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Probabilistic graphical models

• The basic technical concepts behind 
probabilistic graphical models and how to 
work with them.

• Applications in computational cognitive 
modeling, including problems in 
classification, causal learning, and 
structure discovery.

In this section, we will cover:

extent to which graphs with many clusters are penalized, and is
fixed for all of our experiments. The normalizing constant for
P(S!F) depends on the number of structures compatible with a
given form, and ensures that simpler forms are preferred when-

ever possible. For example, any chain Sc is a special case of a grid,
but P(Sc!F ! chain) " P(Sc!F ! grid) because there are more
possible grids than chains given a fixed number of entities. It
follows that P(Sc, F ! chain!D) " P(Sc, F ! grid!D) for any
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Fig. 3. Structures learned from biological features (A), Supreme Court votes (B), judgments of the similarity between pure color wavelengths (C), Euclidean
distances between faces represented as pixel vectors (D), and distances between world cities (E). For A–C, the edge lengths represent maximum a posteriori edge
lengths under our generative model.
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Fig. 4. Structures learned from relational data (Upper) and the raw data organized according to these structures (Lower). (A) Dominance relationships among a troop
of sooty mangabeys. The sorted data matrix has most of its entries above the diagonal, indicating that animals tend to dominate only the animals below them in the
order. (B) A hierarchy representing interactions between members of the Bush administration. (C ) Social cliques representing friendship relations between prisoners.
The sorted matrix has most of its entries along the diagonal, indicating that prisoners tend only to be friends with prisoners in the same cluster. (D) The Kula ring
representing armshell trade between New Guinea communities. The relative positions of the communities correspond approximately to their geographic locations.
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Bayesian networks (“Bayes net”)

• Bayesian network: a directed graph 
that represents dependencies between 
random variables, giving a concise 
specification of a joint probability 
distribution.

• In a well-constructed network, an 
arrow indicates that two variables have 
a path of direct (causal) influence.

• Bayesian networks must be directed, 
acyclic graphs (DAGs), meaning that 
they have no cycles.

x1 x2

x3

Factorization of the joint distribution:

edge

node

x1 and x2 are 
parents of x3

P (x1, x2, x3) = P (x1)P (x2)P (x3|x1, x2)



x1

x2
x3

x4 x5

x6 x7

P (x1, . . . , x7) = P (x1)P (x2)P (x3)P (x4|x1, x2, x3)

P (x5|x1, x3)P (x6|x4)P (x7|x4, x5)

Bayesian networks

P (X) =
KY

i=1

P (xi|Parents(xi))

General formula for factorizing the joint 
distribution over a Bayes net:

Slide credit: Christopher Bishop



An example: the alarm network

Conditional 
Probability 
Table (CPT)

P (B,E,A, J,M) = P (B)P (E)P (A|B,E)P (J |A)P (M |A)

(particular version from Russell and Norvig)

Burglary Earthquake

Alarm

JohnCalls MaryCalls

P(B)

0.001

P(E)

0.002

B E P(A|B,E)
1 1 0.95
1 0 0.94
0 1 0.29
0 0 0.001

A P(J|A)
1 0.90
0 0.05

A P(M|A)
1 0.70
0 0.01



P (B,E,A, J,M) = P (B)P (E)P (A|B,E)P (J |A)P (M |A)

Evaluating the joint probability of data

P (B = 0, E = 0, A = 1, J = 1,M = 1)

= P (B = 0)P (E = 0)P (A = 1|B = 0, E = 0)P (J = 1|A = 1)P (M = 1|A = 1)

= 0.999 ⇤ 0.998 ⇤ 0.001 ⇤ 0.9 ⇤ 0.7 = 0.00063

What is the probability that there is no burglary or earthquake, and 
yet the alarm rings and both John and Mary call?

We use the decomposed joint 
distribution to evaluate the probability 
of a setting of all of the variables.

Burglary Earthquake

Alarm

JohnCalls MaryCalls

P(B)

0.001

P(E)

0.002

B E P(A|B,E)
1 1 0.95
1 0 0.94
0 1 0.29
0 0 0.001

A P(J|A)
1 0.90
0 0.05

A P(M|A)
1 0.70
0 0.01



Example: Bayesian networks for understanding categorization

output prediction 
function 

Image 
feature 

y = f(x) 

 

x0 x2 x3 x4 x5 x6 x7
0 0 0 1 0 0 0
0 1 0 0 1 0 1
1 0 0 1 0 0 0
1 1 1 1 0 1 1

y
0
0
1
1

Example of Builder Example of Digger 

data representation of category predicted labels

Causal mechanisms are important in 
everyday categorization and reasoning. Is 
useful to think of the function f (the 
representation for a specific category) 
as a Bayesian network?



A Causal-Model Theory of Conceptual Representation and Categorization

Bob Rehder
New York University

This article presents a theory of categorization that accounts for the effects of causal knowledge that
relates the features of categories. According to causal-model theory, people explicitly represent the
probabilistic causal mechanisms that link category features and classify objects by evaluating whether
they were likely to have been generated by those mechanisms. In 3 experiments, participants were taught
causal knowledge that related the features of a novel category. Causal-model theory provided a good
quantitative account of the effect of this knowledge on the importance of both individual features and
interfeature correlations to classification. By enabling precise model fits and interpretable parameter
estimates, causal-model theory helps place the theory-based approach to conceptual representation on
equal footing with the well-known similarity-based approaches.

For the last several decades, research on the topic of categori-
zation has focused on the problem of learning new categories via
examples of category members, that is, from empirical observa-
tions. The result has been a host of categorization models that are
based on representational ideas such as central prototypes, stored
exemplars, and variabilized rules, and on processing principles
such as similarity, that have considerable explanatory power and
experimental support. More recently, the influence of the prior
“theoretical” knowledge that learners often contribute to their
representations of categories has also been a topic of study (Carey,
1985; Keil, 1989; Murphy & Medin, 1985; Schank, Collins, &
Hunter, 1986). For example, people not only know that birds have
wings and that they can fly and build nests in trees, but also that
birds build nests in trees because they can fly, and fly because they
have wings. Many people even believe that morphological features
of birds such as wings are ultimately caused by the kind of DNA
that birds possess. However, in comparison with the development
of models accounting for the effects of empirical observations,
there has been relatively little development of formal models to
account for the effects of such prior knowledge (although see Heit,
1994; Heit & Bott, 2000; Pazzani, 1991; Rehder & Murphy, in
press; Sloman, Love, & Ahn, 1998).
The purpose of this article is to present a theory of categoriza-

tion that accounts for the effects of theoretical knowledge, partic-
ularly causal knowledge, that interrelates or links the features of
many categories that people possess. According to causal-model
theory, people’s knowledge of many categories includes not just a
representation of a category’s features but also an explicit repre-
sentation of the causal mechanisms that people believe link those

features (Rehder, 1999; Waldmann, Holyoak, & Fratianne, 1995).
Further, according to this theory, people use causal models to
determine a new object’s category membership.
In this article, causal-model theory is applied to two outstanding

problems in the domain of categorization research. The first prob-
lem concerns determining the importance, or weight, that individ-
ual features have on establishing category membership. Since the
popularization of the notion of probabilistic categories in the
1970s, it has usually been assumed that features of a category vary
regarding their influence on category membership (Hampton,
1979; Rosch, 1973; Rosch & Mervis, 1975; Smith & Medin,
1981). Indeed, formal models of categorization have formalized
the manner in which a feature’s weight is influenced by its per-
ceptual saliency (Lamberts, 1995, 1998) and by the frequency with
which it appears in category members and nonmembers (Nosof-
sky, 1986; Reed, 1972; Rosch & Mervis, 1975; Shepard, Hovland,
& Jenkins, 1961). However, these models do not account for the
fact that feature weights are also determined by a categorizer’s
domain theories. For instance, Medin and Shoben (1988) have
found that straight bananas are rated as better members of the
category bananas than straight boomerangs are of the category
boomerangs, a result they attribute to the default feature curved
occupying a more theoretically central position in the conceptual
representation of boomerang as compared with banana (also see
Kaplan & Murphy, 2000; Murphy & Allopenna, 1994; Pazzani,
1991; Wattenmaker, Dewey, Murphy, & Medin, 1986). Keil
(1989) found that second and fourth graders judged that animals
with transformed perceptual features retained their category mem-
bership (e.g., a raccoon that is made skunk-like by being dyed
black, painted with a white stripe, and given a “sac of super smelly
yucky stuff” is still a raccoon), a result Keil attributed to the
children’s belief that the theoretically central (albeit hidden) fea-
tures of the kind important for category membership had been left
unaltered (also see Gelman &Wellman, 1991; Rips, 1989). Rehder
and Hastie (2001) showed that category features involved in many
causal relationships have more influence on category judgments
than other features (for related results, see Ahn, 1998; Ahn, Kim,
Lassaline, & Dennis, 2000; Sloman et al., 1998).

