Lecture 10: Computational
Cognitive Modeling

Categorization, Classification, and Concepts

course website:
https://brendenlake.github.io/CCM-site/



categorization: where human and machine learning meet

object recognition (ImageNet)
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digit recognition (MNIST)
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classification is a central problem in
machine learning (what category does this
image show? what topic does this document
best fit?)

many important algorithms developed for this
problems (e.g., decision trees, support vector
machines, bayes classifiers, deep neural
networks, hidden markov models, etc...)

what algorithms best characterize how
people learn to categorize?

also, the goal of machine learning systems is
to categorize things in ways that appear
sensible to people: but what principles inform
human categorization? what makes a good
category from the perspective of a person?



what is the purpose of categorization (for humans)?

Categories have many functions:

« Classification - allows us to treat different
things as the same

- Communication - we communicate using
words that refer to more abstract ideas/
concepts

* Prediction and reasoning - we can use
categories to make predictions about unknown
or unseen parts of the world

What you see: What you can then infer:
Red Has seeds
Shiny —> Apple Sweet
In a tree Edible

Healthy



the machine learning framework

apply a prediction function to a feature representation of image to get
the desired output:

f(&d) = “apple’
f(Rl) = “tomato”

14 J)

f() = "cow



the machine learning framework

= f(x)
R

output  prediction Image
function feature

Training: given a training set of labeled examples {(x1,y1), ..., (XN,YN)},
estimate the prediction function f by minimizing the prediction error
on the training set

Testing: apply f to a never before seen test example x and output the
predicted value y = f(x)



the human cognition framework

What is the function y = f(x) that best characterizes how people
make categorization decisions?

= f(x)
R

output  prediction Image
function feature
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the machine learning framework
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the human cognition framework

some REPRESENTATION
of the category

Some representation in terms of

trammg stimuli psychologically meaningful features
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also examine aspect of the
Example of Builder Example of Digger Iearning (hOW mistakes are made,
learning rates, etc...)

probe the nature
of the representation
often by designing new
stimuli

Example of Builder



generalization is everything!

training set (labels known) test set (labels unknown)

« Data science: How well does a learned model generalize from the data it was trained on to a new test set?
» Psychology: What types of generalizations do people make? What does that reveal about how they learn?



why not make function y = f(x) include all possible
generalizations and just pick the ones consistent with
the evidence?
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generalization is everything!

Components of generalization error

Bias: how much on average does model over all training sets differ from the true
model?

- Error due to inaccurate assumptions/simplifications made by the model
Variance: how much models estimated from different training sets differ from each
other

Underfitting: model is too “simple” to represent all the relevant class characteristics

High bias and low variance
High training error and high test error

Overfitting: model is too “complex” and fits irrelevant characteristics (noise) in the data
— Low bias and high variance
— Low training error and high test error

Y. Sample 2

ACCESS

y Sample 2




bias-variance tradeoff

E(MSE) = noise? + bias? + variance

\ B@r due to variance

Unavoidable error Error due to of training samples
incorrect
assumptions

+ If we predicted constant value on very trial the variance would be zero across different
training sets. However, bias would be huge because model would never predict
training data well.

+ If we perfectly fit each training set (overfit), bias goes away completely. However, the
variance term will be equal to the noise in the data which can be really big.

+ Optimal balance to these issues is difficult but is addressed to some degree via model
evaluation methods (see later lecture) such as cross validation and regularization.

7

See the following for explanations of bias-variance (also Bishop’s “Neural Networks

book):
*http://www.inf.ed.ac.uk/teaching/courses/mlisc/Notes/Lecture4/BiasVariance.pdf



http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

an argument for the need for biases

If totally unbiased generalization systems are incapable of
making the inductive leap to characterize the new instances,
then the power of a generalization system follows directly
from its biases - from decisions based on criteria other than
consistency with the training instances. Therefore, progress
toward understanding learning mechanisms depends upon
understanding the sources of, and justification for, various
biases.

