Lecture 9: Computational
Cognitive Modeling

Model Fitting, Estimation, and Comparison

course website:
https://brendenlake.github.io/CCM-site/



What makes a good model?
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Qualitative Criteria

«  Explanatory adequacy

 The assumptions of the model are plausible and consistent with other
findings (assumption are not ad-hoc)

 The model does more than just re-describe the data

«  “curve fitting” versus theoretical principals

* e.g., “power law of practice” versus “instance theory of automaticity”
* Interpretability

* The model makes sense

 The model components and parameters link to psychological or neural
processes and constructs
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Qualitative Criteria

«  Faithful

 model depends on “core” theoretical features, not implementation
details

* e.g., neural network shouldn’t depend on relative number of
“hidden units” unless a strong commitment is being made

*  Parsimony?

« Occam’s razor?
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Quantitative Criteria

«  Goodness-of-fit
« SSE, RMSE, etc...

* A good fit merely qualifies the model as one of the candidate models
for further consideration... necessary but not sufficient.
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Quantitative Criteria

Table |. Results of a model recovery simulation in which a GOF measure
(RMSE) was used to discriminate models when the source of the error was

varied.
Condition (sources of Model the data were Model fitted
variation) generated from
MA MA MB MA MB
a=04 a=0.6
(1) Sampling error 100 - - 0.040 (0%)  0.029 (100%)
(2) Sampling error + 50 50 - 0.041 (0%) 0.029 (100%)
individual differences
(3) Different models - 50 50 0.075 (0%) 0.029 (100%)
(4) Sampling error - - 100 0.079 (0%) 0.029 (100%)

The severity of the problem is shown in Table |, which
contains the results of a model recovery simulation using
RMSE. Four datasets were generated from a combination

of the two models (MA and MB), defined as follows:

M,:y=(1+1)2 M, y=(b+ct)2where a, b, c> 0. Datasets
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Quantitative Criteria

«  Goodness-of-fit
« SSE, log(L), RMSE, etc...

* A good fit merely qualifies the model as one of the candidate models
for further consideration... necessary but not sufficient.

*  Parsimony?

* The “simplest” model that does not fit significantly worse than possibly
more complex models

* via Heirarchical model testing, G2 statistics, etc...
*  Generalizability

. model can account for new unseen data
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Quantitative Criteria

Y (Dependent Measure)

X (Independent Variable)

Figure I. Illustration of the trade-off between goodness of fit and gen-
eralizability. An observed data set (dots) was fitted to a simple model (thick

line) and a complex model (thin line). New observations are shown by the
plus symbol
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Quantitative Criteria

Y (Dependent Measure)

X (Independent Variable)

Figure 1. Illustration of the trade-off between goodness of fit and gen-
eralizability. An observed data set (dots) was fitted to a simple model (thick
line) and a complex model (thin line). New observations are shown by the
plus symbol
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Quantitative Criteria

Fit index

Goodness of fit

P Vs Overfitting

Generalizability

(5—) ‘T&)/\ Complexity
Underlying cognitive process Excess complexity

Figure 2. Illustration of the relationship between goodness of fit and
generalizability as a function of model complexity (Myung & Pitt, 2001).
From Stevens’ Handbook of Experimental Psychology (p. 449, Figure 11.
4). by J. Wixted (Editor), 2001, New York: Wiley. Copyrnight 2001 by
Wiley. Adapted with permission.
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Quantitative Criteria

Complexity
Inherent flexibility in model
AIC, BIC - # of free parameters (basically goodness of fit+ penalty)

insensitive to the “functional form” of the model
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Quantitative Criteria

Data (Model) Space

(% (0

x x

Figure 3. The top panel depicts regions i data space occupied by two
models, M, (sumple model) and M, (complex model), with the range of

data patterns that can be generated by each model n the lower panels
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Quantitative Criteria

Data (Model) Space

simple .
model < "
(easy to falsify)
Ma M,

Figure 3. The top panel depicts regions 1in data space occupied by two
models, M, (sumple model) and M, (complex model), with the range of

data patterns that can be generated by each model in the lower panels

complex
model
(harder to falsify)
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Quantitative Criteria

