

® & & 6

exactly the same instructions, but without
causal information between features



Artificial categorization task: Results

Conclusion: Causal/structural information influences people’s categorization decisions, in a
way predicted by a Bayesian network model.

100
90 — : :
Test jJudgments: is Fa Lake
o0 80 = Victoria Shrimp?
E 707 In causal condition, compute
= — judgement as:
- 60
g 50 P(F17F27F37F4)
S 40 - = P(F1)P(F2|F1)P(F3|F2) P(Fy|F3)
2
3 : -
20 — : " Key idea: categorization
O e o
_ Chain Condition decision is computing joint
10 . .
scale from " | =====-~-- Control Condition probability under a Bayes net
“definitely nota ( — . - model of that category.
Lake Victoria @ Chain Model Predictions gory
Shrimp” to I | | |

‘definitely a Lake 0000 0101 1010 1111
Victoria Shrimp

new object for category judgment

(0101 means both F2 and Fsare
present, and the others absent)



Causal structure matters in categorization judgments

Further work from Rehder and colleagues have studied categories with these
alternative Bayes net structures...

(e.g., Rehder and Hastie, 2001)

G e
@ B ® & G
(%) (%)

Glelose



How do Bayesian networks relate to other
Bayesian models used in cognitive modeling?

1 P($1, R ,$7) — P(xl)P(CEQ)P(xB)P(CEZL‘CBl) L2, ZES)
X
Z2 y P(xs|x1, x3)P(xg|rs) P(27|24, T5)
General formula for factorizing the
T4 Ts joint distribution
K
X - P(X) = H P(x;|Parents(z;))
1=1
The number game Perceptual magnet effect "
speaker noise istener
=) 168 264 3
m

X=[16, 8, 2, 64]
10
05 ‘ |
007 e ——e
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

64 68 72 76 80 84 88 92 96 100




Connection with simple Bayesian models

Simple Bayes net
representatlon
P(d

h)P(h)

The number game

=) 1682 64

77 AR TR

10 4

0.5 4
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X=[16, 8, 2, 64]
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Many of the Bayesian models developed
for cognitive modeling can be interpreted
as two node Bayesian networks, with a
complex (potentially very complex)
conditional probability table (aka likelihood
function)

Diagnosis example “Bayes’ rule”
Data (D): John is coughing poste{j)r |ikelihoo\:j Ifilrlor
Hypotheses: P(hZ’D) _ P(D’hZ)P(hZ)
> P(DI|hj)P(h;)

hy = John has a cold
ho = John has emphysema
hs = John has a stomach flu

Perceptual magnet effect

speaker noise

g

listener

o P
>




Review from the number game: Probabilistic inference is very flexible!

Elo()|D] ~ — 3 6(h™)

If we can compute the posterior, or draw samples
from the posterior, we can automatically reason
about a huge range of questions ¢()

Examples of reusing the sample for new
queries
* Is 64 a member of the set? (probability is
0.73)

« Are both 36 and 64 members of the set?
(0.36)

- Is there a member of the set greater than or
equal to 807 (0.27)

- If we sample a new number from the
hypothesis, what is the chance it will be 647?
(0.16)

- If we sample a new number from the
hypothesis, what is the chance it will be 807?
(0.02)

rows are samples h(m)
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The type of flexibility in reasoning is
natural in Bayesian models, but it is
difficult to capture in neural networks
trained with supervised learning, or
model-free reinforcement learning.

Inference flexibility is not specific to
rejection sampling, but to Bayesian
models in general.




Probabilistic inference

as a generalization of Bayes’ rule to arbitrary queries in a probabilistic model

General formula for probabilistic inference

P(X,e,y
P(X|e)o<ZP(X,e,y) P(Xle) = Zy ( 7/7 )
(7] Zy,X’ P(X 767y)
X = query variables
e = evidence variables
Y = hidden variables

Example with the alarm network:

Probability of a burglary given that Mary calls:
P(B=1/M =1) =0.056

X = {Bj}

e = {M;

Y = {E,AJ}




Flexible reasoning through probabilistic inference

as a generalization of Bayes’ rule to arbitrary queries in a probabilistic model

Marginal distributions
P(B =1) = 0.001

P(A=1)=0.003

05 P(M =1)=0.01
0001 Is there a burglary, given

John and Mary both call?
P(B=1|J=1,M =1) =0.284

A PMA
-gg Is there an earthquake, given
| John and Mary both call?
Does Mary call, given a burglary? P(E — 1|J =1, M = 1) = 0.176
P(M = 1‘B =1) =0.66 Algorithms for inference:
Does Mary call, given a burglary and - exact enumeration (equation
earthquake? from previous slide)
P(M _ HB =1, F = 1) — 0.67 * rejection sampling
 importance sampling
What is the chance there is a burglary with an - MCMC

alarm and Mary calls, assuming no earthquake? - etc.
P(A=1,B=1,M =1|E =0) = 0.0006



“Explaining away” with Bayes nets

‘ 0.001 \ ‘ 0.002 \

If alarm rings, then an earthquake becomes a real
possibility:

P(E=1A=1) =023

Where one cause can explain away the
need for a second one...