I thank Patricia Berretty, Seth Chin-Parker, Reid Hastie, Evan Heit,
Greg Murphy, Brian Ross, Cindy Sifonis, and two anonymous reviewers
for their comments on earlier versions of this article. Support for this
research was provided by Grants SBR-9816458 and SBR 97-20304 from
the National Science Foundation and Grant R01 MH58362 from the
National Institute of Mental Health.
Correspondence concerning this article should be addressed to Bob

Rehder, Department of Psychology, New York University, 6 Washington
Place, New York, New York 10003. E-mail: bob.rehder@nyu.edu

Journal of Experimental Psychology: Copyright 2003 by the American Psychological Association, Inc.
Learning, Memory, and Cognition
2003, Vol. 29, No. 6, 1141–1159

0278-7393/03/$12.00 DOI: 10.1037/0278-7393.29.6.1141
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Four binary features
F1: High amounts of ACh neurotransmitter. 
F2: Long-lasting flight response. 
F3: Accelerated sleep cycle.
F4: High body weight.

Artificial categorization task

Task: Learn and make predictions about a new category, e.g.,  “Lake Victoria Shrimp”

Base rate information: 75% of Lake Victoria Shrimp have each 
feature, e.g., 75% have feature F4



chain (causal framing) condition control condition (no 
causal framing) 

A high quantity of the ACh neurotransmitter causes 
a long-lasting flight response. The duration of the 
electrical signal to the muscles is longer because of 
the excess amount of neurotransmitter. 

A long-lasting flight response causes an accelerated 
sleep cycle. The long-lasting flight response causes 
the muscles to be fatigued, and this fatigue triggers 
the shrimp’s sleep center. 

An accelerated sleep cycle causes a high body 
weight. Shrimp habitually feed after waking, and 
shrimp on an accelerated sleep cycle wake three 
times a day instead of once. 

F1: High amounts of ACh neurotransmitter. 

F2: Long-lasting flight response. 

F3: Accelerated sleep cycle.

F4: High body weight.

F1→F2

F2→F3

F3→F4

free parameters c, b (background mechanism) 
and m (causal strength)

exactly the same instructions, but without 
causal information between features

Artificial categorization task
participants assigned to one of two conditions

F1 F2 F3 F4

c b b b

mmm F1 F2 F3 F4



probabilities are greater than 0, reflecting that the joint presence
(or the joint absence) of two features directly connected by causal
relationships increased category membership ratings above and
beyond the presence (or absence) of each feature individually. In
comparison, in the control condition the six contrasts were all
approximately 0, indicating that correlations between features had
no influence on category membership ratings in that condition.
A two-way ANOVA of these contrasts with condition (chain vs.

control) and contrast (!21, !32, !43, !31, !42, or !41) as factors
confirmed that the pattern of contrasts differed between the two
conditions as indicated by a significant interaction between con-
dition and contrast, F(5, 350) " 4.53, MSE " 0.00551, p # .001.
In a separate analysis of the chain condition, the contrasts associ-
ated with directly connected feature pairs (!21, !32, !43) were
greater than those associated with indirectly connected pairs (!31,
!42, !41), F(1, 35) " 12.0, MSE " 0.00551, p # .001.
Theoretical modeling. To demonstrate that the pattern of re-

sults in Experiment 1 is in accordance with the predictions of
causal-model theory, the chain model of Figure 1B was fit to the
categorization ratings in the chain condition. That is, the values of
parameters c, m, b, and K that minimize the squared difference

between the ratings and the model likelihoods as computed by the
equations in Table 3 was determined for each of the 36 chain
participants. The parameter values averaged over participants are
presented in Table 5. The table also presents for each model the
squared error averaged over participants (Avg. SSE), and the
root-mean-square deviation (RMSD) averaged over participants
(Avg. RMSD), where RMSD " SQRT(SSE/(N $ P)), N is the
number of observations modeled (16), and P is the total number of
parameters in the model (4).
According to causal-model theory, parameter m represents the

probability that a causal mechanism between two category features
will operate (i.e., will bring about the presence of its effect) when
the cause feature is present. Table 5 indicates an estimate of
parameter m of .120. That is, the fit of the chain model indicates
that participants generated categorization ratings in a manner con-
sistent with a belief in the presence of probabilistic causal mech-
anisms arranged in a causal chain. To illustrate the chain model’s
sensitivity to correlations between features directly linked by
causal mechanisms, its predicted ratings for exemplars 0000, 0101,
1010, and 1111 are presented in Figure 3, superimposed on the
empirical ratings. The chain model correctly predicted both the
lower categorization ratings for those exemplars that possessed
many violations of causal knowledge (0101 and 1010) and the
higher categorization ratings for those exemplars that confirmed
causal knowledge (1111).
To demonstrate the chain model’s fit directly in terms of feature

probabilities and correlations, I computed the probabilities and
correlations implied by the chain model fit. That is, for each
participant the chain model predicts certain likelihoods for each
exemplar, and feature probabilities and interfeature contrasts can
be computed from these likelihoods. These probabilities and con-
trasts were then averaged over participants and these averages are
presented in Figure 3B, superimposed on the empirical data. Fig-
ure 3B confirms that the chain model was able to account for both
the weights associated with the individual features and the sensi-
tivity to correlated features displayed by participants. Indeed, the
chain model’s predicted ratings accounted for 97% of the variance
in the average ratings.

Table 5
Parameter Estimates and Measures of Fit of the Chain Causal
Model to the Chain Conditions of Experiments 1–3

Parameters and
measures

Experiment

1 2 3

M SE M SE M SE

c .598 .017 .525 .016
m .120 .026 .402 .053 .266 .044
b .521 .014 .384 .026 .464 .031
K 815 25.3 642 42.1 403 20.7
Average SSE 2157 2309 893
Average RMSD 12.4 12.4 11.7
R2 .97 .93 .97

Note. Average SSE " sum of squared error averaged over participants;
Average RMSD " root-mean-square deviation averaged over participants.
Parameter c was not estimated in Experiment 3.

Figure 3. Results from the chain and control conditions of Experiment 1.
A: Categorization ratings for selected exemplars. B: Derived feature prob-
abilities and interfeature correlations. Predictions of the chain model are
shown in each panel.

1148 REHDERArtificial categorization task: Results

scale from 
“definitely not a 
Lake Victoria 
Shrimp” to 
“definitely a Lake 
Victoria Shrimp”

Conclusion: Causal/structural information influences people’s categorization decisions, in a 
way predicted by a Bayesian network model.

new object for category judgment

(0101 means both F2  and  F4 are 
present, and the others absent)

P (F1, F2, F3, F4)
= P (F1)P (F2|F1)P (F3|F2)P (F4|F3)

Test judgments: is F a Lake 
Victoria Shrimp?

In causal condition, compute 
judgement as:

Key idea: categorization 
decision is computing joint 
probability under a Bayes net 
model of that category.



F1

F2

F3

F1

F2

F3

F2F4F4

Further work from Rehder and colleagues have studied categories with these 
alternative Bayes net structures…
(e.g., Rehder and Hastie, 2001)

Causal structure matters in categorization judgments

F1 F2 F3 F4

c b b b

mmm

F1 F2 F3 F4



x1

x2
x3

x4 x5

x6 x7

P (x1, . . . , x7) = P (x1)P (x2)P (x3)P (x4|x1, x2, x3)

P (x5|x1, x3)P (x6|x4)P (x7|x4, x5)

P (X) =
KY

i=1

P (xi|Parents(xi))

General formula for factorizing the 
joint distribution

How do Bayesian networks relate to other 
Bayesian models used in cognitive modeling?