Mitchell (1980)

Domain knowledge

Intended use/goal of generalization (e.g., cost
of being incorrect... i.e., risk sensitive)

pOSSIble blases Knowledge about the source of training data
Biases towards simplicity/generality

Analogy with previous generalizations



an example in exploring
inductive biases

Generalization, similarity,
and Bayesian inference

Joshua B. Tenenbaum and Thomas L. Griffiths
Department of Psychology, Stanford University, Stanford, CA 94305-2130

1 jbt@psych.stanford.edu gruffydd@psych.stanford.edu
http://www-psych.stanford.edu/~jbt
http://www-psych.stanford.edu/~gruffydd/
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the need for biases

* What is learned will depend on
the learners assumptions about
the situation.
plxlh) = {1 ifx Eh [weak sampling].

'+ Where the data generated from 0 otherwise

the true concept or were they

generated at random

(independent of the concept?)

p(x|h) ={f§| xS0 [strong sampling],

‘" This map onto the notion of otherwise

STRONG versus WEAK
sampling



as data accumulates in one region of the space you start becoming more
confident about the concept (sharper boundaries)
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Figure 2: Performance of three concept learning algorithms on the rectangle task.

Tenenbaum (1999)



humans look like they expect generalizations to be more favorable
according to the “expected size” prior... meaning they prefer some
generalizations over others.... in other words a inductive bias.

(a) Average data from 6 subjects
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the machine learning framework - what are the features?

performance often influenced by the
nature of the input representation

raw pixels of an image?

histograms of intensities or other derived
features (e.g., line orientations in local
patches, etc...)

GIST descriptors?
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the human cognition framework - what are the features?

new perceptually learned features
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Spectrum of supervision

Less More

“Weakly” supervised
Semi-supervised

N _/

Unsupervised Fully supervised

—~,

Active Learning?  Definition depends on task

Slide credit; L. Lazebnik



Where do the training examples come from?

In machine learning applications you want your training examples for estimating y =
f(x) to represent what you will ultimately be tested on. Also usually limited by data
availability/

Training sets that don’t resemble what the system will be asked to do in engineering
practice strongly contribute to expected error.

What should they be for human cognition studies? Representative of the type of
categories that exist in the world? How do we assess that? What is the statistics of
natural concepts and categories and how can we ensure that these are reflected?
Also somewhat limited by data availability.
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Active Learning

* The basic problem is this: you want to train a machine learning system to assign
items to a category (for example diagnosing some biological samples as toxic or not).
However, getting corrective, supervised feedback is expensive (usually involves
humans)

* How can you choose samples to minimize the amount of feedback you need, while
still having good categorization accuracy/generalization? In other words, is there a
way to train on only a subset of the available data in order to optimize learning?

« Classic work on this is Lindley (1956) “On the measure of the information
provided by an experiment” - Optimal Experiment Design

* David Mackay (1992) provides a Bayesian formulation for active sampling for
function approximation, interpolation, classification, etc...

« Settles (2010) provides and extensive review

« see Gureckis & Markant (2013, Perspectives in Psych Sci) for a overview



Active Learning
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Active Learning

@ CH1
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Markant & Gureckis (2014)



What is the decision architecture of
categorization decisions? e.g., nearest neighbor

y .

A

Training
Training Test ‘ examples
| [ ] example X
examples o from class 2
from class 1

f(x) = label of the training example nearest to x

» All we need is a distance or similarity function for our input features
* No training required!
 Incidentally, similarity is a huge topic in human cognition (see Medin, Goldstone, Gentner, Tversky, etc...)!



What is the decision architecture of
categorization decisions?

e.g., linear decision
boundary
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* Find a linear function to separate the classes:

f(x) = sgn(w - x + b)



In the machine learning toolkit many approaches to choose
from, many are inter-related

« Support Vector Machines (SVM)
* Neural networks

* Naive Bayes

* Bayesian network

* Non-parametric Bayesian models Which is the best one?

* Logistic regression Does that question even

. 2
« Randomized Forests make sense?

* Boosted Decision Trees

* K-nearest neighbor

* Restricted Boltzman Machines (RBMs)
* Etc.



Four case studies exploring relationships between machine
learning approaches to categorization and influential ideas in
psychology

« Case 1: Decision trees <=> Symbolic Rules/Definitions
« Case 2: Nearest neighbor <=> Exemplar/Prototype models
« Case 3: Mixture models <=> Clustering algorithms

« Case 4: Neural networks <=> Connectionist models of category
learning



Case 1: Decision Tree Induction

* Decision tree learning is one of the most widely used techniques for classification.