Table Il. Two GOF Measures, four generalizability measures, and the dimensions of complexity to which each is sensitive

Selection method Criterion equation Dimensions of complexity considered

Root Mean Squared Error RMSE = (SSE/M™” None

Percent Variance Accounted For PVAF=100(1-SSE/SST) None

Akaike Information Criterion AIC =-2 Inlf(y]8)) + 2k Number of parameters

Bayesian Information Criterion BIC =-2 In(f{y]8,)) + k-In(n) Number of parameters, sample size

Bayesian Model Selection BMS=-In] f( y|6)n(6)dé Number of parameters, sample size, functional form

Minimum Description Length MDL=-In (f( y|6,)) + (k’2)in(n/2r)+In | \[det(I(B))d® Number of parameters, sample size, functional form

In the equations above, y denotes observed data, #is the model’s parameter, &, is the parameter value that maximizes the likelihood function f(y{#), k is the number
of parameters, n is the sample size, N is the number of data points fitted, SSE is the minimized sum of the squared errors between observations and predictions,
SST is the sum of the squares total, {4} is the parameter prior density, I{#) is the Fisher information matrix in mathematical statistics [a], det denotes the
determinant of a matrix, and /n denotes the natural logarithm of base e.
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Quantitative Criteria

Cognitive Science 34 (2010) 10-50

Copyright @ 2009 Cognitive Science Society, Inc. All rights reserved.
ISSN: 0364-0213 print / 1551-6709 online
DOIL 10.1111/.1551-6709.2009.01076.x

Direct Associations or Internal Transformations? Exploring
the Mechanisms Underlying Sequential Learning Behavior

Todd M. Gureckis,* Bradley C. Love®

“Department of Psychology, New York University
*Department of Psychology, The University of Texas at Austin
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Quantitative Criteria

Outpue Units (141

A

Output Units 141 e, detectons l

I Hidden Units l . l

Y

[ mpucUnisi | | ConwestiUnis |

A

Shift Register Memory Current Event

Linear Associative Shift-Register (LASR) Elman Network (SRN)

Fig. 1. The schematic architecture of the LASR (left) and SRN (right) networks. In LASR, memory takes the
form of a shift-register. New events enter the register on the right and all previous register contents are shifted
left by one position. A single layer of detector units learns to predict the next sequence element given the current
contents of the register. Each detector is connected to all outcomes at all memory slots in the register. The model
is composed of N detectors corresponding to the N event outcomes to be predicted (the weights for only two
detectors is shown). In contrast, in the SRN, new inputs are presented on a bank of input units and combine with
input from the context units to activate the hidden layer (here, solid arrows reflect fully connected layers, and
dashed arrows are one-to-one layers). On each trial, the last activation values of the hidden units are copied back
to the context units, giving the model a recurrent memory for recent processing. In both models, learning is
accomplished via incremental error-driven adaptation of leaming weights.
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Quantitative Criteria
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Average Model Response for Lag 1

Fig. 9. Explorations of the parameter space for LASR and the SRN in Experiment 1. Each model’s average
response for lag-1 is plotted against the average response for lag-10. The division between the grey and white
regions represents the line y = x. Each point in the plot represents the performance of the respective model with a
particular setting of the parameters. If the point appears below the y = x line in the grey area, it means the model
predicts faster responding to lag-10 events than to lag-1 (the correct qualitative pattern). Note, however, that
accounting for the full pattern of human results requires a monotonically decreasing function of predicted RT
across all 10 event lags, while this figure only illustrates the two end points (lag-1 and lag-10). Thus, the few
instances where the SRN appears to predict the correct pattern are not in general support for the model (see main
text).
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Quantitative Criteria
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. . . Average Model Response for
learning only in this Tranaer locks 1412
Cond|t|0n (and SO Fig. 11. Explorations of the parameter space of the LASR in the three conditions (2C-SO, 6C-SO, 6C-FO) of
Experiment 2. The key behavioral pattern from Experiment 2 was that subjects only responded differently during
does L AS R) transfer block in the 6C-FO condition. The model’s average response for the transfer blocks 11 and 12 are plot-
ted against the average response for the surrounding learning block (9, 10, 13, and 14). Also plotted is the line

y = x. Each point in the plot represents the performance of the LASR with a particular setting of the parameters.
If the point appears below the y = x line, it means the model predicts slower responding during the transfer
blocks (and thus evidence of learning). LASR predicts a systematic learning effect only in the 6C-FO condition
(i.e., first-order, linear learning), like human subjects.

