
Lecture 9: Computational  
Cognitive Modeling
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course website: 
https://brendenlake.github.io/CCM-site/

Model Fitting, Estimation, and Comparison
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What makes a good model?
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Qualitative Criteria

• Explanatory adequacy


• The assumptions of the model are plausible and consistent with other 
findings (assumption are not ad-hoc)


• The model does more than just re-describe the data


• “curve fitting” versus theoretical principals


• e.g., “power law of practice” versus “instance theory of automaticity”


• Interpretability


• The model makes sense


• The model components and parameters link to psychological or neural 
processes and constructs
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Qualitative Criteria

• Faithful


• model depends on “core” theoretical features, not implementation 
details


• e.g., neural network shouldn’t depend on relative number of 
“hidden units” unless a strong commitment is being made


• Parsimony?


• Occam’s razor?
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Quantitative Criteria
• Goodness-of-fit


• SSE, RMSE, etc...


• A good fit merely qualifies the model as one of the candidate models 
for further consideration...  necessary but not sufficient.


• Parsimony?


• The “simplest” model that does not fit significantly worse than possibly 
more complex models


• via Heirarchical model testing, G^2 statistics, etc...


• Generalizability


• model can account for new unseen data
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Quantitative Criteria
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Quantitative Criteria
• Goodness-of-fit


• SSE, log(L), RMSE, etc...


• A good fit merely qualifies the model as one of the candidate models 
for further consideration...  necessary but not sufficient.


• Parsimony?


• The “simplest” model that does not fit significantly worse than possibly 
more complex models


• via Heirarchical model testing, G^2 statistics, etc...


• Generalizability


• model can account for new unseen data
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Quantitative Criteria
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Quantitative Criteria
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Quantitative Criteria
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Quantitative Criteria
• Complexity


• Inherent flexibility in model


• AIC, BIC - # of free parameters (basically goodness of fit+ penalty)


• insensitive to the “functional form” of the model
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Quantitative Criteria



13

Quantitative Criteria

simple
model

(easy to falsify)

complex
model

(harder to falsify)
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Quantitative Criteria
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Quantitative Criteria
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Quantitative Criteria
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Quantitative Criteria
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Quantitative Criteria

people show 
learning only in this 
condition (and so 

does LASR)

SRN shows 
learning in all 
conditions!
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Parameter fitting techniques
How do we find the values of model parameters that maximize the fit 
of a model to observed data?
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“measure of fit”
Examples:

we need some 

1. Pearson Correlation


2. Sum-squared error


3. Root mean squared error


4. % Variance accounted for


5. Likelihood
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“measure of fit”
Examples:

we need some 

1. Pearson Correlation


2. Sum-squared error


3. Root mean squared error


4. % Variance accounted for


5. Likelihood

goodness of fit measures


ironically LESS GOOD!

better!
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pearson correlation

robs,prd =

P
(obs� µobs)(prd� µprd)pP

(obs� µobs)2
P

(prd� µprd)2

everyone is likely very familiar with this!
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sum of squared error (SSE)

SSEobs,prd =
X

(obs� prd)2

nothing new here.
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root mean squared error  
(RMSE)

RMSEobs,prd =

rP
(obs� prd)2

N

used this last time.
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% variance

%V ar =
SSEnull � SSEmodel

SSEnull

SSEnull =
X

i

(obsi � µobs)
2

SSEmodel =
X

i

(obsi � prdi)
2
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likelihood

p(d|model)

more on this in a bit
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ok, so how to find good 
parameters?

1. Calculus


2. Grid search


3. Hill climbing


4. Nelder-meade simplex (used by fmin in python and matlab)


5. Simulated Annealing


6. Genetic algorithms
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calculus

sij = ↵+ �dij

d_ij obs s_ij prd s_ij

0 1

1 0.368

2 0.135

3 0.05

4 0.018

5 0.007

find parameters for regression that 
minimize SSE between obs s_ij and 
predicted sij
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calculus
SSE =

X

k

(obsk � prdk)
2

SSE =
X

k

(obsk � (↵+ �dk)
2
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calculus
SSE =

X

k

(obsk � prdk)
2

SSE =
X

k

(obsk � (↵+ �dk)
2

@SSE

@↵
=

X

k

2(obsk � ↵� �dk)(�1)

@SSE

@↵
= �2

X

k

(obsk � ↵� �dk)

@SSE

@�
=

X

k

2(obsk � ↵� �dk)(�dk)

@SSE

@�
= �2

X

k

dk(obsk � ↵� �dk)
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calculus
SSE =

X

k

(obsk � prdk)
2

SSE =
X

k

(obsk � (↵+ �dk)
2

@SSE

@↵
=

X

k

2(obsk � ↵� �dk)(�1)

@SSE

@↵
= �2

X

k

(obsk � ↵� �dk)

@SSE

@�
=

X

k

2(obsk � ↵� �dk)(�dk)

@SSE

@�
= �2

X

k

dk(obsk � ↵� �dk)

@SSE

@�
= 0@SSE

@↵
= 0
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ok, who want to write this 
down for the deep q-learning 
network?

in general, when you aren’t smart enough, simulate!
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grid search

calculated SSE at each combination of 
parameters and keep the best.

parameter 2

parameter 1
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grid search

from scipy.optimize import brute

brute(evalmodel, [[min, max], [min, max]], args, Ns=20, full_output=1)
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grid search
in general, this sucks.

evaluation time for one set of parameters 


x


# of evaluations
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grid search
in general, this sucks.

100 seconds per evaluation


x


10^12 of evaluations

10^14 seconds = 3 million years!
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hill climbing
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hill climbing
how many points are evaluated each step?