* Discriminative method
* Its classification accuracy is competitive with other methods, and it is very efficient.
* Assume for now discrete features (e.g., those in a database table)

* The classification model is a tree, called decision tree.

1D Age Has Job | Own House | Credit Rating Class
| young false false fair No
2 yOung false false cood No
3 young true false cood Yes
R young true true fair Yes
5 VOoung false false fair No
6 middle false false fair No
7 middle false false cood No
8 middle true true cood Yes
9 middle false true excellent Yes
10 middle false true excellent Yes
I old false true excellent Yes
12 old false true cood Yes
15 old true false cood Yes
14 old true false excellent Yes
15 old false false fair No




Decision Tree Induction

Decision nodes and leaf nodes (classes)

Age?
Young middle old
|
I [as job? | Own house? i(.’rcdn rating”’
/\ 7\ g o
true¢  false true  false fair  good excellent
/ N\ 4 \ rd l ~
Yes No Yes No No Yes Yes

~ { " { -\ : \ , ; { i
(2/2) (23] (3/3) (22y (U (22 (22



Decision Tree Induction

Decision nodes and leaf nodes (classes)

Age Has Job  Own_house  Credit-Rating  Class

young  false false good ?
Age?
] —
Young middle old
]
I [Has job? | Own house? i(.‘rcdn rating”
/\ 7\ e o
truec  false true  false far  good excellent
/ N\ 4 N\ v l ~
Yes No Yes No No Yes Yes
(2/2) (3/3) (3/3) (272 (L) (22) (2/2)



Decision Tree Induction

Decision nodes and leaf nodes (classes)

Age Has_Job Own_house  Credit-Rating  Class
young  false false good ?

Age?

gy | Own house? I
Young middle old
. I - —— - truc false
I [Has job? Own house’ Credit rating” 7 N\

N\ A‘I " ‘A‘;‘ " Yes I [as job? I
true  false frue  false amwr  good cexcelient (6/6) A
~ St .
,, \ ,/ A / ,l ) truec false
Yes NO Yes No No Yes Yes 7 \
(2/2) (3/3) (3/3) (212) (V1) (22 (2/2) Yes No

(5/5) (4'4)

Goal is to find simpler, faster tree (NP-hard)



Decision Tree Induction

« Basic algorithm (a greedy divide-and-conquer algorithm)

« Assume attributes are categorical (although continuous attributes can
be handled too)

« Tree is constructed in a top-down recursive manner
« At start, all the training examples are at the root

« Examples are partitioned recursively based on an an impurity function
(e.g., information gain)

« Conditions for stopping partitioning
« All examples for a given node belong to the same class

« There are no remaining attributes for further partitioning — majority class
is the leaf

« There are no examples left

C|
entropy(D) = —E Pr(c;)log, Pr(c;)

j=1



Is y = f(x) that people use a rule or decision tree?

* According to the classical view in philosophy of concepts, concepts are like
definitions

* The defining features of are both necessary and sufficient

*Necessity: If something is a category member, it has the defining
features

Sufficiency: If something has the defining features, it is a category
member

SYMBOLICAL HEAD.

* Defining features: Closed figure, three sides, interior angles sum to 180
degrees

* Sufficiency: If something is a closed figure, has three sides and angles sum to
180 degrees it is a triangle

* Necessity: If something is a triangle, it is a closed figure, has three sides, and
the angles sum to 180 degrees

* Under this view, recognizing something is akin to apply the rule that
determines the class membership where the rules are hard and fast/brittle.



Is y = f(x) that people use a rule?

* According to the classical view, category learning usually involves hypothesis testing or rule
discovery:

A search for the defining features

Name Concept Pack Pack Pack Pack Pack Pack
| ] i v v Vi
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Rules are one basis for complex forms of generalization

... but, there are empirical problems for the classical view

* Hampton (1979): Asked subjects for necessary and sufficient features of
everyday categories (sofas, cars, dogs, chairs, birds, etc...). There was little
agreement about what the defining features were.

* McClosky & Glucksberg (1978): Asked subjects to judge category
membership of several everyday categories. Borderline cases the flip from

week to week.
* Rosch (1973): Asked people to rate “how

good” different items are as a example
of a category (1-7 scale)

A shelf 76%
Robin 1.4

A rug 52%
Eagle 1.8

A lampshade 63%
Wren 2.4

Bookends 57%
Chicken 2.8

Candlestick 28%
Ostrich 3.2

48



Typical features appear in many category members. # of typical
features determines the typicality of a category member.