SRN shows
learning in all | :
conditions! o as

Average Model Response for
Transfer Blocks 11 & 12
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Fig. 12. Explorations of the parameter space of the SRN in the three conditions (2C-SO, 6C-SO, 6C-FO) of
Experiment 2. The model’s average response for the transfer blocks (11 and 12) are plotted against the average
response for the surrounding learning block (9, 10, 13, and 14). Also plotted is the line y = x. Each point in the
plot represents the performance of the SRN with a particular setting of the parameters. If the point appears below
the y = x line, it means the model predicts slower responding during the transfer blocks (and thus a learning
effect). The SRN, unlike human subjects, shows a learning effect in all three conditions.

18
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Parameter fitting techniques

How do we find the values of model parameters that maximize the fit
of a model to observed data?
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we need some

“measure of fit”

Examples:

1. Pearson Correlation

2. Sum-squared error

3. Root mean squared error
4. % Variance accounted for

5. Likelihood

20
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we need some

“measure of fit”

Examples:

1. Pearson Correlation

2. Sum-squared error goodness of fit measures

3. Root mean squared error ironically LESS GOOD!

4. % Variance accounted for

5. Likelihood < better!

21



pearson correlation

D (0bs — piops)(prd — Mpfrd)

T'obs,prd =
T /S (0bs — obs)2 S (prd — ppra)?

22,
20 - /

18] . // .
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20000 60000 100000 140000

Years of education

everyone is likely very familiar with this! Income
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sum of squared error (SSE)

o Z(Obs — prd)?

Fitted value

I\}

\ Residual

nothing new here.
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root mean squared error

(RMSE)

> (obs — prd)?
N

RMSEObS,pT‘d — \/

used this last time.
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O% variance

SSEnull — SSEmodel

%VCLT - SSEnull

SSEnull — Z(Obsi — ,uobs)2

0

SSEmodel — Z(Obsi o p?"di)Z

1

25
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likelihood

p(d|model)

more on this in a bit

26
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ok, so how to find good
parameters?

1. Calculus

2. Grid search

3. Hill climbing

4. Nelder-meade simplex (used by fmin in python and matlab)
5. Simulated Annealing

6. Genetic algorithms

27
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calculus

d_jj obs s_ij | prd s_ij
0 1
1 0.368
2 0.135
3 0.05
4 0.018
5 0.007
Sij — & + Bdm

find parameters for regression that
minimize SSE between obs s_ij and
predicted sij

28



calculus
SSE = Z(obsk — prdy)?
k

SSE = Z(Obsk — (Oz + ﬁdk)2
k

29
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calculus
SSE = Z(obsk — prdy)?
k

SSE = Z(Obsk — (a+ Bdy)?
k

HSSE

A = Ek ' 2(obsy, — o — Bdi)(—1) 5’5(;;E = §k 2(0bsy, — o — Bdy.)(—dk,)
OSSE E

5 =2 §k (obsy, — o — Bdy) % = —2 Ek dy(obsy, — a — Bdy)

30
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calculus
SSE = Z(obsk — prdy)?
k

0SSE
oo

0SSE
oo

0SSE
oo

SSE = Z(Obsk — (a+ Bdy)?
k

> " 2(obsp — o — Bdy)(—1)

k

—2 Z(obsk — a — Bdy)
k

0
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OSSE
9P
OSSE
9P

0SSE

op

— Z 2(0b8k — 0 — Bdk)(_dk)
k
= —Qde(ObSk — X — Bdk)
k

=0



ok, who want to write this

down for the deep g-learning
network?

in general, when you aren’t smart enough, simulate!