16 8 2 64

The number game

T S
noise

P(T|S)

The speaker makes an intended sound production T.
Noise in the air perturbs T into S.
The listener calculates the posterior P(T|S)

P (T |S) =
P (S|T )P (T )

P (S)

noise
speech sound from 

speakerperception

Bayesian model of speech perception
speaker listener

Perceptual magnet effect



Data (D): John is coughing

h1 = John has a cold
h2 = John has emphysema
h3 = John has a stomach flu

Hypotheses:

Connection with simple Bayesian models

16 8 2 64

The number game

T S
noise

P(T|S)

The speaker makes an intended sound production T.
Noise in the air perturbs T into S.
The listener calculates the posterior P(T|S)

P (T |S) =
P (S|T )P (T )

P (S)

noise
speech sound from 

speakerperception

Bayesian model of speech perception
speaker listener

Diagnosis example

hypothesis

data

Simple Bayes net 
representation Bayesian inference for evaluating 

hypotheses in light of data

Data (D): John is coughing

h1 = John has a cold
h2 = John has emphysema
h3 = John has a stomach flu

We want to calculate the posterior probabilities: P (h1|D), P (h2|D), and P (h3|D)

Hypotheses:

Which hypotheses should we believe, and with what certainty?

priorlikelihoodposterior

P (hi|D) =
P (D|hi)P (hi)P
j P (D|hj)P (hj)

“Bayes’ rule”

Example from Josh Tenenbaum

Many of the Bayesian models developed 
for cognitive modeling can be interpreted 
as two node Bayesian networks, with a 
complex (potentially very complex) 
conditional probability table (aka likelihood 
function)

Perceptual magnet effect

P (d, h) = P (d|h)P (h)



Review from the number game: Probabilistic inference is very flexible!

E[�(h)|D] ⇡ 1

M

X

m

�(h(m))

If we can compute the posterior, or draw samples 
from the posterior, we can automatically reason 
about a huge range of questions

rows are samples h(m)

Examples of reusing the sample for new 
queries

• Is 64 a member of the set? (probability is 
0.73)

• Are both 36 and 64 members of the set? 
(0.36)

• Is there a member of the set greater than or 
equal to 80? (0.27)

• If we sample a new number from the 
hypothesis, what is the chance it will be 64? 
(0.16)

• If we sample a new number from the 
hypothesis, what is the chance it will be 80? 
(0.02)

�(·)

The type of flexibility in reasoning is 
natural in Bayesian models, but it is 
difficult to capture in neural networks 
trained with supervised learning, or 
model-free reinforcement learning. 

Inference flexibility is not specific to 
rejection sampling, but to Bayesian 
models in general.

16



Probabilistic inference
as a generalization of Bayes’ rule to arbitrary queries in a probabilistic model

General formula for probabilistic inference

P (X|e) /
X

y

P (X, e, y)

X = query variables

e = evidence variables

Y = hidden variables
Burglary Earthquake

Alarm

JohnCalls MaryCalls

P(B)

0.001

P(E)

0.002

B E P(A)
1 1 0.95
1 0 0.94
0 1 0.29
0 0 0.001

A P(J)
1 0.90
0 0.05

A P(M)
1 0.70
0 0.01

Example with the alarm network:

X = {B}
e = {M}

Y = {E,A, J}

Probability of a burglary given that Mary calls:

P (X|e) =
P

y P (X, e, y)
P

y,X0 P (X 0, e, y)

P (B = 1|M = 1) = 0.056



Flexible reasoning through probabilistic inference
as a generalization of Bayes’ rule to arbitrary queries in a probabilistic model

P (M = 1) = 0.01
P (A = 1) = 0.003
P (B = 1) = 0.001

Marginal distributions

P (B = 1|J = 1,M = 1) = 0.284

Is there a burglary, given 
John and Mary both call?

Is there an earthquake, given 
John and Mary both call?
P (E = 1|J = 1,M = 1) = 0.176

P (M = 1|B = 1) = 0.66
Does Mary call, given a burglary?

P (M = 1|B = 1, E = 1) = 0.67

Does Mary call, given a burglary and 
earthquake?

P (A = 1, B = 1,M = 1|E = 0) = 0.0006

What is the chance there is a burglary with an 
alarm and Mary calls, assuming no earthquake?

Algorithms for inference:
• exact enumeration (equation 

from previous slide)
• rejection sampling
• importance sampling
• MCMC
• etc.

Burglary Earthquake

Alarm

JohnCalls MaryCalls

P(B)

0.001

P(E)

0.002

B E P(A|B,E)
1 1 0.95
1 0 0.94
0 1 0.29
0 0 0.001

A P(J|A)
1 0.90
0 0.05

A P(M|A)
1 0.70
0 0.01



Burglary Earthquake

Alarm

“Explaining away” with Bayes nets

grey is notation 
for observed

P(B)

0.001
P(E)

0.002

B E P(A|B,E)
1 1 0.95
1 0 0.94
0 1 0.29
0 0 0.001

P (E = 1|A = 1) = 0.23

P (E = 1|A = 1, B = 1) = 0.002

If alarm rings, then an earthquake becomes a real 
possibility:

Unless we know there was a burglary, in which 
case we can “explain away” the indication for an 
earthquake.

Where one cause can explain away the 
need for a second one…



Probabilistic inference in practice

Figure 1: A portion of the Pathfinder belief network. The arcs from the disease node (center) to the features represents the influence of the disease
state on the appearance of the features. The arcs among the features indicates probabilistic dependency among features. The wider arcs capture
the concept of irrelevancy.

Figure 2: A portion of the similarity graph for Pathfinder. (HD =
Hodgkin's disease; NSHD = nodular-sclerosing Hodgkin's disease.)

Figure 3: The local belief network that captures the problem of
differentiating mixed-cellularity Hodgkin's disease from interfollicular
Hodgkin's disease. (F number = follicles number; Non-sin non-foll =
nonsinus, nonfollicular areas.)

similarity network for lymph-node disease, was shown in Figure 1. It
has been demonstrated that, provided the similarity network is com-
pletely connected and several other technical conditions are met, the
global belief network constructed from a similarity network is a valid
belief network for the entire domain [5]. Thus, the similarity-network
representation greatly facilitates the construction of large belief net-
works. A similarity network allows an expert to decompose the task of
building a large belief network into modular and relatively small sub-
tasks. Using a similarity network, an expert can focus his attention on
small dependency problems for actual clinical dilemmas. In the case of
lymph-node pathology, the expert could not construct the global belief
network without the aid of the similarity-network representation.

Several important features of the similarity-network representation
are discussed in [5]. For example, similarity networks can be extended
to include local belief networks for sets of hypotheses that contain two
or more elements. Essentially, we need only to replace the similarity
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Pathfinder project for medical diagnosis (Heckerman, Horvitz, & colleagues; late 1980s)

• Commercial system for diagnosing lymph-node pathology
• Probabilistic inference used to compute
• CPTs determined by expert knowledge from pathologists

P (Disease|Symptoms)



Example of probabilistic inference: Interactive 
activation model

Interactive activation model

name age

occupation

marital status

gang

education

hidden / instance

(McClelland, 1981)

• Each item is a unit with mutually excitatory connections to its properties
• Properties are organized into pools of mutually inhibitory units (e.g., since a 

person can’t be both in their 20’s and in their 30’s)
recurrent neural network

name age occupation maritalgang

hidden / instance

Bayesian network alternative

noisy links

• Retrieval by name

• Content addressability

• Spontaneous generalization

P (X|name = Ken)

P (name|age = 30s, gang = Sharks)

P (age|gang = Sharks)

X



Conditional independence

x1 is independent of x2 given x3

P (x1|x2, x3) = P (x1|x3)

P (x1, x2|x3) = P (x1|x2, x3)P (x2|x3)

= P (x1|x3)P (x2|x3)

Equivalently

x1 ?? x2 | x3

Written as

(product rule)