Examples

Properties Robin Cardinal Eagle Penguin Bat Feature Sf:ore
(a.k.a. “Weight”)

Has wings Yes Yes Yes Yes Yes 5
Flies Yes Yes Yes No Yes 4
Has feathers Yes Yes Yes Yes No 4
Sings Yes Yes No No No 2
Builds nests in trees Yes Yes Yes No No 3
Eats worms/insects Yes Yes No No Yes 3
Family Resemblance 5+4+4+2+3+3= 5+4+4+2+3+3= 5+4+4+3= 5+4= 5+4+3=
Score 21 21 16 9 12

49



Rule induction models in cognitive science

* Nosofsky, Palmeri, McKinley (1994): RULEX “Rule-plus-exception model of classification
learning” http://www.cogs.indiana.edu/nosofsky/pubs/1994 rmn-tjp-scm pr rule.pdf

* RULEX starts by trying to form perfect single-dimensional rules with some tolerance, and
then tries to store exceptions. If evidence demands increase in complexity considered
more complex rules (inductive bias towards simpler rules)

Frmm——— [ Search for Perfect Single-Dimension Rules )Su;ooess_’LLeam Exoepﬁonsj

1
Does the stimulus have value 1 on Dimension 1? ;
;
Y N i Failure
1 Failure
1
) R
. (o 40 i ion O : Success
Is it exception 1*22? Is it exception 2*11? !
: Search for Imperfect Single-Dimension Rules Leam Exceptions J
Y N Y N i A Failure
! ]
i 1
H Failure ! Failure
B A A B ; :
i
1 i ccoss
Figure 1. Schematic illustration of one possible decision tree for dis- o L —u -
criminating the members of Categories A and B in Medin and Schaffer’s Search for Conjunctive Rules ] Leam Exceptions ]
(1978) experimental paradigm (see Table 1). Y = yes; N = no. The Failure
terminal nodes of the decision tree indicate the category to which an
item is assigned (A or B). Note that the tests for the exceptions (122 Figure 2. Schematic flow diagram of the sequence of hypothesis-testing stages in rule-plus-exception
and 2#11) can themselves be broken down into a sequence of tests of model of classification learning. The solid lines show the sequence that occurs with high probability, and
values on the individual dimensions, thereby extending the decision the dotted lines show the sequence that occurs with lower probability.
tree. The simplified structure shown here is provided for conceptual
clarity.
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http://www.cogs.indiana.edu/nosofsky/pubs/1994_rmn-tjp-scm_pr_rule.pdf

Rule induction models in cognitive science

* Nosofsky, Palmeri, McKinley (1994): RULEX “Rule-plus-exception model of classification
learning” http://www.cogs.indiana.edu/nosofsky/pubs/1994 rmn-tjp-scm pr rule.pdf

* RULEX starts by trying to form perfect single-dimensional rules with some tolerance, and
then tries to store exceptions. If evidence demands increase in complexity considered
more complex rules (inductive bias towards simpler rules)

Table 3
Table 1 Fit of RULEX Model to Medin
Example Category Structure Tested in Some and Schaffer’s (1978) Experiment 3
of Medin and Schaffer’s (1978) Experiments Stimulus Predicted p Observed p
Category A Category B Transfer stimuli Category A
Al 1112 BI 1122 T1 1221 Al 1112 950 970
A21212 B22112 T2 1222 A2 1212 974 970
A3 1211 B3 2221 T3 1111 A31211 997 920
A4 1121 B4 2222 T4 2212 A41121 867 810
A52111 T52121 A52111 734 720
T6 2211
T72122 Category B
BI 1122 391 330
“training data with labels” “held-out test data” g§ gééf :(2);2 :égg
B42222 .001 050
Transfer
. ilisti icti T1 1221 726 720
Probabilistic predictions come from 122 726 720
i T3 1111 991 980
averaging across many runs of the rule B g o8
i : : i 2121 299 270
induction algorithm when some decisions T e 300
T72122 045 .090

to change rules, etc... is made
Note. Entries are the predicted and observed probabilities with which

prObabIIIStlcally each stimulus was classified in Category A during the test phase.
RULEX = rule-plus-exception model of classification learning.
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Bayesian rule induction methods

Posterior Likelihood Prior
probability l / probability
P?h 4y PEImP®)
Y P(d\h)P(h')
X
N
h: hypothesis Sum over space

d: data of hypotheses
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Bayesian rule induction methods

* Goodman, Griffiths, Feldman, Tenenbaum (2007/2008) “A rational analysis of rule-based
concept learning”

* The rational rules model assumes a hypothesis space of rules and uses Bayes rules to
infer from training examples which set of rules are likely descriptions of the data set.