32
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grid search

parameter 2

parameter 1

calculated SSE at each combination of
parameters and keep the best.

33
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grid search

from scipy.optimize import brute

brute(evalmodel, [[min, max], [min, max]], args, Ns=20, full output=1)

34
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grid search

in general, this sucks.

evaluation time for one set of parameters
X

# of evaluations

35
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grid search

in general, this sucks.

100 seconds per evaluation
X

10712 of evaluations

107214 seconds = 3 million years!

36
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hill climbing

(b) Move North

(d) Move North

(c) Move West

(e) Contract

37

(f) Move West
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hill climbing

how many points are evaluated each step?

1 2 3
3 4
/ 6 5

38
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nelder mead simplex

simplex at start of procedure

high point
low point

(a) reflection

the simplex approach minimizes the o
number of points you have to evaluate axpansion

(c) Q contraction

#f\

At

l// ; ‘

’/
’/

o A contraction in
(d) é:,::— |. all directions

39



start multiple places!

Global minimum at [0 0]

40



does your search code work?

how do you know?

41
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does your search code work?

One idea:

Run your model with known parameters, to GENERATE pretend human
data. Then, re-fit the model using your fit measure and parameter search
algorithm to see if you can get the same parameters you used to generate
the data.

If this doesn’t work the model parameters may be non-identifiable (multiple
parameters give the same fit).

42
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Maximum likelihood estimation

*  Myung (2003) - “MLE is not as widely recognized among modelers in
psychology, but it is a standard approach to parameter estimation and
inference in statistics.”

«  Sufficiency - complex information about parameter of interest contained in
MLE estimator

« Consistency - true parameter value that generated the data can be
recovered asymptotically

* Parameter invariance - same MLE solution obtained independent of way
parameterized

 LSE is a hack, but is correct for linear regression. But shouldn’t be used all
over the place.

43



computation and cognition lab // new york university

Parameters decay

|
Cognitive Model (e.g., Phonoloop)

}

44
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Parameters decay
!

Cognitive Model (e.g., Phonoloop)
!

Model outputs  P1,P2,P3, P4, -

45
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Parameters

decay

!

Cognitive Model (e.g., Phonoloop)

!

Model outputs

P1,P2,P3,P4, ---

Likelihood model

n

PiX =0 = ()i L0-pn b -

02 -
0. >
0 02 04 0.6 08 10

46
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Parameters decay

|
Cognitive Model (e.g., Phonoloop)

!

Model outputs  P1,P2,P3, P4, -

|

Likelihood model k
P(X = k) = (Z)pk(l.() —p) ) L(9)d) = | | L(6ldx)
T C%*a
k1 ko k3 kg
Data d = el

47
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Search algorithm fmin
Parameters l decay To minimize negative
log likelihood (- In L)
Cognitive Model (e.g., PhonolLoop)
|

Model outputs  P1,P2,P3,P4; -

Likelihood model ' k
P(X =k) = <Z)p"’(l.0 _p)h L L(0]d) = | ] L(0ld)
Data d = %%%fﬁ

48
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the process

described on the previous
slides results in a single set of
parameters

a “point” estimate.
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Parameter uncertainty

« If we run the experiment again and get different data, the ML parameter will
likely change

*  How can we capture some of this uncertainty? In other words, when we tell
people the best parameters are X, Y, Z, can we also convey our confidence
in those values?

" John K. Kruschke !K/";}"
1. Be a Bayesian . 2 o

e <X
u contrast ”
M 0969 4
0% <=0 < 100% Doing Bayesian
: __ JData Analysis
:r 0. : B l;:. }gj ATutorial with R and BUGS
0.00 0.05 0.10 0.15 ?é \
1 Rev + -1 Rel . B

50
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Parameter uncertainty

If we run the experiment again and get different data, the ML parameter will
likely change

How can we capture some of this uncertainty? In other words, when we tell
people the best parameters are X, Y, Z, can we also convey our confidence
in those values?

