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The problem of induction

“gavagai”

Original thought experiment due to W. V. Quine (1960).
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 Handle? 
Smell?

A mug on a table?A mug?

A mug filled with coffee?

Location? Ceramics?

White objects?

Marble?
Coffee?

3 pm?

A white mug on a white marble table?

A beverage?

Original thought experiment due to W. V. Quine (1960).
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• If our inferences go beyond the data given, then something 
must be making up the difference…

• What is it? constraints (as described by psychologists and 
linguists), inductive biases (machine learning and AI 
researchers), priors (statisticians), etc.

• Key questions: What does this prior knowledge look like? How 
do we combine prior knowledge with data to make inferences? 
What are the models and algorithms?

How do we learn so much from so little?

For more discussion see, Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How 
to grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 1279-1285.



P (hi|D) =
P (D|hi)P (hi)P
j P (D|hj)P (hj)

Bayesian modeling is an approach for understanding inductive 
problems, and it typically takes a strong “top-down” strategy



Key principles of Bayesian models 
of cognition

• Start by analyzing the computational problem at hand, and 
describe it as a problem of Bayesian inference

• A successful “computational level” account provides strong 
constraints when developing an “algorithmic” and 
“implementational” level accounts

• Bayesian inference provides a flexible framework for testing 
different types of representation, without having to worry about 
defining special algorithms for inference and learning



Bayesian inference for evaluating 
hypotheses in light of data

Data (D): John is coughing

h1 = John has a cold
h2 = John has emphysema
h3 = John has a stomach flu

We want to calculate the posterior probabilities: P (h1|D), P (h2|D), and P (h3|D)

Hypotheses:

Which hypotheses should we believe, and with what certainty?

priorlikelihoodposterior

P (hi|D) =
P (D|hi)P (hi)P
j P (D|hj)P (hj)

“Bayes’ rule”

Review Russell & Norvig reading for basics on probability. This example is from Josh Tenenbaum.



Bayesian inference
Data (D): John is coughing

h1 = John has a cold
h2 = John has emphysema
h3 = John has a stomach flu

Hypotheses:

Prior favors h1 and h3, over h2

P (h1) = .75
P (h2) = .05

P (h3) = .2

P (D|h1) = 1
P (D|h2) = 1
P (D|h3) = .2

P (h1|D) = .89 =
.75(1)

.75(1) + .05(1) + .2(.2)
P (h2|D) = .06

P (h3|D) = .05

priorlikelihoodposterior

P (hi|D) =
P (D|hi)P (hi)P
j P (D|hj)P (hj)

Likelihood favors h1 and h2, over h3

Posterior favors h1, over h2 and h3



Where does Bayes’ rule come from?

Definition of conditional probability:

P (a|b) = P (a, b)

P (b)

Derivation

P (h,D) = P (D|h)P (h)

P (h,D) = P (h|D)P (D)

P (h|D)P (D) = P (D|h)P (h)

P (a, b) = P (a|b)P (b)

product rule applied 
twice

Equating the two right 
hand sides

Divide by P (D)

P (h|D) =
P (D|h)P (h)

P (D)
=

P (D|h)P (h)P
h0 P (D|h0)P (h0)

“product rule”



Why is this a reasonable way to represent beliefs?

• If your beliefs are inconsistent with axioms of probability, someone 
can take advantage of you in gambling (see example from Russel 
and Norvig reading)

4 14 Chapter 13. Uncertainty 

This kind of question has been the subject of decades of intense debate between those who ad- 
vocate the use of probabilities as the only legitimate form for degrees of belief and those who 
advocate alternative approaches. Here, we give one argument for the axioms of probability, 
first stated in 193 1 by Bruno de Finetti. 

The key to de Finetti's argument is the connection between degree of belief and actions. 
The idea is that if an agent has some degree of belief in a proposition u,  then the agent should 
be able to state odds at which it is indifferent to a bet for or against n.  Think of it as a game 
between two agents: Agent 1 states "my degree of belief in event n is 0.4." Agent 2 is then 
free to choose whether to bet for or against a, at stakes that are consistent with the stated 
degree of belief. That is, Agent 2 could choose to bet that n will occur, betting $4 against 
Agent 1's $6. Or Agent 2 could bet $6 against $4 that A will not occur." If an agent's degrees 
of belief do not accurately reflect the world, then you would expect that it would tend to lose 
money over the long run to an opposing agent whose beliefs more accurately reflect the state 
of the world. 