P(F|E,£(E)) o P(F)P(E, {(E)|F)

. S — B)VS
* F is the space of rules, s 2 &
B — BAP
B — P
P — Dl
* E is the set of examples :
P — Dy
D; - fix=1
. D, — fix)=0
* I(E) is the labels for the example
Dy — fyx)=1
Dy —  fn(x)=0

Figure 1: The DNF Grammar. S is the start symbol, and
B, P,D; the other non-terminals. f;(x) is the value of the i

More on this in next lecture! feature.

53



Case 2: Nearest Neighbor Methods (instance based learning)

— n ¢
O ..
Training Test ® e-|>-<raarlrr11|;>TSS
examples [] example from class 2
from class 1 ‘
- o
[]
- O

from Duda et al.

Voronoi partitioning of feature space
for two-category 2D and 3D data



Case 2: Nearest Neighbor Methods (instance based learning)

N\
X
X
o
X X
X
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Case 2: Nearest Neighbor Methods (instance based learning) - 1 nearest

X2

v

x1



Case 2: Nearest Neighbor Methods (instance based learning) - 3 nearest

* Take the majority vote

X2

x1

v



Is vy = f(x) that people used based on instances?

Birds Blrd'?
You've Seen

58



Is vy = f(x) that people used based on instances?

A
Bluebird
Sparrow
Robin
Hummingbird Chicken
Eagle
Amount of
Singing Penguin Ostrich
Caterpillars
Firefly Ants
Roaches
Mosquitoes
>
Weight
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Amount of
Singing

X is a bird because it is
similar to many other birds.

X? .‘I
3,
BCN y H
. “ina, Bluebird
:. . o, 0.. ........
: .
N Sparcow, ...,
.,::: ., o‘ v, e e,
R <« Robjin™-.. >
vy ® . e .
St = =2 ¢ b .
¢ Hummingbird, .. - Chicken
- * . 'Q
: e T
0. ..
Eagle ™. e
* “
O..‘ h...A
Ostrich

Penguin

»" :::'
Caterpillaf's _
: nts :
Firefly H
’ Roaches

Mosquitoes

Weight
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Bluebird
Sparrow 4
Robin’
Hummingbird ;
Amount of : __:'I:f:'agle
Singing

1A
. 5

Chicken

.Penguin Ostrich

“tv “““ \ 4
Caterpillzilqrsé . :“;‘_ ““““““““
Firefly £003 Tl Y2 _ _ .
i Y Y is an insect because it is
. Roaches™ ”*
Mosquitoes «°

similar to many other insects.
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Bluebird
Sparrow .¥
2 Robin

Humrpin.g-lqisu Chicken
0L LA
Amount of L. Eagle
L ALLEHI
Slnglng A Piirsisy Penguin- » Ostrich
o',\.:.
. '-““::'.'s
Catel:p'l.lla é
Firefly A is equally close to all
P . .
Roaches birds and all insects
Mosquitoes

Weight
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1 Bluebird »,
Sparrow .. -,
Robin v, .
Hummingbird ... . Chicken S
Amount of Eagle ...l
Sinai i,
Inging Penguin <« Ostrich
Caterpillars
Firefly Ants Ostriches are not close to
. Roaches most other birds.
Mosquitoes

—
Weight
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Similarity and Exemplar Models

* How is similarity to the stored examples computed?
* Medin & Schaffer (1978) proposed the context model of classification
A model of similarity for binary dimensions
A simple model of evidence accrual
A simple model of decision making
*Each dimension has an associated importance or weight
*An s parameter (0-1) which controls importance
*When comparing two items, compute a match score, m, on each dimension
'm_i =1 if values on dimension i match
‘m_i = s_i i values on that dimension mismatch

*Overall similarity is is the product of the m values
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Similarity and Exemplar Models
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Evidence accrual

* Similarity of item S_i to a category C_j is the sum of its similarities to the
category’s exemplars

sim(Cj, SZ) — Z Szm(Ska Sz)
k

Decision making

* The probability of classifying S_i as a C_j is the ratio of its evidence
relative to other categories
sum(Cj, S;)

p(C;]S:) = > . sim(Ck, S;)
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The Generalized Context Model
Nosofsky (1984; 1986)

* The generalized context model (GCM)
Application of the context model to continuous dimensions.