Burglary

grey is notation
for observed

E P(A/B,E) Unless we know there was a burglary, in which
1 1 0.95 case we can “explain away” the indication for an
1 0 0.94 earthquake.
0 1 0.29
0 0 0.001 P(E=1A=1,B=1)=0.002




Probabilistic inference in practice

Pathfinder project for medical diagnosis (Heckerman, Horvitz, & colleagues; late 1980s)

@ Non-sin non-foll Abr T-cell pheno
L&H nodules $

Pleomorphic SR

- Commercial system for diagnosing lymph-node pathology
- Probabilistic inference used to compute P(Disease|Symptoms)
- CPTs determined by expert knowledge from pathologists



Example of probabilistic inference: Interactive
activation model

recurrent neural network

name age

occupation Bayesian network alternative

hidden / instance

noisy lipKs
marital status

« O O 0 O O

name age gang occupation marital

* Retrieval by name P(X \name — Ken)

- Content addressability P (name|age = 30s, gang = Sharks)

- Spontaneous generalization P (agelgang = Sharks)



Conditional independence

X1 1S independent of x2 given X3

P(xl\xg, 2133) — P(ZC1|ZE3)

Equivalently
P(Zl?l, 5172‘373) — P(,’,El‘:l?g, Q?g)P(.CIZ‘Q‘ZEg) (product rule)
— P(£1‘CIZ‘3)P(£IZ‘2|ZL‘3)
Written as

r1 AL 29 | 23

Slide credit: Christopher Bishop



Conditional independence: Example

grey is notation
for observed

P(J, M|A) = (def. condition prob)

_ P(J|A)P(M|A)P(A)
B P(A)

— P(J|A)P(M|A)
JI M| A



Conditional independence: Example

(lommoals, CED

P(J, A, M) = P(J|A)P(M|A)P(A)

P(J,M) =" P(J|A)P(M|A)P(A)
A

J UM



Conditional independence: More examples

B U J Bl J|A
Cram <>

Earthquake

Earthquake

“explaining away” case



General statement on conditional independence

Burglary Earthquake

i) G Hm
Cmos (e

A Is conditionally independent of its
given its




Significance of Bayes nets and conditional
independence

* We can read conditional
independence properties directly
off the graph structure, rather than
having to derive them analytically
(as we did with simple examples
of conditional independence).

* We can exploit the conditional
iIndependence properties for
efficient probabilistic inference /
Bayesian reasoning (using exact

J—L I inference, MCMC, etc.)




Learning Bayesian networks: Parameter learning
Known structure (e.g., consulting experts, prior knowledge), but

unknown parameters
P(E) S : graph structure

¢ : parameters (numbers in CPT's)

D : data set
0.95 . .
0.94 example empirical data set D
0.29
0.001 BEAJM
pnl. 1. .0 1 .01
p@|. 0 .0 .00 0.
[0 0 0 0 1
0 oos — D™ more rows like this....

P(B,E,A,J, M)=P(B)P(FE)P(A|B,E)P(J|A)P(M|A)
maximum likelihood parameter learning:

aremax Y log P(D®|9:; S
31 Z g P(D']6; 5)

straightforward solution: we can fit CPTs independently, and each CPT is very
intuitive (simply count the relevant occurrences of a variable given its parents)



Learning Bayesian networks: Structure learning

Unknown structure, unknown parameters
arg max Z log P(D'V16, S) — cost(S)
0,S :
1
e Structure learning is much more difficult computationally than parameter learning
e The objective function includes some type of regularization to favor simple graphs (BIC, AIC, etc.)

e Finding the optimal graph structure S often involves a huge combinatorial search problem over structures, and
we need to be careful not to introduce cycles.

e We usually have to resort to heuristic search methods (such as greedy proposal for adding, removing, or
switching the direction of edges).

e Data can include both observations and (optionally) interventions.

example proposal to add an edge




Learning Bayesian networks: Structure learning
We can also search over “node orders”, where network

structure is determined by ordering
/

Earthquake
Burglary
Earthquake

* These networks can represent the same probability distribution as the

original alarm network, but are much clumsier and require more parameters
(node order is indicated by height on the slide)

* |f we get the causal structure wrong, we can easily overfit when learning
the parameters and make bad inferences.