But de Finetti proved something much stronger: If Agent 1 expresses a set ofdegrees of 
belief that violate the axioms of probability theory then there is a combination of bets Agent 
2 that guarantees that Agent 1 will lose money every time. So if you accept the idea that an 
agent should be willing to "put its money where its probabilities are," then you should accept 
that it is irrational to have beliefs that violate the axioms of probability. 

One might think that this betting game is rather contrived. For example, what if one 
refuses to bet? Does that end the argument? The answer is that the betting game is an abstract 
model for the decision-making situation in which every agent is unavoidably involved at every 
moment. Every action (including inaction) is a kind of bet, and every outcome can be seen as 
a payoff of the bet. Refusing to bet is like refusing to allow time to pass. 

We will not provide the proof of de Finetti's theorem, but we will show an example. 
Suppose that Agent 1 has the set of degrees of belief from Equation (13.3). Figure 13.2 
shows that if Agent 2 chooses to bet $4 on a, $3 on b, and $2 on ~ ( u  V b), then Agent 1 
always loses money, regardless of the outcomes for u and b. 

Agent 1 

1 Figure 13.2 Because Agent 1 has inconsistent beliefs, Agent 2 is able to devise a set o f  1 

Proposition Belief 

a 0.4 
b 0.3 

/ bets that guarantees a loss for Agent 1 ,  no matter what the outcome o f  u and 6.  1 

Agent 2 

One might argue that the agent's preferences for different bank balances are such that the possibility of losing 
$1 is not counterbalanced by an equal possibility of winning $1. One possible response is to make the bet amounts 
small enough to avoid this problem. Savage's analysis ( 1954) circumvents the issue altogether. 

Outcome for Agent 1 
Bet Stakes 

a 4 to 6 
b 3 to 7 

u A b a A 41 la A b la A l b  

-6 -6 4 4 
-7 3 -7 3 

• Also, Bayes’ rule provides a very general account of learning, where 
prior knowledge can be combined with data to update beliefs



Bayesian concept learning with the number game

Rules and Similarity in Concept Learning 

Joshua B. Tenenbaum 
Department of Psychology 

Stanford University, Stanford, CA 94305 
jbt@psych.stanford.edu 

Abstract 

This paper argues that two apparently distinct modes of generalizing con-
cepts - abstracting rules and computing similarity to exemplars - should 
both be seen as special cases of a more general Bayesian learning frame-
work. Bayes explains the specific workings of these two modes - which 
rules are abstracted, how similarity is measured - as well as why gener-
alization should appear rule- or similarity-based in different situations. 
This analysis also suggests why the rules/similarity distinction, even if 
not computationally fundamental, may still be useful at the algorithmic 
level as part of a principled approximation to fully Bayesian learning. 

1 Introduction 

In domains ranging from reasoning to language acquisition, a broad view is emerging of 
cognition as a hybrid of two distinct modes of computation, one based on applying abstract 
rules and the other based on assessing similarity to stored exemplars [7]. Much support for 
this view comes from the study of concepts and categorization. In generalizing concepts, 
people's judgments often seem to reflect both rule-based and similarity-based computations 
[9], and different brain systems are thought to be involved in each case [8]. Recent psycho-
logical models of classification typically incorporate some combination of rule-based and 
similarity-based modules [1,4]. In contrast to this currently popular modularity position, I 
will argue here that rules and similarity are best seen as two ends of a continuum of possible 
concept representations. In [11,12], I introduced a general theoretical framework to account 
for how people can learn concepts from just a few positive examples based on the principles 
of Bayesian inference. Here I explore how this framework provides a unifying explanation 
for these two apparently distinct modes of generalization. The Bayesian framework not only 
includes both rules and similarity as special cases but also addresses several questions that 
conventional modular accounts do not. People employ particular algorithms for selecting 
rules and measuring similarity. Why these algorithms as opposed to any others? People's 
generalizations appear to shift from similarity-like patterns to rule-like patterns in system-
atic ways, e.g., as the number of examples observed increases. Why these shifts? 