-Unification of Luce’s work on choice behavior and Shepard’s work
on stimulus generalization

* Similarity is a function of the distance between two objects in
psychological space (Shepard!!).

N K
k=1 k=1
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The Generalized Context Model

Nosofsky (1984; 1986)

* Actual similarity of two objects is a function of their distance:

Exponential Gaussian

. —d?.
’]7,11'7 — 4 d'LJ 77@_] — 4 1]

* Response rule

D(R;[S:) = o 2230 ™
T I (2 ZjeC’k n;k)
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The Generalized Context Model

Nosofsky (1984; 1986)

Amount of
Singing




The Generalized Context Model

Nosofsky (1984; 1986)

A Sizes B Lightnesses & C Positions (in
(circles) saturations linear array)
% % % :
! D sizes & light- ' E Spectral hues F consonent
nesses (squares) [prgeon data) phonemes
¥ . ‘* The ¢ parameter in the model matches

0% o% the exponential generalization gradient
G simem s ames] N ppecistvuss | Ve in Shepard’s work

Empirical measure of generalization, gjj

= 0

0 0
! . J Shapes (free- ! K Spectral hues : L Morse code
form figures) o [human deatal e signals
0 Ld
L4
° Dt
% == % %

Distance, dll' in psychological space
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Prototype Theory

* According to prototype theory, the mental representation of a category
consists of a prototype or central tendency of the examples

* Learning is about abstracting this schema or prototype across all the
examples you have see so far.

Birds Protoftypical
You've Seen Bird
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Prototype Theory

* According to prototype theory, the mental representation of a category
consists of a prototype or central tendency of the examples

* Learning is about abstracting this schema or prototype across all the
examples you have see so far.

Prototypical Bird?
Bird
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Two key effects: prototype enhancement and

Amount of
Singing

Firefly

Caterpillars

Insect

Mosquitoes

Ants

borderline cases/graded structure

Bluebird
Sparrow ;
Robin Bird

Hummingbird Chicken

Eagle

Penguin Ostrich

Weight
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Two key effects: prototype enhancement and
borderline cases/graded structure

]
",
[
]
Y
Yy
Y
]

Amount of
Singing - Xis a bird.

: — Because it closer to the
bird prototype than to the
insect prototype.

Y is an insect.

— Because it closer to the
insect prototype than to
the bird prototype.

>

y
?
Insect & it Y?

Weight
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Two key effects: prototype enhancement and
borderline cases/graded structure

Amount of

Singing Penguin  Ostrich
Penguins and ostriches are
atypical because they are farther
away from the bird prototype than
robins and sparrows.

>

Weight
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However, prototype effects can be explained in terms of exemplar models too!

v
Bluebird :

Sparrow < Prototype
Robln 4""5': --------

.
.
.
PRAROR
Py

Hummingbird «~ .~ Chlcken
" :
Amount of Eagle %
- . ¥
Singing Penguin Ostrich

Caterpillars : —
Firefly P Ants Prototype IS very similar to
Roaches many birds.
Mosquitoes

Weight
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Classical Prototype Exemplar

Empirical Effect View Model Model
No defining features \ V
Borderline cases \ V
Graded typicality \ \
Prototype effect \ \
Exemplar effects \
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computation and cognition lab // new york university

The Exemplar and Prototype Debate

e Exemplar and Prototype Models are titans in the field of cognitive psychology.