Slide credit: Christopher Bishop



Alarm

JohnCalls MaryCalls

Conditional independence: Example

P (J,M |A) =
P (J,A,M)

P (A)

= P (J |A)P (M |A)

J ?? M | A

grey is notation 
for observed

(def. condition prob)

=
P (J |A)P (M |A)P (A)

P (A)



Alarm

JohnCalls MaryCalls

Conditional independence: Example

P (J,A,M) = P (J |A)P (M |A)P (A)

P (J,M) =
X

A

P (J |A)P (M |A)P (A)

J 6?? M



Conditional independence: More examples

Burglary

Alarm

JohnCalls

Burglary

Alarm

JohnCalls

B 6?? J B ?? J |A

Burglary Earthquake

Alarm

Burglary Earthquake

Alarm

B ?? E B 6?? E | A

“explaining away” case



Burglary Earthquake

Alarm

JohnCalls MaryCalls

JohnLonely MaryLonely

Economy TimeOfYear

General statement on conditional independence

A variable is conditionally independent of its non-
descendants given its parents ?? |



Burglary Earthquake

Alarm

JohnCalls MaryCalls

JohnLonely MaryLonely

Economy TimeOfYear

General statement on conditional independence

A variable is conditionally independent of its non-
descendants given its parents ??

Significance of Bayes nets and conditional 
independence

?? |

• We can read conditional 
independence properties directly  
off the graph structure, rather than 
having to derive them analytically 
(as we did with simple examples 
of conditional independence).

• We can exploit the conditional 
independence properties for 
efficient probabilistic inference / 
Bayesian reasoning (using exact 
inference, MCMC, etc.)



Learning Bayesian networks: Parameter learning

P (B,E,A, J,M) = P (B)P (E)P (A|B,E)P (J |A)P (M |A)

✓ : parameters (numbers in CPTs)

S : graph structure

D : data set

argmax
✓

X

i

logP (D(i)|✓;S)

B E A J M
1 0 1 0 1
0 0 0 0 0
0 0 0 0 1

example empirical data set D

more rows like this….

D(1)

D(2)

D(N)
…

maximum likelihood parameter learning:

straightforward solution: we can fit CPTs independently, and each CPT is very 
intuitive (simply count the relevant occurrences of a variable given its parents)

Known structure (e.g., consulting experts, prior knowledge), but 
unknown parameters

Burglary Earthquake

Alarm

JohnCalls MaryCalls

P(B)

0.001

P(E)

0.002

B E P(A|B,E)
1 1 0.95
1 0 0.94
0 1 0.29
0 0 0.001

A P(J|A)
1 0.90
0 0.05

A P(M|A)
1 0.70
0 0.01



Learning Bayesian networks: Structure learning
Unknown structure, unknown parameters

• Structure learning is much more difficult computationally than parameter learning

• The objective function includes some type of regularization to favor simple graphs (BIC, AIC, etc.)

• Finding the optimal graph structure S often involves a huge combinatorial search problem over structures, and 
we need to be careful not to introduce cycles.

• We usually have to resort to heuristic search methods (such as greedy proposal for adding, removing, or 
switching the direction of edges).

• Data can include both observations and (optionally) interventions.

argmax
✓,S

X

i

logP (D(i)|✓, S)� cost(S)

example proposal to add an edge



Burglary

Earthquake

Alarm

JohnCalls
MaryCalls

Burglary

Earthquake

Alarm

JohnCalls

MaryCalls

We can also search over “node orders”, where network 
structure is determined by ordering

• These networks can represent the same probability distribution as the 
original alarm network, but are much clumsier and require more parameters 
(node order is indicated by height on the slide)

• If we get the causal structure wrong, we can easily overfit when learning 
the parameters and make bad inferences.

Learning Bayesian networks: Structure learning



A Theory of Causal Learning in Children: Causal Maps and Bayes Nets

Alison Gopnik
University of California, Berkeley

Clark Glymour
Carnegie Mellon University and

Institute for Human and Machine Cognition

David M. Sobel
Brown University

Laura E. Schulz and Tamar Kushnir
University of California, Berkeley

David Danks
Carnegie Mellon University and Institute for Human and Machine Cognition

The authors outline a cognitive and computational account of causal learning in children. They propose
that children use specialized cognitive systems that allow them to recover an accurate “causal map” of
the world: an abstract, coherent, learned representation of the causal relations among events. This kind
of knowledge can be perspicuously understood in terms of the formalism of directed graphical causal
models, or Bayes nets. Children’s causal learning and inference may involve computations similar to
those for learning causal Bayes nets and for predicting with them. Experimental results suggest that 2-
to 4-year-old children construct new causal maps and that their learning is consistent with the Bayes net
formalism.

The input that reaches children from the world is concrete,
particular, and limited. Yet, adults have abstract, coherent, and
largely veridical representations of the world. The great epistemo-
logical question of cognitive development is how human beings
get from one place to the other: How do children learn so much
about the world so quickly and effortlessly? In the past 30 years,
cognitive developmentalists have demonstrated that there are sys-
tematic changes in children’s knowledge of the world. However,
psychologists know much less about the representations that un-
derlie that knowledge and the learning mechanisms that underlie
changes in that knowledge.

In this article, we outline one type of representation and several
related types of learning mechanisms that may play a particularly
important role in cognitive development. The representations are
of the causal structure of the world, and the learning mechanisms
involve a particularly powerful type of causal inference. Causal
knowledge is important for several reasons. Knowing about causal
structure permits us to make wide-ranging predictions about future
events. Even more important, knowing about causal structure
allows us to intervene in the world to bring about new events—
often events that are far removed from the interventions
themselves.
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The results of these experiments rule out many possible hypoth-
eses about children’s causal learning. Because children did not
activate the detector themselves, they could not have solved these
tasks through operant conditioning or through trial-and-error learn-
ing. The blickets and nonblickets were perceptually indistinguish-
able, and both blocks were in contact with the detector, so children
could not have solved the tasks through their substantive prior
knowledge about everyday physics.
The “make it stop” condition in this experiment also showed

that children’s inferences went beyond classical conditioning, sim-
ple association, or simple imitative learning. Children not only
associated the word and the effect, they combined their prior
causal knowledge and the new causal knowledge they inferred
from the dependencies to create a brand-new intervention that they
had never witnessed before. As we mentioned above, this kind of
novel intervention is the hallmark of a causal map. It is interesting
that there is, to our knowledge, no equivalent of this result in the
vast animal conditioning literature, although such an experiment
would be easy to design. Would Pavlov’s dogs, for example,
intervene to silence a bell that led to shock, if they had simply
experienced an association between the bell and the shock but had
never intervened in this way before?
In all these respects, children seemed to have learned a new

causal map. Moreover, this experiment showed that children were
not using simple frequencies to determine the causal structure of
this map but were using more complex patterns of conditional
dependence. However, this experiment was consistent with all four
learning models we described above, including the causal inter-
pretation of the RW model.

Inference from indirect evidence: Backward blocking. In the
next study we wanted to see whether children’s reasoning would
extend to even more complex types of conditional dependence and,
in particular, if children would reason in ways that went beyond
causal RW. There are a number of experimental results that argue
against the RW model for adult human causal learning. One such
phenomenon is “backward blocking” (Shanks, 1985; Shanks &
Dickinson, 1987; Wasserman & Berglan, 1998). In backward
blocking, learners decide whether an object causes an effect by
using information from trials in which that object never appears.
Sobel and colleagues (Sobel, Tenenbaum, & Gopnik, in press)

have demonstrated backward blocking empirically in young chil-
dren. In one experiment (Sobel et al., in press, Experiment 2), 3-
and 4-year-olds were introduced to the blicket detector in the same
manner as in the Gopnik et al. (2001) experiments. They were told
that some blocks were blickets and that blickets make the machine
go. In a pretest, children saw that some blocks, but not others,
made the machine go, and the active objects were labeled as
blickets. Then children were shown two new blocks (A and B).
In one condition, the control, inference condition, A and B were

placed on the detector together twice, and the detector responded
both times. Then children observed that Object A did not activate
the detector by itself. In the other condition, the backward blocking
condition, children saw that two new blocks, A and B, activated
the detector together twice. Then they observed that Block A did
activate the detector by itself. In both conditions, children were
then asked whether each block was a blicket and were asked to
make the machine go (see Figure 13).