This short paper focuses on a simple learning game involving number concepts, in which 
both rule-like and similarity-like generalizations clearly emerge in the judgments of human 
subjects. Imagine that I have written some short computer programs which take as input a 
natural number and return as output either "yes" or "no" according to whether that number 

In Advances in neural information 
processing systems (1999)

(You will implement this model 
(mostly from scratch!) in 
homework 3)



60

The number game

Which numbers will be accepted by the same 
computer program?

51? 58? 20? 

1 random “yes” example

There is an unknown computer program that generates numbers in the range 1 to 
100. You are provided with a small set of random examples from this program.
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The number game

Which numbers will be accepted by the same 
computer program?

51? 58? 20? 

4 random “yes” examples

There is an unknown computer program that generates numbers in the range 1 to 
100. You are provided with a small set of random examples from this program.



60 52 57 55

The number game

Which numbers will be accepted by the same 
computer program?

51? 58? 20? 

4 random “yes” examples

There is an unknown computer program that generates numbers in the range 1 to 
100. You are provided with a small set of random examples from this program.



A Bayesian model of the number game

Which numbers y  will be accepted by the same 
computer program C?

51?             58?              20? 

random “yes” examples of an unknown concept C

Observations

Predictions:

X = {x(1), . . . , x(n)}
= {60, 52, 57, 55}

P(y ∈ C |X)

P(51 ∈ C |X) P(58 ∈ C |X) P(20 ∈ C |X)



P (h|X) =
P (X|h)P (h)P

h02H
P (X|h0)P (h0)

A Bayesian model of the number game

X = {x(1), ..., x(n)}
We have observations:

Bayes’ rule for computing posterior beliefs:

• mathematical hypotheses: odd numbers (h = [1, 3, 5, …, 99]), even numbers (h = [2, 4, 6, 
… ,100]), square numbers (h = [1, 4, 9, 16]), cube numbers, primes, multiples of n, etc.


• interval hypotheses: continuous intervals of the number line

Likelihood P (X|h)

P (X|h) =
nY

i=1

P (x(i)|h)

We have a space of hypotheses, which are sets of numbers h 2 H

P (h)and prior (more details next slide)

(assumption that examples are independent)

P (x(i)|h) = 1

|h| if x
(i) 2 h

= 0 otherwise
|h| is the “size” of h



A Bayesian model of the number game
The hypothesis space and prior

Mathematical hypotheses
• odd numbers
• even numbers
• square numbers
• cube numbers
• primes
• multiples of n, such that 3 ≤ n ≤ 12
• powers of n, such that 2 ≤ n ≤ 10
• numbers ending in n, such that 0 ≤ n ≤ 9

Interval hypotheses
• Intervals between n and m, such that 1 ≤ n ≤ 100; n ≤ m ≤ 100

(Mathematical hypotheses are 
equally likely in the prior)

(Interval hypotheses reweighted to 
favor intermediate sizes)

P (h)

P (h)

� is free parameter that trades off “math” vs. “interval” hypotheses



P (y 2 C | X)

We want to make predictions for new numbers y:

P (h|X) =
P (X|h)P (h)P

h02H
P (X|h0)P (h0)

A Bayesian model of the number game

X = {x(1), ..., x(n)}
We have observations:

Bayes’ rule for computing posterior beliefs:

Posterior predictions about new example y:

P (y 2 C | X) =
X

h2H

P (y 2 C | h)P (h|X)

first term is 1 or 0 based on membership

Bayesian hypothesis averaging :  when making Bayesian predictions, one must average 
over all possible hypotheses, weighted by their posterior belief



Examples: Bayesian hypothesis averaging

Say you are an insurance company, and you want to predict which customers are 
more likely to get in a car accident.