® These model are important beyond just the categorization literature because the
issues of memory representation and stimulus generalization come up in many
areas

e “Prototypical”’ or “Average” faces are rated as more attractive (Langlois &
Roggman, 1990)

e The E and P models share deep similarities to Bayesian template-
matching models in visual perception (Gold, Cohen, Shiffrin, 2006)

e In Memory literature: MINERVA (Hintzman, 1988)

e Speech Perception: Fuzzy Logic Model is a “prototype”-like model
(Massaro, 1989); The prototype-magent effect (Kuhl, 1991), “Rich
Phonology” (Port, 2007)

e However, is this really all there is?
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Case 3: Mixture models

Problem: You have data that you believe is drawn from N populations

You want to identify parameters for each population

You don’t know anything about the population a-priori (except maybe Gaussian)
Fit a set of K Gaussians to the data, compute maximum likelihood over a mixture

Our first generative algorithm because the inferred distribution explicitly models covariance
structure of features

Can be accomplished in an unsupervised fashion to pick out clusters which “hang together”

t = 384, current sol = 796.5325, global sol = 795.7721,d = 2
T T T

05¢

0 0.5 1 0 0.5 1




Case 3: Mixture models

* Formally, a mixture model is weighted sum of pdfs where weights are
determined by a distribution, 7T

p(z) = mofo(x) + w1 f1(x) + mafo(x) + ... + 7h fr ()

k
where E ;=1
i=0

k
p(a) = Y mifila)




Case 3: Mixture models

* Gaussian Mixture Model: Special case where each mixture component is a
gaussian.

p(x) = 7T0N(33|£LO, Yo)+ mN(x|p1,X1) + ... + 7N (x|, Xk)

where Zm =1
i=0

Zﬂ-z ZE‘,LleEk:)

« Typical inference strategy is the Expectation Maximization algorithm:
« Step 1: Expectation (E-step)
» Evaluate the “responsibilities of each cluster with current parameters
« Step 2: Maximization (M-step)
» Re-estimate parameters using the existing “responsibilities”
» Related to k-means clustering



Case 3: Mixture models

Gaussian Mixture Model: Special case where each mixture component is a

gaussian.

p(x) = WON(:I:|;1:0, Yo)+ mN(x|p1,X1) + ... + 7N (x|, Xk)

where Zm =1
i=0

k

p(z) = Z?Tz'N(ZU\Mk, Xk)

-2

-2

Example: 1 ] . .
T = k¥ b: A _-;‘ LN ) a3
o - .u’ o - .¥@1' g - :y\’ "

-2

-2 'G -2 .1. .



Case 3: Mixture models

* Issues include...
« What is the right number of components? (in standard GMM, k is chosen by hand)

 Singularities when a single data point goes into a component, the inferred variance
on this point goes to zero, and as a result the likelihood approaches infinity (this
cluster dominates)

* One solution is non-parametric models (let the number of mixture
components be determined by the data).

* In this case we assume there is actually an infinite number of latent cluster
but assume only a few of them are actually used to generate the data e.g.,
Chinese Restaurant Process (Aldous, 1985; Pitman, 2002)

—- 332 2

Custome_rs . Q’
o . 000
Observatio_ns ..... ? .@ .@

Parameters-

Figure 2: The Chinese restaurant process. The generative process of the CRP,
where numbered diamonds represent customers, attached to their corresponding observations
(shaded circles). The large circles represent tables (clusters) in the CRP and their associated
parameters (6). Note that technically the parameter values {6} are not part of the CRP per
se, but rather belong to the full mixture model.



Case 4: Neural Network Models

Multi-layer perceptron
* One input layer (e.g., stimulus features)
* One or more hidden laters
+ Out output later roughly coding the category labels
* Training is based on the Backpropagation Algorithm to mimimize prediction error over training set
* Hidden layer includes differentiable nonlinearities (e.g., sigmoid function)
* Discriminative method
* Supervised method
« Extremely flexible with additional layer, very complex boundaries can be represented
* When combined with convolutional layer, state of the art on image classification (more on this next week!)

050 >
Output &

Input
Signal

Signal

glays ——
Hexp(—a)

C1:foat C3:f. maps 16@10x10
: feature maps S4:1. 16@5x5
INPUT 6@28:2 maps 16@;

32x32 S2:f. maps

6@14x14

|
Full conrlecu'on ‘ Gaussian connections

Subsampling Convolutions  Subsampling Full connection
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Is y = f(x) that people used based on neural networks?