2. Analyze your model parameters as
“measurements” across subjects

51
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Psychological Assessment
2002, Vol. 14, No. 3, 253-262

Copyright 2002 by the American Psychological Association, Inc.
1040-3590/02/85.00 DOI: 10.1037//1040-3590.14.3.253

A Contribution of Cognitive Decision Models to Clinical Assessment:
Decomposing Performance on the Bechara Gambling Task

Jerome R. Busemeyer and Julie C. Stout

Indiana University Bloomington

BUSEMEYER AND STOUT

Table 2

Parameter Estimates From Expectancy—Valence Model

Updating rate Attention weight Sensitivity
Group M Mdn SD M Mdn SD M Mdn SD
Healthy 0.34 0.16 0.39 0.35 0.32 0.30 0.32 0.68 1.58
Huntington 0.58 0.78 0.46 0.40 0.17 0.47 —0.89 —0.78 2.13
Parkinson 0.29 0.09 0.40 0.28 0.20 0.32 0.36 0.01 1.99
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Parameter uncertainty

« If we run the experiment again and get different data, the ML parameter will
likely change

*  How can we capture some of this uncertainty? In other words, when we tell
people the best parameters are X, Y, Z, can we also convey our confidence
in those values?

3. Bootstrap!

53
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data Y
fit model
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Model comparison

Prototype model Exemplar model

Mixture model

55



computation and cognition lab // new york university

Model comparison

Non-nested model
comparison

Prototype model < > Exemplar model

Mixture model

56
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Model comparison

Non-nested model
comparison

Prototype model < > Exemplar model

Nested model Nested model
comparison comparison

Mixture model

57
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Null model

Exemplar model

Nested model
comparison

\ 4
Mixture model

Saturated Model
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Null model

Exemplar model

Nested model
comparison

\ 4
Mixture model

One parameter per — -------eemeeeenennn > Saturated Model
data point

Best any model can
do!

59
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Not as bad as any =~ -oreeeemmeseseneeeees > Null model
model can do, but a
qood floor

Exemplar model

Nested model
comparison

\ 4
Mixture model

|

One parameter per — -------eemeeeenennn > Saturated Model
data point

Best any model can
do!

60
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Not as bad as any - > Null model
model can do, but a
qood floor
To be useful this model — ----eeeeeeeeee » Exemplar model
has to fit better than
the null!
Nested model
comparison
\ 4

Mixture model

|

One parameter per — -------eemeeeenennn > Saturated Model
data point

Best any model can
do!

6l
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Not as bad as any e > Null model

model can do, but a

qood floor

To be useful this model —----eeeeeeeenee. > Exemplar model

has to fit better than

the null!
Nested model
comparison

\ 4

Logically this model ~  -----oooevveeeenee > Mixture model

has to fit better... but

sianificantlv better? l

One parameter per — —---------aeeeeeaeeenne > Saturated Model

data point

Best any model can
do!

62
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Null Model

0 1 0 ~
! Saturated Model *
In an ideal world, you want to fit as well
as the saturated model, but using no

“free” parameters. 63
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More on “nesting”

64

Fundamental requirement is that one
model is a reduced version of another
model

Reducing means that you clamp the
value of some parameter to zero or some
null value.

The question is if the improvement in
fit provided by the extra flexibility is
enough to justify the added
complexity in the bigger model
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Likelihood of the model given

the data L = p(d|m) Null model
log Likelihood =In L l
InLp s >  Exemplar model
“restricted” model
Nested model
comparison
v
InLp s > Mixture model
“full” model l

Saturated Model

65
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Likelihood of the model given

the data L = p(d|m) Null model
log Likelihood =In L l
InLp s >  Exemplar model
“restricted” model
Nested model
comparison
v
InLp s > Mixture model
“full” model l

Saturated Model

lnLF — lnLR
Z(ZRLF — lnLR)

66

difference in fit
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Likelihood of the model given

the data L = p(d|m) Null model
log Likelihood =In L l
InLp s >  Exemplar model
“restricted” model
Nested model
comparison
v
InLp s > Mixture model
“full” model l