P (new accident|previous accident) =
X

h

P (new accident|h)P (h|previous accident)

h 2 {good driver, bad driver}

Another example (the previous evidence does not necessarily need to be relevant)

P (new accident|born in Feb.) =
X

h

P (new accident|h)P (h|born in Feb.)

h 2 {good driver, bad driver}

h

previous 
accident

new 
accident

also known as “marginalization” of a variable (h)



The size principle: hypotheses with smaller extensions are more 
likely than hypotheses with larger extensions

= 0 otherwise

P (y 2 C|X)

P (h|X)

Most likely hypotheses

P (x(i)|h) = 1

|h| if x
(i) 2 h

X = [16]

powers of 4
powers of 2

numbers ending in 6
square numbers

even numbers

Likelihood



The size principle: hypotheses with smaller extensions are more 
likely than hypotheses with larger extensions

= 0 otherwise

P (y 2 C|X)

P (h|X)

Most likely hypotheses P (x(i)|h) = 1

|h| if x
(i) 2 h

X = [16, 8, 2, 64]

powers of 2
even numbers

Likelihood

P (X|h) =
nY

i=1

P (x(i)|h)

compounding evidence

Size principle leads to very sharp,
rule-like generalizations from just a 

few examples



How the size principle influences generalization
With size principle (strong sampling):

Without size principle (weak sampling):

P (x(i)|h) = 1

|h| if x
(i) 2 h

= 0 otherwise

= 0 otherwise

P (X|h) = 1 if x(i) 2 h for all i

P (y 2 C|X)

P (y 2 C|X)



Predictions of Bayesian model (strong sampling)

Human vs. model predictions in the number game



Predictions of Bayesian model (weak sampling)

Human vs. model predictions in the number game (weak sampling)

(weak sampling does not 
capture the sharpness of 
people’s generalization 
curves)



Conclusions from Bayesian concept learning 
and the number game

• People can make meaningful predictions from very sparse evidence, aided by 
strong assumptions for how the data is generated (strong sampling)

• People display a mixture of both “rule-like” and “similarity-like” generalizations, 
depending on what the data entails — where most previous psychological 
theories posited two different mechanisms, one for rules and one for similarity

• A Bayesian account of concept learning displays both of these characteristics, 
and can make quantitative predictions regarding how people generalize to new 
examples.

• Discussion point: Where does the hypothesis space come from?
(see final project idea on “Bayesian modeling / Probabilistic programming - 
Number game”)



Bayesian
concept learning with 
tree-structured 
hypothesis space

Children’s
generalizations

Word learning as Bayesian inference
(Xu and Tenenbaum, 2007, Psychological Review) 

Slide credit: Josh Tenenbaum

Prompt: “This is a dax”
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FIGURE 1 | An illustration of categorical perception. When an
observer looks at objects (chickens) that fall into two or more categories
(coops), differences among objects that fall into different categories are
exaggerated, and differences among objects that fall into the same
category are minimized. Conceived by Robert Goldstone, Made
perceptual by Joe Lee.

sea lions may possess equivalence classes, as Schuster-
man et al.5 have argued that these animals show free
substitution between two entities once they have been
associated together.

CP provides a mechanism for the origin of these
(near-) equivalence classes. By CP, our perceptual
systems transform relatively linear sensory signals
into relatively nonlinear internal representations. The
extreme case of this kind of nonlinear transformation
is a step function by which increases to a sensory signal
have no effect on perception until the signal reaches
a certain threshold. At that threshold, perception
changes qualitatively and suddenly. During the flat
portion of the staircase function, different input
signals have equivalent effects. Hence, CP can provide
us with equivalence classes, the beginning of proto-
symbolic thought.

Why would we, or mother nature, want to
build cognitive systems with equivalence classes?
One reason is that they are relatively impervious
to superficial similarities. Once one has formed a
concept that treats all skunks as equivalent for some
purposes, irrelevant variations among skunks can be
greatly deemphasized. People may never be able to
transcend superficial appearances when categorizing
objects,6 nor is it clear that they would want to.7 Still,
one of the most powerful aspects of concepts is their
ability to make superficially different things alike.8 If
one has the concept ‘Things to remove from a burning
house’, even children and jewelry become similar.9

Across modalities, the spoken phonemes /d/ /o/ /g/,
the French word ‘chien’, the written word ‘dog’, and

a picture of a dog can all trigger one’s concept of
dog,10 and although they may trigger slightly different
representations, much of the core information will be
the same. Equivalence classes are particularly useful
when we need to make connections between things
that have different apparent forms.