A Theory of Causal Learning in Children: Causal Maps and Bayes Nets

Alison Gopnik

University of California, Berkeley

David M. Sobel

Brown University

Clark Glymour

Carnegie Mellon University and
Institute for Human and Machine Cognition

Laura E. Schulz and Tamar Kushnir
University of California, Berkeley

David Danks

Carnegie Mellon University and Institute for Human and Machine Cognition

The authors outline a cognitive and computational account of causal learning in children. They propose
that children use specialized cognitive systems that allow them to recover an accurate “causal map” of
the world: an abstract, coherent, learned representation of the causal relations among events. This kind
of knowledge can be perspicuously understood in terms of the formalism of directed graphical causal
models, or Bayes nets. Children’s causal learning and inference may involve computations similar to
those for learning causal Bayes nets and for predicting with them. Experimental results suggest that 2-
to 4-year-old children construct new causal maps and that their learning is consistent with the Bayes net

formalism.

The input that reaches children from the world is concrete,
particular, and limited. Yet, adults have abstract, coherent, and
largely veridical representations of the world. The great epistemo-
logical question of cognitive development is how human beings
get from one place to the other: How do children learn so much
about the world so quickly and effortlessly? In the past 30 years,
cognitive developmentalists have demonstrated that there are sys-
tematic changes in children’s knowledge of the world. However,
psychologists know much less about the representations that un-
derlie that knowledge and the learning mechanisms that underlie
changes in that knowledge.

In this article, we outline one type of representation and several
related types of learning mechanisms that may play a particularly
important role in cognitive development. The representations are
of the causal structure of the world, and the learning mechanisms
involve a particularly powerful type of causal inference. Causal
knowledge is important for several reasons. Knowing about causal
structure permits us to make wide-ranging predictions about future
events. Even more important, knowing about causal structure
allows us to intervene in the world to bring about new events—
often events that are far removed from the interventions
themselves.



Children can make novel interventions based
on causal hypotheses

“Blicket detector” studies by Gopnik and colleagues

\Jé/ﬂ \"/ﬂ

Object B is placed on Object B is removed Object A is placed on Object B is added to the detector with
the detector and the detector by itself Object A. The detector continues to
nothing happens and the detector activate. Children are asked to make

activates it stop

Results: 75% of 3-4 year olds remove Object A from the detector (Gopnik et al., 2001)

Bayesian network representation Neural network representation
(Rescorla-Wagner model of classical
conditioning) G

R-W model can learn
association between A and D,
but it doesn’t account for
interventions as naturally as
Bayesian networks

Wa



Backward blocking as evidence of causal learning

Backward blocking condition

| / -
V
Both objects activate Object A activates the Children are asked if
the detector detector by itself each is a blicket, then
they are asked to
make the machine go

Control condition

v
50
Both objects activate Object A does not Children are asked if
the detector activate the detector each is a blicket, then
by itself they are asked to
make the machine go

3-4 year old children categorized Object B as a blicket only 31% of the time in
backward blocking condition, but 100% of the time in control (Sobel et al., 2004)



Backward blocking as Bayesian structure learning

Adult vs. model judgements

5 1] -
J 5 [ ] People
¢ = Bl Bayes
. "
©
R
el
: . : : : : O
Both objects activate Object A activates the Children are asked if Q 0. 6 r
the detector detector by itself each is a blicket, then _5'
they are asked to (@) e
make the machine go E O 4 key effect :
- reduction
Four hypotheses for Bayesian structure learning = N to baseline
Q
(prior favors fewer edges) 8 02r
o
Q.

O 1 1 1
o O ®
Baseline after ‘AB’ trial after ‘A alone’ trial
(Tenenbaum & Giriffiths, 2003)

Neural network representation

@ e @ Neural nets only account

for decrease to baseline
with particular input WA WB

encoding schemes, where
it comes naturally from

structure learning.
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Structure learning and semantic cognition

The discovery of structural form

Charles Kemp*' and Joshua B. Tenenbaum*

*Department of Psychology, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213; and *Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139

Edited by Richard M. Shiffrin, Indiana University, Bloomington, IN, and approved May 30, 2008 (received for review March 17, 2008)