Saturated Model

Q(ZTLLF — lnLR)

god says. (convenient relationship
between deviance and X"\2) 67
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Likelihood of the model given

the data L = p(d|m) Null model
log Likelihood =In L l
InLp s >  Exemplar model
“restricted” model
Nested model
comparison
v
InLp s > Mixture model
“full” model l

Saturated Model

2
G? — Q(ZnLF — lnLR) <o distributed as X
with NparamsFull - NparamsRest
68 degrees of freedom
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Likelihood ratio test

G2 — Q(ZnLF — lnLR) D distributed as
with NparamsFull - NparamsRest

degrees of freedom

If G2 exceeds the critical value in ‘(

the X distribution with the ZZ:IZ 395(? ézhlc_znntc;i:f

specified degrees of freedom and g’;isafy;’;;gjggsedw ;‘éﬁiﬁcﬁ{;ﬁ ﬁi we

particular alpha-level, then the the statistical theory\u.\ restrited model. | that depends on
restricted model is significantly \  right distribution

worse than the full model.

69
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Likelihood ratio test

G2 — Q(ZnLF — lnLR) D distributed as
with NparamsFull - NparamsRest

degrees of freedom

Example

InLp =-293.12
df = 240-45 = 195

InLp =-263.12

G? =2 x [-263.12 — —293.82] = 61.40
XZ(df =195, = .05) = 228.6

the restricted model is NOT
significantly worse 70
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Likelihood ratio test

G2 — Q(ZnLF — lnLR) D distributed as
with NparamsFull - NparamsRest

degrees of freedom

71
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Likelihood ratio test

«  Only applies to nested models
*  Null Hypothesis Testing framework - one model fits better than the other

« Alternatively, we might want to weight the evidence between to models, and
to compare non-nested models.

72
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Information criteria

Akaike’s Information Criterion (AIC)
AIC = —2InL(0lu, M) + 2K
Bayesian Information Criterion (BIC)

BIC = —-2InL(0|u, M) + KInN

73
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Information criteria

Akaike’s Information Criterion (AIC)

AIC = —2InL(0|u, M) + 2K

l T

Better fit More parameters

> 0 restricted model fit better

AICfull — AICmSt =0 ... equivalence

< 0 full model fit better

74
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Information criteria

« Akaike’s Information Criterion (AlC)

Alcfull — AICTest

if change is in 0-2 range no
support for distinguishing the
models

4-7 = “considerably less”
support for the model with
larger AIC

>10 = no support for the
larger AIC model
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Information criteria

Bayesian Information Criterion (BIC)

BIC = =2inL(60|\u, M) + KIinN

Related to “Bayes Factor”
p(Mily) 1
= = exp(—=ABIC
p(ly) ~ PP

Similar “range” of values that are considered to be strong
support (see Text).
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Information criteria

« If you fit both AIC and BIC likely that which model is preferred can actually
conflict!

* Then what?!

«  BIC is generally more conservative in that it penalizes models more for extra
parameters. Some people prefer it on that basis. Sometimes people report
both.
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Prediction!

* Measures like AIC and BIC attempt to approximate the expected log

likelihood of new data

However, an often better standard is literally to test your model’s account of

new (held out data)!

Training
set

Test
set

Validation
set
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Cross validation

- Fit the model to subset of the data, then test performance on the remaining
data (or fit data to one experiment, make prediction in others)

* One approach is leave-one out... fit to all the data minus 1 data point,
repeat holding out a different data point each time. Compute average error
on the held out point as a measure of model quality!

«  “Generalization criterion methodology” (Busemeyer & Wang, 2000) - use
calibration design and validation design...

* Dbasically fit to one part of your experiment that “calibrates the
parameters” then make predictions for the interesting part

* e.g., maybe fit model to learning trials, then evaluate on test trials
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Search algorithm fmin
Parameters l decay To minimize negative
log likelihood (- In L)
Cognitive Model (e.g., PhonolLoop)
|

Model outputs  P1,P2,P3,P4; -

Likelihood model ' k
P(X =k) = <Z)p"’(l.0 _p)h L L(0]d) = | ] L(0ld)
Data d = %%%fﬁ
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