Figure 12. Procedure used in Gopnik et al. (2001, Experiment 3).
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A B

D

Children can make novel interventions based 
on causal hypotheses 

“Blicket detector” studies by Gopnik and colleagues

Bayesian network representation Neural network representation

(Rescorla-Wagner model of classical 
conditioning)

A B

D

wA wB

R-W model can learn 
association between A and D, 
but it doesn’t account for 
interventions as naturally as 
Bayesian networks

Results: 75% of 3-4 year olds remove Object A from the detector (Gopnik et al., 2001)



In the control, inference condition, children said that Object A
was a blicket only 6% of the time and always said that Object B
was a blicket (100% of the time), significantly more often. Per-
formance on the backward blocking condition was quite different:
Children categorized Object A as a blicket 99% of the time.
However, the critical question was how children would categorize
Object B. Overall, children categorized Object B as a blicket only
31% of the time. In fact, even the youngest children categorized
Object B as a blicket significantly less often in the backward
blocking condition (50% of the time) than they did in the one-
cause condition (100% of the time). In summary, children as
young as 3 years old made different judgments about the causal
power of Object B, depending on what happened with Object A.
They used the information from trials that just involved A to make
their judgment about B.
Children responded in a similar way to the “make it go” inter-

vention question. This question was analogous to the “make it
stop” question in Gopnik et al. (2001). Children had never seen the
experimenter place the B block on the detector by itself in either
condition. Nevertheless, in the inference condition they placed this
block on the detector by itself 84% of the time. In the backward
blocking condition they did so 19% of the time, significantly less
often, and significantly less often than they placed the A block on
the detector by itself (64% of the time).
What would the various learning models predict about this

problem? In the pretest, children are shown that some blocks are
blickets (about half the blocks, in fact). Children then have the
following data in the following sequence.
Inference

1. A absent, B absent, E absent

2. A present, B present, E present

3. A present, B present, E present

4. A present, B absent, E absent

Backward blocking

1. A absent, B absent, E absent

2. A present, B present, E present

3. A present, B present, E present

4. A present, B absent, E present

According to the RW model, both A and B are positively
associated with E (the effect). The last trial, Trial 4, should
strengthen or weaken the association with A but should have no
effect on the association with B, because B is absent. If that
association is sufficiently strong, subjects should conclude that
both A and B cause E. In particular, B should be equally strongly
associated with E in the inference condition and the backward
blocking condition.
In contrast, both Cheng’s (1997) learning rule, with a suitable

choice of focal sets, and constraint-based and Bayesian learning
methods yield a qualitative difference between A and B in the
backward blocking condition. In the RW model, the effect or lack
of effect of the A block by itself has no influence on the judgment
about B, but it has a crucial effect in these other models.
According to Cheng’s (1997) methods, if the focal set for A in

the backward blocking condition consists of Cases 1 and 4 (so B

Figure 13. Procedure used in Sobel et al. (in press, Experiment 2).
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Backward blocking as evidence of causal learning

3-4 year old children categorized Object B as a blicket only 31% of the time in 
backward blocking condition, but 100% of the time in control (Sobel et al., 2004)

In the control, inference condition, children said that Object A
was a blicket only 6% of the time and always said that Object B
was a blicket (100% of the time), significantly more often. Per-
formance on the backward blocking condition was quite different:
Children categorized Object A as a blicket 99% of the time.
However, the critical question was how children would categorize
Object B. Overall, children categorized Object B as a blicket only
31% of the time. In fact, even the youngest children categorized
Object B as a blicket significantly less often in the backward
blocking condition (50% of the time) than they did in the one-
cause condition (100% of the time). In summary, children as
young as 3 years old made different judgments about the causal
power of Object B, depending on what happened with Object A.
They used the information from trials that just involved A to make
their judgment about B.
Children responded in a similar way to the “make it go” inter-

vention question. This question was analogous to the “make it
stop” question in Gopnik et al. (2001). Children had never seen the
experimenter place the B block on the detector by itself in either
condition. Nevertheless, in the inference condition they placed this
block on the detector by itself 84% of the time. In the backward
blocking condition they did so 19% of the time, significantly less
often, and significantly less often than they placed the A block on
the detector by itself (64% of the time).
What would the various learning models predict about this

problem? In the pretest, children are shown that some blocks are
blickets (about half the blocks, in fact). Children then have the
following data in the following sequence.
Inference

1. A absent, B absent, E absent

2. A present, B present, E present

3. A present, B present, E present

4. A present, B absent, E absent

Backward blocking

1. A absent, B absent, E absent

2. A present, B present, E present

3. A present, B present, E present

4. A present, B absent, E present

According to the RW model, both A and B are positively
associated with E (the effect). The last trial, Trial 4, should
strengthen or weaken the association with A but should have no
effect on the association with B, because B is absent. If that
association is sufficiently strong, subjects should conclude that
both A and B cause E. In particular, B should be equally strongly
associated with E in the inference condition and the backward
blocking condition.
In contrast, both Cheng’s (1997) learning rule, with a suitable

choice of focal sets, and constraint-based and Bayesian learning
methods yield a qualitative difference between A and B in the
backward blocking condition. In the RW model, the effect or lack
of effect of the A block by itself has no influence on the judgment
about B, but it has a crucial effect in these other models.
According to Cheng’s (1997) methods, if the focal set for A in

the backward blocking condition consists of Cases 1 and 4 (so B

Figure 13. Procedure used in Sobel et al. (in press, Experiment 2).
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Control condition



Neural network representation

A B

D

wA wB

In the control, inference condition, children said that Object A
was a blicket only 6% of the time and always said that Object B
was a blicket (100% of the time), significantly more often. Per-
formance on the backward blocking condition was quite different:
Children categorized Object A as a blicket 99% of the time.
However, the critical question was how children would categorize
Object B. Overall, children categorized Object B as a blicket only
31% of the time. In fact, even the youngest children categorized
Object B as a blicket significantly less often in the backward
blocking condition (50% of the time) than they did in the one-
cause condition (100% of the time). In summary, children as
young as 3 years old made different judgments about the causal
power of Object B, depending on what happened with Object A.
They used the information from trials that just involved A to make
their judgment about B.
Children responded in a similar way to the “make it go” inter-

vention question. This question was analogous to the “make it
stop” question in Gopnik et al. (2001). Children had never seen the
experimenter place the B block on the detector by itself in either
condition. Nevertheless, in the inference condition they placed this
block on the detector by itself 84% of the time. In the backward
blocking condition they did so 19% of the time, significantly less
often, and significantly less often than they placed the A block on
the detector by itself (64% of the time).
What would the various learning models predict about this

problem? In the pretest, children are shown that some blocks are
blickets (about half the blocks, in fact). Children then have the
following data in the following sequence.
Inference

1. A absent, B absent, E absent

2. A present, B present, E present

3. A present, B present, E present

4. A present, B absent, E absent

Backward blocking

1. A absent, B absent, E absent

2. A present, B present, E present

3. A present, B present, E present

4. A present, B absent, E present

According to the RW model, both A and B are positively
associated with E (the effect). The last trial, Trial 4, should
strengthen or weaken the association with A but should have no
effect on the association with B, because B is absent. If that
association is sufficiently strong, subjects should conclude that
both A and B cause E. In particular, B should be equally strongly
associated with E in the inference condition and the backward
blocking condition.
In contrast, both Cheng’s (1997) learning rule, with a suitable

choice of focal sets, and constraint-based and Bayesian learning
methods yield a qualitative difference between A and B in the
backward blocking condition. In the RW model, the effect or lack
of effect of the A block by itself has no influence on the judgment
about B, but it has a crucial effect in these other models.
According to Cheng’s (1997) methods, if the focal set for A in

the backward blocking condition consists of Cases 1 and 4 (so B

Figure 13. Procedure used in Sobel et al. (in press, Experiment 2).
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Four hypotheses for Bayesian structure learning

(prior favors fewer edges)

Backward blocking as Bayesian structure learning

Neural nets only account 
for decrease to baseline 
with particular input 
encoding schemes, where 
it comes naturally from 
structure learning.
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Figure 1: Hypothesis spaces of causal Bayes nets for (a) the blicket detector and (b) the
mechanical vibration domains.