Equivalence classes are particularly useful when
we need to make connections between things that
have different apparent forms. CP is the first stage of
this process of responding to the essential, rather than
superficial, aspect of an entity. It is the same reason
why most current electronics are digital: To provide
tolerance to superficial variation in voltage signals that
are irrelevant to the critical information. It may well
be that current computers are too brittle because they
throw away too much analog variation in their pursuit
of discrete symbols. Still, it is worth remembering that
the informational system benefiting from the most
years of ‘research and development’, provided by
evolution is the genetic code of life itself, which closely
approximates a digital code consisting of nucleotides
and codons. Complex cellular machinery is dedicated
to assuring that the code is relatively inert, and is
protected from many contextual influences.11 It is
reasonable to think that our cognitive system benefits
from the same strategy of developing (quasi-)reusable
codes.

CP IN SPEECH
As operationalized in psychology, CP is said to
be present when people more reliably distinguish
physically different stimuli when the stimuli come
from different categories than when they come
from the same category.12 The effect was originally
established with speech phoneme categories. For
example, Liberman et al.13 generated a continuum
of equally spaced consonant-vowel syllables with
endpoints reliably identified as /be/ and /ge/, as
shown in Figure 2 (top left graph) by varying the
second formant transition.14 There is a point (around
stimulus value 4) where there is a relatively rapid
decrease in the probability of observers hearing the
sound as a /be/ to hearing it as /de/. At a later
point, around values 9 and 10, observers rapidly
shift from /de/ to /ge/ identifications. In addition to
giving participants an identification task, participants
were also given an ABX discrimination task. In this
task, observers listened to three sounds—A followed
by B followed by X—and indicated whether X was
identical to A or B. Observers performed the task
more accurately when syllables A and B belonged
to different phonemic categories, as indicated by
their identification probabilities, than when they

 2009 John Wi ley & Sons, L td.

From Goldstone and Hendrickson (2009)

Categorical perception: A link between categorization and 
perception/discrimination
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FIGURE 2 | As a physical variable (the direction and extent of the second formant transition) describing speech sounds is varied linearly along the
horizontal axis, a person’s perception relatively rapidly shifts from hearing the sound as a /be/ to hearing it as a /de/, and then rapidly shifts again to
hearing it as a /ge/ (upper left panel). The perceiver’s ability to discriminate sounds improves as the sounds become less similar—going from
discriminations of sounds that differ by one step to two steps to three steps along the horizontal continuum. However, in all cases, discrimination
ability peaks near the boundary separating phonemic categories. Reprinted with permission from Liberman et al.13

were variants of the same category, even when
physical differences were equated. As shown in
Figure 2, observers’ discrimination accuracy tended
to peak at the boundaries between the phonemic
categories. Liberman et al.13 concluded that the
phonemic categories possessed by an adult speaker
of English influence the perceptual discriminations
that they can make.

The strongest version of CP claims that the
probabilities from the category identification task can
completely predict discrimination performance. That
is, people use only their categorizations in order to
determine whether two stimuli are identical. For a
situation in which each stimulus must belong to either

Category A or Category B, this strong statement can
be mathematically expressed as

P(c) = 1 + (p1 − p2)
2

where P(c) is the probability of a correct ABX
discrimination between Stimulus 1 and Stimulus 2,
p1 is the probability of placing Stimulus 1 in category
A, and p2 is the probability of placing Stimulus 2 in
that same category.15 This strong relation is rarely
found in empirical results.16 Listeners are better able
to discriminate between two sounds than is predicted
only by their categorization performance, indicating

 2009 John Wi ley & Sons, L td.
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were variants of the same category, even when
physical differences were equated. As shown in
Figure 2, observers’ discrimination accuracy tended
to peak at the boundaries between the phonemic
categories. Liberman et al.13 concluded that the
phonemic categories possessed by an adult speaker
of English influence the perceptual discriminations
that they can make.