Filtration

1 0 « Kruschke (1993) found that filtration type
§0 @ categorization tasks are easier than
510 @ -
5 oe condensation tasks for humans
Dimension A « However, the are predicted to be equally difficult

condencati for a vanilla multi-layer backprop network
e (simply a rotation of the space)

8 : « What is going on? Influence of selective

00 attention.

Dimension A

Dimension B
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Is y = f(x) that people used based on neural networks?

Category nodes.

Learned association
weights.

% Exemplar nodes.

Learned attention
a a strengths.

O O Stimulus dimension
nodes.

Figure 1. The architecture of ALCOVE (attention learning covering
map). (See The Model section.)

Figure 2. Stretching the horizontal axis and shrinking the vertical
axis causes exemplars of the two categories (denoted by dots and xs) to
have greater between-categories dissimilarity and greater within-cate-
gory similarity. (The attention strengths in the network perform this
sort of stretching and shrinking function. From “Attention, Similarity,
and the Identification-Categorization Relationship” by R. M. No-
sofsky, 1986, Journal of Experimental Psychology: General, 115, p. 42.
Copyright 1986 by the American Psychological Association. Adapted
by permission.)

Kruschke (1992) ALCOVE model unifies backdrop networks with
exemplar models and includes a selective attention mechanism.

Layer of hidden units represents exemplars in the task.

Learned association weight from the exemplar node to
categorization labels are adjusted using backprop

The activation function for the hidden/exemplar nodes is not the
standard sum+non-linearity but is a exponential kernel reflecting
previous work in psychology on stimulus generalization (e.g.,
Shepard)

Attentional weights on the input as also adjusted using the

backprop gradient to reduce network error (learns to give more
weight to some features than others).

Figure3. Attentional learning in ALCOVE (attention learning cover-
ing map) cannot stretch or shrink diagonally. (Compare with Figure 2)
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Is y = f(x) that people used based on neural networks?

w Learned association

weights. problem types for humans from the Shepard, Hovland, Jenkins
/ﬂ\\/ (1964) problems

Exemplar nodes.

Category nodes.
/; *  Model can successfully predict the learning curves for different
N

Learned attention

| | strengths.
O O Stimulus dimension
nodes.

Figure 1. The architecture of ALCOVE (attention learning covering
map). (See The Model section.)

o1 =1l A1 B o1 BII ALK
1 =) A% +V ©VI s8IV +V ©VI
Type I Type 11 Type I1I 8 3
E E
o 1)
Q (9]
= =
Type IV Type V Type VI
4—28 .
2/_|L_ 6/ I d1md 3 ,
| , 3— _;7 im
1—5 dim 1
Figure4. Thesix category types used by Shepard, Hovland, and Jen-
kins (1961). (The three binary stimulus dimensions [labeled by the ) . )
trident at lower right] yield eight training exemplars, numbered at the Figure 5. A: Results of applying ALCOVE (attention learning covering map) to the Shepard, Hovland,
f:;'(‘f“n°§:}ﬁ'ﬁelg‘;’f:c::§‘ g‘:; f::::gr:z a::‘gmzfﬁgﬁz’:;m’: and Jenkins (196 1) category types, with zero attention learning. Here Type Il is learned as slowly as Type V
ﬁcm‘;f,sn by R. N. She'pa,d’ C L Hovfand, & H. M. Jenkins, 1961, (the Type V curve is mqstly obscured by thfe Typell f:urve). B: Results of applying ALCOVE to the Shepard
Psychological Monographs, 75, 13, Whole No. 517, p. 4. In the public et al. category types, with moderate attention learning. Note that Type I1 is now learned second fastest, as

domain) observed in human data. Pr = probability.
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categorization: where human and machine learning meet

classification is a central problem in machine
learning (what category does this image show?
what topic does this document best fit?)

many important algorithms developed for this
problems (e.g., decision trees, support vector
machines, bayes classifiers, deep neural
networks, hidden markov models, etc...)

what algorithms best characterize how people
learn to categorize?

theories developed to account for this ability
share much in common with classic machine
learning approaches and even empirical
approaches are similar.
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open questions

how are people so efficient at learning
categories (e.g., we learn a lot from a single
example)

now that classification algorithms in machine
learning are being applied at a larger scale (e.g.,
millions of images rather than 100s of training
examples from the 1990s) what new insights can
we get from this work for human psychology?
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