B1,B2 B1,B2 B1 B2
0

0.2

0.4

0.6

0.8

1
(a)

Baseline After 
 "12" 
trial 

  After  
"1 alone"

  trial  

B1,B2 B1,B2 B1 B2
0

0.2

0.4

0.6

0.8

1
(b)

Baseline After 
 "12" 
trial 

  After  
"1 alone"

  trial  

B1,B2,B3 B1,B2 B3 B1 B2,B3
0

0.2

0.4

0.6

0.8

1
(c)

Baseline After 
 "12" 
trial 

After 
 "13" 
trial 

People
Bayes

Figure 2: Human judgments and model predictions (based on Figure 1a) for one-shot back-
wards blocking with blickets, when blickets are (a) rare or (b) common, or (c) rare and only
observed in ambiguous combinations. Bar height represents the mean judged probability
that an object has the causal power to activate the detector.
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Figure 3: Probability of a causal connection between two events: a block dropping onto a
beam and a trap door opening. Each curve corresponds to a different spatial gap between
these events; each x-axis value to a different temporal gap . (a) Human judgments. (b)
Predictions of the dynamic Bayes net model (Figure 1b). (c) Predictions of the spatiotem-
poral decay model.
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Structure learning and semantic cognition

The discovery of structural form
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Algorithms for finding structure in data have become increasingly
important both as tools for scientific data analysis and as models
of human learning, yet they suffer from a critical limitation.
Scientists discover qualitatively new forms of structure in observed
data: For instance, Linnaeus recognized the hierarchical organiza-
tion of biological species, and Mendeleev recognized the periodic
structure of the chemical elements. Analogous insights play a
pivotal role in cognitive development: Children discover that object
category labels can be organized into hierarchies, friendship net-
works are organized into cliques, and comparative relations (e.g.,
‘‘bigger than’’ or ‘‘better than’’) respect a transitive order. Stan-
dard algorithms, however, can only learn structures of a single
form that must be specified in advance: For instance, algorithms for
hierarchical clustering create tree structures, whereas algorithms
for dimensionality-reduction create low-dimensional spaces. Here,
we present a computational model that learns structures of many
different forms and that discovers which form is best for a given
dataset. The model makes probabilistic inferences over a space of
graph grammars representing trees, linear orders, multidimen-
sional spaces, rings, dominance hierarchies, cliques, and other
forms and successfully discovers the underlying structure of a
variety of physical, biological, and social domains. Our approach
brings structure learning methods closer to human abilities and
may lead to a deeper computational understanding of cognitive
development.

cognitive development ! structure discovery ! unsupervised learning

D iscovering the underlying structure of a set of entities is a
fundamental challenge for scientists and children alike

(1–7). Scientists may attempt to understand relationships be-
tween biological species or chemical elements, and children may
attempt to understand relationships between category labels or
the individuals in their social landscape, but both must solve
problems at two distinct levels. The higher-level problem is to
discover the form of the underlying structure. The entities may
be organized into a tree, a ring, a dimensional order, a set of
clusters, or some other kind of configuration, and a learner must
infer which of these forms is best. Given a commitment to one
of these structural forms, the lower-level problem is to identify
the instance of this form that best explains the available data.

The lower-level problem is routinely confronted in science and
cognitive development. Biologists have long agreed that tree
structures are useful for organizing living kinds but continue to
debate which tree is best—for instance, are crocodiles better
grouped with lizards and snakes or with birds (8)? Similar issues
arise when children attempt to fit a new acquaintance into a set
of social cliques or to place a novel word in an intuitive hierarchy
of category labels. Inferences like these can be captured by
standard structure-learning algorithms, which search for struc-
tures of a single form that is assumed to be known in advance
(Fig. 1A). Clustering or competitive-learning algorithms (9, 10)
search for a partition of the data into disjoint groups, algorithms
for hierarchical clustering (11) or phylogenetic reconstruction
(12) search for a tree structure, and algorithms for dimension-
ality reduction (13, 14) or multidimensional scaling (15) search
for a spatial representation of the data.

Higher-level discoveries about structural form are rarer but
more fundamental, and often occur at pivotal moments in the
development of a scientific field or a child’s understanding (1, 2,
4). For centuries, the natural representation for biological
species was held to be the ‘‘great chain of being,’’ a linear
structure in which every living thing found a place according to
its degree of perfection (16). In 1735, Linnaeus famously pro-
posed that relationships between plant and animal species are
best captured by a tree structure, setting the agenda for all
biological classification since. Modern chemistry also began with
a discovery about structural form, the discovery that the ele-
ments have a periodic structure. Analogous discoveries are made
by children, who learn, for example, that social networks are
often organized into cliques, that temporal categories such as the
seasons and the days of the week can be arranged into cycles, that
comparative relations such as ‘‘longer than’’ or ‘‘better than’’ are
transitive (17, 18) and that category labels can be organized into
hierarchies (19). Structural forms for some cognitive domains
may be known innately, but many appear to be genuine discov-
eries. When learning the meanings of words, children initially
seem to organize objects into nonoverlapping clusters, with one
category label allowed per cluster (20); hierarchies of category
labels are recognized only later (19). When reasoning about
comparative relations, children’s inferences respect a transitive
ordering by the age of 7 but not before (21). In both of these
cases, structural forms appear to be learned, but children are not
explicitly taught to organize these domains into hierarchies or
dimensional orders.

Here, we show that discoveries about structural form can be
understood computationally as probabilistic inferences about
the organizing principles of a dataset. Unlike most structure-
learning algorithms (Fig. 1 A), the model we present can simul-
taneously discover the structural form and the instance of that
form that best explain the data (Fig. 1B). Our approach can
handle many kinds of data, including attributes, relations, and
measures of similarity, and we show that it successfully discovers
the structural forms of a diverse set of real-world domains.

Any model of form discovery must specify the space of
structural forms it is able to discover. We represent structures
using graphs and use graph grammars (22) as a unifying
language for expressing a wide range of structural forms (Fig.
2). Of the many possible forms, we assume that the most
natural are those that can be derived from simple generative
processes (23). Each of the first six forms in Fig. 2 A can be
generated by using a single context-free production that
replaces a parent node with two child nodes and specifies how
to connect the children to each other and to the neighbors of
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Structured Statistical Models of Inductive Reasoning

Charles Kemp
Carnegie Mellon University

Joshua B. Tenenbaum
Massachusetts Institute of Technology

Everyday inductive inferences are often guided by rich background knowledge. Formal models of
induction should aim to incorporate this knowledge and should explain how different kinds of knowledge
lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a
Bayesian framework that attempts to meet both goals and describe 4 applications of the framework: a
taxonomic model, a spatial model, a threshold model, and a causal model. Each model makes probabi-
listic inferences about the extensions of novel properties, but the priors for the 4 models are defined over
different kinds of structures that capture different relationships between the categories in a domain. The
framework therefore shows how statistical inference can operate over structured background knowledge,
and the authors argue that this interaction between structure and statistics is critical for explaining the
power and flexibility of human reasoning.

Keywords: inductive reasoning, property induction, knowledge representation, Bayesian inference

Humans are adept at making inferences that take them beyond
the limits of their direct experience. Even young children can learn
the meaning of a novel word from a single labeled example
(Heibeck & Markman, 1987), predict the trajectory of a moving
object when it passes behind an occluder (Spelke, 1990), and
choose a gait that allows them to walk over terrain they have never
before encountered. Inferences like these may differ in many
respects, but common to them all is the need to go beyond the
information given (Bruner, 1973).

Two different ways of going beyond the available information
can be distinguished. Deductive inferences draw out conclusions
that may have been previously unstated but were implicit in the
data provided. Inductive inferences go beyond the available data in
a more fundamental way and arrive at conclusions that are likely
but not certain given the available evidence. Both kinds of infer-
ences are of psychological interest, but inductive inferences appear
to play a more central role in everyday cognition. We have already
seen examples related to language, vision, and motor control, and
many other inductive problems have been described in the litera-
ture (Anderson, 1990; Holland, Holyoak, Nisbett, & Thagard,
1986).