The strongest version of CP claims that the
probabilities from the category identification task can
completely predict discrimination performance. That
is, people use only their categorizations in order to
determine whether two stimuli are identical. For a
situation in which each stimulus must belong to either

Category A or Category B, this strong statement can
be mathematically expressed as

P(c) = 1 + (p1 − p2)
2

where P(c) is the probability of a correct ABX
discrimination between Stimulus 1 and Stimulus 2,
p1 is the probability of placing Stimulus 1 in category
A, and p2 is the probability of placing Stimulus 2 in
that same category.15 This strong relation is rarely
found in empirical results.16 Listeners are better able
to discriminate between two sounds than is predicted
only by their categorization performance, indicating

 2009 John Wi ley & Sons, L td.

From Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The 
discrimination of speech sounds within and across phoneme boundaries. Journal of 
experimental psychology, 54(5), 358.

(“ba” vs. “da” vs. “ga”)

Identification (labeling) task Discrimination task
(ABX; which is X identical to, A or B?)

obtained data

Categorical perception in speech
A link between categorization and discrimination
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FIGURE 3 | Stimuli used by Goldstone.47 Sixteen squares were
constructed by combining four values of brightness with four values of
size. The letters show the categorizations of the squares when
brightness was relevant, and for other participants size was relevant.
Categorization training on the shown categories leads to heightened
discriminability of pairs of squares that differ on brightness, and is at a
peak at the boundary between the As and Bs. Reprinted with
permission from the authors.

right response. Rats learned this second discrimination
better when they had been trained earlier to make
a black/white discrimination. Stimuli also acquire
‘nondistinctiveness’ (or ‘equivalence’). When cues
are irrelevant for an earlier discrimination, there
is a deleterious effect on subsequent discrimination
learning with them.44 Both of these effects are
commonplace in human subjects,45,46 and provide
mechanisms for an influence of categorization on
visual discriminations.

Researchers have explored the question of
whether arbitrary new visual categorizations can be
learned, and if so, whether they alter perceptual
sensitivities. Using the stimuli shown in Figure 3,
Goldstone47 first gave participants categorization
training involving either brightness or size. Subsequent
to categorization training, participants were given a
same/different judgment task in which horizontally
or vertically adjacent squares from Figure 3 were
presented, or the same square was repeated twice and
participants were required to respond as to whether
the two squares were exactly identical on both their
size and brightness, or differed even slightly on either
dimension. When a dimension had been relevant for
categorization, participants’ same/different judgments
along this entire dimension were more accurate,

compared to those from participants for whom the
dimension was irrelevant or control participants who
did not undergo categorization training. In addition,
consistent with an acquired CP effect, the greatest
increase in accuracy was found for those particular
dimension values that were at the boundary between
learned categories (i.e., comparing values 2 and 3 on
brightness).

Other researchers have shown similar CP
effects with richer, more realistic stimuli. Whereas
Goldstone47 found mostly increased discriminability
for objects belonging to different categories (akin
to Lawrence’s acquired distinctiveness), Livingston
et al.48 found mostly decreased discriminability for
objects belonging to the same category (akin to
acquired equivalence), using complex line drawings
reminiscent of biological cells. Levin and Beale49

found CP effects along continua that were created
by morphing from one realistic face to another,
again indicating relatively rapid acquisition of
perceptual equivalence classes. Using the same
morphing technique to create new dimensions
between arbitrarily paired endpoints, Newell and
Bulthoff50 found that classifying familiar, three-
dimensional objects produced increased perceptual
discriminability for these objects at the classification
boundary. Results suggest that CP effects with faces
are more robust when the faces that serve as endpoints
of a morph continuum are familiar rather than
unfamiliar faces, or when they have been labeled
to make them unique.51 The difference in CP effects
because of face familiarity have been localized to a
few brain regions in the right hemisphere, including
the middle occipital gyrus, the posterior fusiform
gyrus, and the inferotemporal cortex.52 Goldstein
and Davidoff53 found CP of animal patterns for
members of a culture where differences between
patterns are important and captured by their system
of animal terms. All of these results suggest that
CP is a general and robust phenomenon in visual
processing, providing a rationale for developing a
general account of it in terms of the development of
perceptual expertise.54