Algorithms for finding structure in data have become increasingly
important both as tools for scientific data analysis and as models
of human learning, yet they suffer from a critical limitation.
Scientists discover qualitatively new forms of structure in observed
data: For instance, Linnaeus recognized the hierarchical organiza-
tion of biological species, and Mendeleev recognized the periodic
structure of the chemical elements. Analogous insights play a
pivotal role in cognitive development: Children discover that object
category labels can be organized into hierarchies, friendship net-
works are organized into cliques, and comparative relations (e.g.,
“bigger than" or “better than’’) respect a transitive order. Stan-
dard algorithms, however, can only learn structures of a single
form that must be specified in advance: For instance, algorithms for
hierarchical clustering create tree structures, whereas algorithms
for dimensionality-reduction create low-dimensional spaces. Here,
we present a computational model that learns structures of many
different forms and that discovers which form is best for a given
dataset. The model makes probabilistic inferences over a space of
graph grammars representing trees, linear orders, multidimen-
sional spaces, rings, dominance hierarchies, cliques, and other
forms and successfully discovers the underlying structure of a
variety of physical, biological, and social domains. Our approach
brings structure learning methods closer to human abilities and
may lead to a deeper computational understanding of cognitive
development.

cognitive development | structure discovery | unsupervised learning

. iscovering the underlying structure of a set of entities is a

Higher-level discoveries about structural form are rarer but
more fundamental, and often occur at pivotal moments in the
development of a scientific field or a child’s understanding (1, 2,

4 g -
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X Structured Statistical Models of Inductive Reasoning

m,

b

of Charles Kemp Joshua B. Tenenbaum

se Carnegie Mellon University Massachusetts Institute of Technology

cq

tr. Everyday inductive inferences are often guided by rich background knowledge. Formal models of

hi induction should aim to incorporate this knowledge and should explain how different kinds of knowledge

m lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a

S Bayesian framework that attempts to meet both goals and describe 4 applications of the framework: a

S€ taxonomic model, a spatial model, a threshold model, and a causal model. Each model makes probabi-

Cd listic inferences about the extensions of novel properties, but the priors for the 4 models are defined over

la different kinds of structures that capture different relationships between the categories in a domain. The

C( framework therefore shows how statistical inference can operate over structured background knowledge,

0 and the authors argue that this interaction between structure and statistics is critical for explaining the

Ca power and flexibility of human reasoning.

cX

di Keywords: inductive reasoning, property induction, knowledge representation, Bayesian inference

u

Humans are adept at making inferences that take them beyond
the limits of their direct experience. Even young children can learn
the meaning of a novel word from a single labeled example
(Heibeck & Markman, 1987), predict the trajectory of a moving
object when it passes behind an occluder (Spelke, 1990), and
choose a gait that allows them to walk over terrain they have never
before encountered. Inferences like these may differ in many
respects, but common to them all is the need to go beyond the

information given (Bruner, 1973).

This article describes a formal approach to inductive inference
that should apply to many different problems, but we focus on the
problem of property induction (Sloman & Lagnado, 2005). In
particular, we consider cases where one or more categories in a
domain are observed to have a novel property and the inductive
task is to predict how the property is distributed over the remaining
categories in the domain. For instance, given that bears have
sesamoid bones, which species is more likely to share this prop-
erty: moose or salmon (Osherson, Smith, Wilkie, Lopez, & Shafir,




Review: A neural network model of
semantic cognition

Network is trained to answer queries
involving an item (e.g., “Canary”) and a
relation (e.g., “CAN”), outputting all
attributes that are true of the item/
relation pair (e.g., “grow, move, fly, sing”)

Trained with stochastic gradient
descent, as we learned about in this
lecture

The model helps us to understand the
broad-to-specific pattern of
differentiation in children’s cognitive
development

It also helps us to understand the
specific-to-general deterioration in
semantic dementia

Pine
Oak
Rose
Daisy
Robin
Canary
Sunfish
Salmon

Item

ISA
IS
CAN
HAS

Relation

Living thing
Plant
Animal
Tree
Flower
Bird
Flower
Pine
Oak
Rose
Daisy
Robin
Canary
Sunfish
Salmon

Pretty
Tall
Living
Green
Red
Yellow

Grow
Move
Swim
Fly
Sing

Bark
Petals
Wings
Feathers
Scales
Gills
Roots
Skin

Attribute




Alternative: Property induction as probabilistic
inference In a probabilistic graphical model

Question: “Given that cows and seals have T9
hormones, how likely is it that horses do?”

property induction as probabilistic inference:

P(fy =1|fx =1)

f : T9 hormones
Y = {horses}

X = {cows, seals}

Bayesian modeling roadmap

background data graphical model

structure learning

property induction as
prob. inference

@ £m) o
N orilla dolphin seal o
Hrse @O0 000 00000 ®0O OO0 8 ®
Cw @000000000®O®0O 000 , ?
Chimp OO @000 00 00 ®®00O0 chimp ? P(fy =1|fx =1)
Gola O O @000 0000 ®® 00O @) _> ?
Mouse ONONON NONOHEON N NEONORORON N 2
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Features for Elephant: ‘gray’, ‘hairless’, ‘toughskin’, ‘big’,
‘bulbous’, ‘longleg’, ‘tail’, ‘chewteeth’, ‘tusks’, ‘smelly’, ‘walks’,
‘slow’, ‘strong’, ‘muscle’, ‘fourlegs’, ...