This article describes a formal approach to inductive inference
that should apply to many different problems, but we focus on the
problem of property induction (Sloman & Lagnado, 2005). In
particular, we consider cases where one or more categories in a
domain are observed to have a novel property and the inductive
task is to predict how the property is distributed over the remaining
categories in the domain. For instance, given that bears have
sesamoid bones, which species is more likely to share this prop-
erty: moose or salmon (Osherson, Smith, Wilkie, Lopez, & Shafir,
1990; Rips, 1975)? Moose may seem like the better choice because
they are more similar biologically to bears, but different properties
can lead to different patterns of inference. For example, given that
a certain disease is found in bears, it may seem more likely that the
disease is found in salmon than in moose—perhaps the bears
picked up the disease from something they ate.

As these examples suggest, inferences about different properties
can draw on very different kinds of knowledge. A psychological
account of induction should answer at least two questions—what is
the nature of the background knowledge that supports induction,
and how is that knowledge combined with evidence to yield a
conclusion? The first challenge is to handle the diverse forms of
knowledge that are relevant to different problems. For instance,
inferences about an anatomical property like sesamoid bones may
be guided by knowledge about the taxonomic relationships be-
tween biological species, but inferences about a novel disease may
be guided by ecological relationships between species, such as
predator–prey relations. The second challenge is to explain how
this knowledge guides induction. For instance, we need to explain
how knowledge about ecological relationships (“bears eat
salmon”) is combined with evidence (“salmon have a disease”) to
arrive at a conclusion (“bears are likely to carry the disease”).

Existing accounts of property induction usually emphasize just
one of the questions we have identified. Theory-based approaches
(Carey, 1985; Murphy & Medin, 1985) focus on the first question
and attempt to characterize the knowledge that supports induction.
Studies in this tradition have established that induction often draws
on intuitive theories, or systems of rich conceptual knowledge, and
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children’s experience, and the coding of experience for
the network finesses some important issues. However,
we argue that the training data capture two essential fea-
tures. First, many types of naturally occurring things
have a hierarchical similarity structure, as Quillian
noticed; and second, from exposure to examples of
objects children learn just what the similarities are and
how they can be exploited.

The Rumelhart model can show how learning can
shape not only overt responses, but also internal repre-
sentations. A special set of internal or hidden units,
labelled ‘representation’ units, was included between the
input units for the individual concepts and the large
group of hidden units that combine the concept and
relation information. When the network is initialized,
the patterns of activation on the representation units are
weak and random, owing to the random initial connec-
tion weights, but gradually these patterns become 
differentiated, recapitulating the general-to-specific
progression seen in many developmental studies. The
simulation results in FIG. 4 show that patterns represent-
ing the different concepts are similar at the beginning
of training, but gradually become differentiated in
waves. One wave of differentiation separates plants from
animals. The next waves differentiate birds from fish,
and trees from flowers. Later waves differentiate the
individual objects. The process is continuous, but there
are periods of stability punctuated by relatively rapid
transitions also seen in many other developmental
models54,56,59, reminiscent of the seemingly stage-like
character of many aspects of cognitive development62.

Rumelhart focused on showing how this network
recapitulates Quillian’s hierarchical representation of
concepts, but in a different way than Quillian envi-
sioned it — in the pattern of similarities and differences
among the internal representations of the various con-
cepts, rather than in the form of explicit ‘ISA’ links. This
characteristic of the model is clearly brought out in the
hierarchical clustering analysis of the representations of
the concepts (FIG. 4b). Rumelhart also showed how the
network could generalize what it knows about familiar
concepts to new ones. He introduced the network to a
new concept,‘sparrow’, by adding a new input unit with
0-valued connections to the representation units. He
then presented the network with the input–output pair
‘sparrow–ISA–bird/animal/living thing’. Only the con-
nection weights from ‘sparrow’ to the representation
units were allowed to change. As a result, ‘sparrow’ pro-
duced a pattern of activation similar to that already used
for the robin and the canary. Rumelhart then tested the
responses of the network to other questions about the
sparrow, by probing with the inputs ‘sparrow–CAN’,
‘sparrow–HAS’ and ‘sparrow–IS’. In each case the net-
work activated output units corresponding to shared
characteristics of the other birds in the training set
(CAN grow, CAN move, CAN fly; HAS skin, HAS
wings, HAS feathers), and produced very low activation
of output units corresponding to attributes not charac-
teristic of any animals. Attributes varying between the
birds and attributes possessed by other animals received
intermediate degrees of activation. This behaviour is a

compared to the correct output (activation of ‘grow’,
‘move’,‘fly’ and ‘sing’ should be 1, and activation of other
output units should be 0). The connection weights are
then adjusted to reduce the difference between the tar-
get and the obtained activations. The set of training
experiences includes one for each concept–relation pair,
with the target specifying all valid completions consis-
tent with FIG. 1.

The network is trained through many epochs or suc-
cessive sweeps through the set of training examples.
Only small adjustments to the connection weights are
made after each example is processed, so that learning is
very gradual — akin to the process we believe occurs in
development, as children experience items and their
properties through day-to-day experience. Of course,
the tiny training set used is not fully representative of
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Figure 3 | Our depiction of the connectionist network used by Rumelhart60,61. The network
is used to learn propositions about the concepts shown in FIG. 1. The entire set of units used in
the network is shown. Inputs are presented on the left, and activation propagates from left to
right. Where connections are indicated, every unit in the pool on the left (sending) side projects to
every unit on the right (receiving) side. An input consists of a concept–relation pair; the input
‘canary CAN’ is represented by darkening the active input units. The network is trained to turn on
all those output units that represent correct completions of the input pattern. In this case, the
correct units to activate are ‘grow’, ‘move’, ‘fly’ and ‘sing’. Subsequent analysis focuses on the
concept representation units, the group of eight units to the right of the concept input units.
Adapted, with permission, from REF. 61  (1993) MIT Press.

Review: A neural network model of 
semantic cognition 

• Network is trained to answer queries 
involving an item (e.g., “Canary”) and a 
relation (e.g.,  “CAN”), outputting all 
attributes that are true of the item/
relation pair (e.g., “grow, move, fly, sing”)

• Trained with stochastic gradient 
descent, as we learned about in this 
lecture

• The model helps us to understand the 
broad-to-specific pattern of 
differentiation in children’s cognitive 
development

• It also helps us to understand the 
specific-to-general deterioration in 
semantic dementia



property induction as probabilistic inference:

P (fY = 1|fX = 1) Y = {horses}

X = {cows, seals}

f : T9 hormones

Question: “Given that cows and seals have T9 
hormones, how likely is it that horses do?”

Alternative: Property induction as probabilistic 
inference in a probabilistic graphical model
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Property induction

“Given that cows and seals have T9 hormones, how 
likely is it that horses do?”

Features for Elephant:  ‘gray’, ‘hairless’,  ‘toughskin’, ‘big’, ‘bulbous’, ‘longleg’, ‘tail’,  ‘chewteeth’, 
‘tusks’, ‘smelly’, ‘walks’, ‘slow’, ‘strong’, ‘muscle’, ‘fourlegs’,…
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property induction as 
prob. inference

Bayesian modeling roadmap

Features for Elephant:  ‘gray’, ‘hairless’,  ‘toughskin’, ‘big’, 
‘bulbous’, ‘longleg’, ‘tail’,  ‘chewteeth’, ‘tusks’, ‘smelly’, ‘walks’, 
‘slow’, ‘strong’, ‘muscle’, ‘fourlegs’,…
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• Also known as Markov Random Fields or Markov 
Networks

• Bayesian networks are better suited for representing 
causal processes, while Markov networks are better 
suited for capturing soft constraints between variables

In the structural forms model, structure is operationalized as a Gaussian Markov Random Field, which 
enforces smoothness over the graph:

given by �S and its diagonal elements are

�ii =
X

j

sij .