1 2 3

4

57 6

8
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nelder mead simplex

the simplex approach minimizes the 
number of points you have to evaluate



40

start multiple places!
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does your search code work?
how do you know?
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does your search code work?

One idea:
Run your model with known parameters, to GENERATE pretend human 
data.  Then, re-fit the model using your fit measure and parameter search 
algorithm to see if you can get the same parameters you used to generate 
the data. 


If this doesn’t work the model parameters may be non-identifiable (multiple 
parameters give the same fit).
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Maximum likelihood estimation

• Myung (2003) - “MLE is not as widely recognized among modelers in 
psychology, but it is a standard approach to parameter estimation and 
inference in statistics.”


• Sufficiency - complex information about parameter of interest contained in 
MLE estimator


• Consistency - true parameter value that generated the data can be 
recovered asymptotically


• Parameter invariance - same MLE solution obtained independent of way 
parameterized


• LSE is a hack, but is correct for linear regression.  But shouldn’t be used all 
over the place.
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Cognitive Model (e.g., PhonoLoop)

Model outputs p1, p2, p3, p4, ...

Likelihood model
P (X = k) =

✓
n

k

◆
pk(1.0� p)(n�k)

Parameters decay

Data k1
n1

,
k2
n2

,
k3
n3

,
k4
n4

, ...
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Cognitive Model (e.g., PhonoLoop)

Model outputs p1, p2, p3, p4, ...

Likelihood model
P (X = k) =

✓
n

k

◆
pk(1.0� p)(n�k)

Parameters decay

Data k1
n1

,
k2
n2

,
k3
n3

,
k4
n4

, ...



46

Cognitive Model (e.g., PhonoLoop)

Model outputs p1, p2, p3, p4, ...

Likelihood model
P (X = k) =

✓
n

k

◆
pk(1.0� p)(n�k)

Parameters decay

Data k1
n1

,
k2
n2

,
k3
n3

,
k4
n4

, ...
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Cognitive Model (e.g., PhonoLoop)

Model outputs p1, p2, p3, p4, ...

Likelihood model
P (X = k) =

✓
n

k

◆
pk(1.0� p)(n�k)

Parameters decay

Data k1
n1

,
k2
n2

,
k3
n3

,
k4
n4

, ...

L(✓|d) =
kY

L(✓|dk)

d =
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Search algorithm fmin

To minimize negative 

log likelihood ( - ln L )
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Parameter uncertainty
the process

described on the previous

slides results in a single set of 
parameters

a “point” estimate.
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Parameter uncertainty

• If we run the experiment again and get different data, the ML parameter will 
likely change


• How can we capture some of this uncertainty?  In other words, when we tell 
people the best parameters are X, Y, Z, can we also convey our confidence 
in those values?

1. Be a Bayesian
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Parameter uncertainty

• If we run the experiment again and get different data, the ML parameter will 
likely change


• How can we capture some of this uncertainty?  In other words, when we tell 
people the best parameters are X, Y, Z, can we also convey our confidence 
in those values?

2. Analyze your model parameters as 
“measurements” across subjects
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Parameter uncertainty

• If we run the experiment again and get different data, the ML parameter will 
likely change


• How can we capture some of this uncertainty?  In other words, when we tell 
people the best parameters are X, Y, Z, can we also convey our confidence 
in those values?

3. Bootstrap!
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Model comparison

Prototype model Exemplar model

Mixture model
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Model comparison

Prototype model Exemplar model

Mixture model

Non-nested model 
comparison
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Model comparison

Prototype model Exemplar model

Mixture model

Non-nested model 
comparison

Nested model 
comparison

Nested model 
comparison
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Exemplar model

Mixture model

Nested model 
comparison

Null model

Saturated Model
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Exemplar model

Mixture model

One parameter per 
data point

Null model

Saturated Model

Best any model can 
do!

Nested model 
comparison
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Exemplar model

Mixture model

One parameter per 
data point

Null model

Saturated Model

Best any model can 
do!

Not as bad as any 
model can do, but a 
good floor

Nested model 
comparison
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Exemplar model

Mixture model

One parameter per 
data point

Null model

Saturated Model

Best any model can 
do!

Not as bad as any 
model can do, but a 
good floor

To be useful this model 
has to fit better than 
the null!

Nested model 
comparison
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Exemplar model

Mixture model

One parameter per 
data point

Null model

Saturated Model

Best any model can 
do!