Biological reasoning about animals
A tree fits better than a 2D space

Cows have property P.
Elephants have property P.
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Horses have property P.
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Gorillas have property P.
Mice have property P.
Seals have property P.

All mammals have property P.

Josh Tenenbaum
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participant
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Spatial reasoning about cities
A 2D space fits better than a tree

“Given that a certain kind of native American artifact has been
found in sites near city X, how likely is the same artifact to be

found near city Y?"
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Learning structural forms
How do we know what the right form is?

People can discover intuitive structural forms:

Famous examples in Science
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Examples from childhood

* e.g., days of the week form a cycle, social networks are cliques,
comparative relations are transitive, names can be organized in
taxonomies

slide credit: Josh Tenenbaum
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Learning structural forms

Kemp & Tenenbaum (2008). The discovery of structural form.

Structures available for selection
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Form

Structure

Data

Bayesian structural forms model
Kemp & Tenenbaum (2008)
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Very brief intro. to undirected graphical models

« Also known as Markov Random Fields or Markov
Networks

- Bayesian networks are better suited for representing
causal processes, while Markov networks are better
suited for capturing soft constraints between variables

undirected edge

In the structural forms model, structure is operationalized as a Gaussian Markov Random Field, which
enforces smoothness over the graph:

P(f™|S) o exp ( - EZ sij (") - f}’“))Q)

1 =
Y]
Feature f(k) G ’ .
17 (weight) is non-zero for each edge in graph
@ on
O off *essential regularization term not shown, see paper for details
High probability Low probability
gorilla dolphin seal gorilla dolphin seal
@
chi.mp chi.mp

elephant elephant



Results: Bayesian structural forms

features
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Results: Bayesian structural forms
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Do we need pre-defined structural forms

to make discoveries?
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Abstract

Both scientists and children make important structural discoveries, yet their computational
underpinnings are not well understood. Structure discovery has previously been formalized as
probabilistic inference about the right structural form—where form could be a tree, ring, chain,
grid, etc. (Kemp & Tenenbaum, 2008). Although this approach can learn intuitive organizations,
including a tree for animals and a ring for the color circle, it assumes a strong inductive bias that
considers only these particular forms, and each form is explicitly provided as initial knowledge.
Here we introduce a new computational model of how organizing structure can be discovered, uti-
lizing a broad hypothesis space with a preference for sparse connectivity. Given that the inductive
bias is more general, the model’s initial knowledge shows little qualitative resemblance to some
of the discoveries it supports. As a consequence, the model can also learn complex structures for
domains that lack intuitive description, as well as predict human property induction judgments
without explicit structural forms. By allowing form to emerge from sparsity, our approach clarifies
how both the richness and flexibility of human conceptual organization can coexist.

Keywords: Structure discovery; Unsupervised learning; Bayesian modeling; Sparsity

1. Introduction

Structural discoveries play an important role in science and cognitive development
(Carey, 2009; Kuhn, 1962). In biology, Linnaeus realized that living things were best
organized as a tree, displacing the “great chain of being” used for centuries before.

Correspondence should be sent to Brenden M. Lake, Center for Data Science, New York University, 60
5th Avenue, 7th Floor, New York, NY 10011. E-mail: brenden@nyu.edu
"This work was completed before N. Lawrence joined Amazon Research Cambridge.



Structural sparsity model (Lake et al., 2018)

(more closely akin to traditional graphical model structure learning in machine learning)
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Learning complex structural organizations
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Crisp structural discoveries

Circle for colors
Tree for mammals
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Accounting for inductive judgments without special

gorilla

biological reasoning

purpose structural forms

spatial reasoning
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Conclusions: probabilistic graphical models

e Probabilistic graphical models are a powerful paradigm
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In machine learning, and they have been applied in
computational cognitive modeling to problems in
classification, causal learning, and structure discovery.

Especially well-suited for modeling data where the
causal process is transparent.

Probabilistic inference, using a model of the world,
helps us to understand the productivity of human
thought and reasoning.



Excellent textbook for deeper reading

PROBABILISTIC GRAPHICAL MODELS