A generative model for features can then be written as

P (f (k)|S) / exp
⇣
� 1

4

X

i,j

sij(f
(k)
i � f

(k)
j )2

⌘

= exp
⇣
� 1

2
f
(k)>�f

(k)
⌘
.

This equation highlights why the model favors features that are smooth across the graph. Features

are probable when connected objects i and j (sij > 0) have a similar value. The stronger the

connection sij (meaning the larger its value), the more important it is for the feature values to

match. As pointed out in Zhu et al. (2003), this distribution is not proper, since adding a constant

value to the feature vector does not change its probability. Therefore following Zhu et al. (2003),

we define the matrix J = �+ 1
�2 I and use

P (f (k)|S,�2) / exp
⇣
� 1

2
f
(k)>

Jf
(k)

⌘
, (1)

which results in a proper density. This distribution is an nt dimensional Gaussian with zero mean

P (f (k)|S,�2) = N

⇣
f
(k)|0, J�1

⌘

=
1

(2⇡)nt/2|J |�1/2
exp

⇣
� 1

2
f
(k)>

Jf
(k)

⌘
.

This generative model for features can also be derived from a maximum entropy formulation, as

shown in Lawrence (2011, 2012). This distribution over features is nearly the same as in the

structural forms model, except the forms model adds the diagonal term 1
�2 only to the observed

nodes.

This distribution is also known as a Gaussian Markov Random Field (Koller & Friedman, 2009).

The undirected graph S (and equivalently the precision matrix J) instantiates a set of conditional

2

sij (weight) is non-zero for each edge in graph

undirected edge

*essential regularization term not shown, see paper for details
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Abstract

Both scientists and children make important structural discoveries, yet their computational
underpinnings are not well understood. Structure discovery has previously been formalized as
probabilistic inference about the right structural form—where form could be a tree, ring, chain,
grid, etc. (Kemp & Tenenbaum, 2008). Although this approach can learn intuitive organizations,
including a tree for animals and a ring for the color circle, it assumes a strong inductive bias that
considers only these particular forms, and each form is explicitly provided as initial knowledge.
Here we introduce a new computational model of how organizing structure can be discovered, uti-
lizing a broad hypothesis space with a preference for sparse connectivity. Given that the inductive
bias is more general, the model’s initial knowledge shows little qualitative resemblance to some
of the discoveries it supports. As a consequence, the model can also learn complex structures for
domains that lack intuitive description, as well as predict human property induction judgments
without explicit structural forms. By allowing form to emerge from sparsity, our approach clarifies
how both the richness and flexibility of human conceptual organization can coexist.

Keywords: Structure discovery; Unsupervised learning; Bayesian modeling; Sparsity

1. Introduction

Structural discoveries play an important role in science and cognitive development
(Carey, 2009; Kuhn, 1962). In biology, Linnaeus realized that living things were best
organized as a tree, displacing the “great chain of being” used for centuries before.

Correspondence should be sent to Brenden M. Lake, Center for Data Science, New York University, 60
5th Avenue, 7th Floor, New York, NY 10011. E-mail: brenden@nyu.edu

†This work was completed before N. Lawrence joined Amazon Research Cambridge.

Do we need pre-defined structural forms 
to make discoveries?



Structure

Data f (k)

S

argmax
S

p(S|f (1), ..., f (k)) �
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p(f (i)|S)p(S)

Find structure S that maximizes the objective function:

Features!
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Elephant!

f (1) f (m)f (2), ...,
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mouse

(Gaussian Markov Random Field
with latent variables)

observed variable
(object)

latent variable

Key

Likelihood favors
 fit to the data

Prior favors
 sparse graphs (fewest 

possible edges)

Structural sparsity model (Lake et al., 2018)
(more closely akin to traditional graphical model structure learning in machine learning)
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Figure 7: Learned structures to represent the mammals data set. Structural sparsity with � = 8
(A), tree-based structural form (B), 2D spatial structural form (C), and structural sparsity with
� = 1 (D). Stronger edges are displayed as shorter.

� Osherson Osherson Minneapolis Houston All
horse mammals cities

1 0.94 0.87 0.70 0.59 0.71
2 0.95 0.86 0.70 0.58 0.71
4 0.93 0.84 0.70 0.61 0.71
6 0.91 0.89 0.69 0.51 0.68
8 0.89 0.91 0.69 0.51 0.68

Table 3: Correlations between how people and the structural sparsity model judge inductive
strength, for several tasks concerning mammals and cities. Rows of the table indicate di↵erent
values of the sparsity parameter �.
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Σ, using distances in a 2D space

Rij ¼
1

2p
expð# 1

r
jjxi # xjjjÞ; ð4Þ

where xi is the 2D location of object i and ||xi # xj|| is the Euclidean distance
between two objects.

• Raw covariance. The raw covariance model was either identical to the similarity
matrix or R ¼ 1

mDD
T where D is the rescaled feature matrix.

5.3. Data sets for property induction

The property induction data concerning mammals, including the Osherson horse and
Osherson mammals tasks, were reported in Osherson et al. (1990). Judgments concerned
10 species: horse, cow, chimp, gorilla, mouse, squirrel, dolphin, seal, and rhino. Partici-
pants were shown arguments of the form “Cows and chimps require biotin for hemoglo-
bin synthesis. Therefore, horses require biotin for hemoglobin synthesis.” The Osherson
horse set contains 36 two-premise arguments with the conclusion “horse,” and the
mammals set contains 45 three-premise arguments with the conclusion “all mammals.”
Participants ranked each set of arguments in increasing strength by sorting cards.
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Fig. 6. Comparing models and human responses regarding property induction for mammals (A) and cities
(B). A dot in (iv) is an inductive argument; for instance, the bottom-left dot for the “Osherson horse” data
set is the argument “dolphins and seals have this property, therefore horses do.” Each dot represents a differ-
ent set of premises, followed by the conclusion category labeled on the x-axis (horse, all mammals, Min-
neapolis, Houston, or all cities). Argument strength for the models (x-axis) is plotted against mean rank of
strength across participants (y-axis), with the correlation coefficient r shown above. Predictions were com-
pared for different types of structures, including those learned with structural sparsity (i), trees (ii), and 2D
spaces (iii). The arguments about mammals mention only the 10 mammals shown in (A), although predictions
were made by using the full structures learned for 50 mammals. Here only the subtrees (or space) that con-
tains the pairwise paths between these 10 mammals are shown.
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Σ, using distances in a 2D space

Rij ¼
1

2p
expð# 1

r
jjxi # xjjjÞ; ð4Þ

where xi is the 2D location of object i and ||xi # xj|| is the Euclidean distance
between two objects.

• Raw covariance. The raw covariance model was either identical to the similarity
matrix or R ¼ 1

mDD
T where D is the rescaled feature matrix.

5.3. Data sets for property induction

The property induction data concerning mammals, including the Osherson horse and
Osherson mammals tasks, were reported in Osherson et al. (1990). Judgments concerned
10 species: horse, cow, chimp, gorilla, mouse, squirrel, dolphin, seal, and rhino. Partici-
pants were shown arguments of the form “Cows and chimps require biotin for hemoglo-
bin synthesis. Therefore, horses require biotin for hemoglobin synthesis.” The Osherson
horse set contains 36 two-premise arguments with the conclusion “horse,” and the
mammals set contains 45 three-premise arguments with the conclusion “all mammals.”
Participants ranked each set of arguments in increasing strength by sorting cards.
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spaces (iii). The arguments about mammals mention only the 10 mammals shown in (A), although predictions
were made by using the full structures learned for 50 mammals. Here only the subtrees (or space) that con-
tains the pairwise paths between these 10 mammals are shown.
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Conclusions: probabilistic graphical models
• Probabilistic graphical models are a powerful paradigm 

in machine learning, and they have been applied in 
computational cognitive modeling to problems in 
classification, causal learning, and structure discovery.

• Especially well-suited for modeling data where the 
causal process is transparent.

• Probabilistic inference, using a model of the world, 
helps us to understand the productivity of human 
thought and reasoning.
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but P(Sc!F ! chain) " P(Sc!F ! grid) because there are more
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Excellent textbook for deeper reading