Not as bad as any 
model can do, but a 
good floor

To be useful this model 
has to fit better than 
the null!

Logically this model 
has to fit better... but 
significantly better?

Nested model 
comparison
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Saturated Model

Null Model

In an ideal world, you want to fit as well 
as the saturated model, but using no 
“free” parameters.
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More on “nesting”

• Fundamental requirement is that one 
model is a reduced version of another 
model


• Reducing means that you clamp the 
value of some parameter to zero or some 
null value.


• The question is if the improvement in 
fit provided by the extra flexibility is 
enough to justify the added 
complexity in the bigger model
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Likelihood of the model given 
the data L = p(d|m) 

log Likelihood = ln L

lnLF

lnLR Exemplar model

Mixture model

Null model

Saturated Model

Nested model 
comparison

“restricted” model

“full” model
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Likelihood of the model given 
the data L = p(d|m) 

log Likelihood = ln L

lnLF

Exemplar model

Mixture model

Null model

Saturated Model

Nested model 
comparison

“restricted” model

“full” model

lnLF � lnLR

difference in fit
2(lnLF � lnLR)

lnLR
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Likelihood of the model given 
the data L = p(d|m) 

log Likelihood = ln L

lnLF

Exemplar model

Mixture model

Null model

Saturated Model

Nested model 
comparison

“restricted” model

“full” model

god says.  (convenient relationship 
between deviance and X^2)

2(lnLF � lnLR)

lnLR
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Likelihood of the model given 
the data L = p(d|m) 

log Likelihood = ln L

lnLF

Exemplar model

Mixture model

Null model

Saturated Model

Nested model 
comparison

“restricted” model

“full” model

lnLR

G2 = 2(lnLF � lnLR) distributed as �2

with NparamsFull - NparamsRest 
degrees of freedom 
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Likelihood ratio test
G2 = 2(lnLF � lnLR) distributed as 

�2

with NparamsFull - NparamsRest 
degrees of freedom 

If G^2 exceeds the critical value in 
the        distribution with the 
specified degrees of freedom and 
particular alpha-level, then the the 
restricted model is significantly 
worse than the full model.
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Likelihood ratio test
G2 = 2(lnLF � lnLR) distributed as 

with NparamsFull - NparamsRest 
degrees of freedom 

lnLF

lnLR = -293.12

= -263.12
= 240-45 = 195df

G2 = 2⇥ [�263.12��293.82] = 61.40

X2
c (df = 195,↵ = .05) = 228.6

the restricted model is NOT 
significantly worse

Example
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Likelihood ratio test
G2 = 2(lnLF � lnLR) distributed as 

with NparamsFull - NparamsRest 
degrees of freedom 

G2 = 2⇥ (ln
LF

LR
)
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Likelihood ratio test
• Only applies to nested models 

• Null Hypothesis Testing framework - one model fits better than the other


• Alternatively, we might want to weight the evidence between to models, and 
to compare non-nested models.



• Akaike’s Information Criterion (AIC)


• Bayesian Information Criterion (BIC)
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Information criteria

AIC = �2lnL(✓|u,M) + 2K

BIC = �2lnL(✓|u,M) +KlnN



• Akaike’s Information Criterion (AIC)
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Information criteria

AIC = �2lnL(✓|u,M) + 2K

More parametersBetter fit

AICfull �AICrest = 0 ... equivalence

> 0 restricted model fit better

< 0 full model fit better



• Akaike’s Information Criterion (AIC)
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Information criteria

AICfull �AICrest

if change is in 0-2 range no 
support for distinguishing the 
models 

 4-7 = “considerably less” 
support for the model with 
larger AIC 

>10 = no support for the 
larger AIC model
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Information criteria
• Bayesian Information Criterion (BIC)

BIC = �2lnL(✓|u,M) +KlnN

B =
p(M1|y)
p(M2|y)

= exp(�1

2
�BIC)

Related to “Bayes Factor”

Similar “range” of values that are considered to be strong 
support (see Text).



• If you fit both AIC and BIC likely that which model is preferred can actually 
conflict! 

• Then what?! 

• BIC is generally more conservative in that it penalizes models more for extra 
parameters.  Some people prefer it on that basis.  Sometimes people report 
both.
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Information criteria



• Measures like  AIC and BIC attempt to approximate the expected log 
likelihood of new data


• However, an often better standard is literally to test your model’s account of 
new (held out data)!

78

Prediction!

Training

set

Test

set

Validation

set
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Cross validation
• Fit the model to subset of the data, then test performance on the remaining 

data (or fit data to one experiment, make prediction in others)


• One approach is leave-one out...  fit to all the data minus 1 data point, 
repeat holding out a different data point each time.  Compute average error 
on the held out point as a measure of model quality!


• “Generalization criterion methodology” (Busemeyer & Wang, 2000) - use 
calibration design and validation design... 


• basically fit to one part of your experiment that “calibrates the 
parameters” then make predictions for the interesting part


• e.g., maybe fit model to learning trials, then evaluate on test trials
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Search algorithm fmin

To minimize negative 

log likelihood ( - ln L )