One visual domain worthy of singling out is
color. Early work on the cross-cultural perception
of color suggested that cultures with very different
color categories, as indicated by their color words,
nonetheless, showed similar perceptual memory
differences for different colors.55 However, more
recent work has shown that cultures that organize
colors into different categories show differences in
their perceptual memory and sensitivity that are
consistent with these categories.56 For example,
people show better ability to remember which of
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The prototype model does not give independent justification for
the assumption that prototypes should exert a pull on neighboring
speech sounds; several models cannot account for better than
chance within-category discriminability of vowels. Other models
give explanations of how the effect might occur but do not address
the question of why it should occur. Our rational model fills these
gaps by providing a mathematical formalization of the perceptual
magnet effect at Marr’s (1982) computational level, considering
the goals of the computation and the logic by which these goals
can be achieved. It gives independent justification for the optimal-
ity of a perceptual bias toward category centers and simultaneously
predicts a baseline level of within-category discrimination. Fur-
thermore, our model goes beyond these previous models to make
novel predictions about the types of variability that should be seen
in the perceptual magnet effect.

Theoretical Overview of the Model

Our model of the perceptual magnet effect focuses on the idea
that we can analyze speech perception as a kind of optimal statis-
tical inference. The goal of listeners, in perceiving a speech sound,
is to recover the phonetic detail of a speaker’s target production.
They infer this target production using the information that is
available to them from the speech signal and their prior knowledge
of phonetic categories. Here we give an intuitive overview of our
model in the context of speech perception, followed by a more
general mathematical account in the next section.

Phonetic categories are defined in the model as distributions of
speech sounds. When speakers produce a speech sound, they
choose a phonetic category and then articulate a speech sound
from that category. They can use their specific choice of speech
sounds within the phonetic category to convey coarticulatory in-
formation, affect, and other relevant information. Because there
are several factors that speakers might intend to convey, and given
that each factor can cause small fluctuations in acoustics, we
assume that the combination of these factors approximates a
Gaussian, or normal, distribution. Phonetic categories in the model
are thus Gaussian distributions of target speech sounds. Categories
may differ in the location of their means, or prototypes, and in the
amount of variability they allow. In addition, categories may differ
in frequency so that some phonetic categories are used more
frequently in a language than others. The use of Gaussian phonetic
categories in this model does not reflect a belief that speech sounds
actually fall into parametric distributions. Rather, the mathematics
of the model are easiest to derive in the case of Gaussian catego-
ries. As discussed later, the general effects that are predicted in the
case of Gaussian categories are similar to those predicted for other
types of unimodal distributions.

In the speech sound heard by listeners, the information about the
target production is masked by various types of articulatory, acous-
tic, and perceptual noise. The combination of these noise factors is
approximated through Gaussian noise, so that the speech sound
heard is normally distributed around the speaker’s target produc-
tion.

Formulated in this way, speech perception becomes a statistical
inference problem. When listeners perceive a speech sound, they
can assume it was generated by selecting a target production from
a phonetic category and then generating a noisy speech sound on
the basis of the target production. Listeners hear the speech sound

and know the structure and location of phonetic categories in their
native language. Given this information, they need to infer the
speaker’s target production. They infer phonetic detail in addition
to category information in order to recover the gradient coarticu-
latory and nonlinguistic information that the speaker intended.

With no prior information about phonetic categories, listeners’
perception should be unbiased, given that under Gaussian noise,
speech sounds are equally likely to be shifted in either direction. In
this case, listeners’ safest strategy is to guess that the speech sound
they heard was the same as the target production. However,
experienced listeners know that they are more likely to hear speech
sounds near the centers of phonetic categories than speech sounds
farther from category centers. The optimal way to use this knowl-
edge of phonetic categories to compensate for a noisy speech
signal is to bias perception toward the center of a category, toward
the most likely target productions.

In a hypothetical language with a single phonetic category,
where listeners are certain that all sounds belong to that category,
this perceptual bias toward the category mean causes all of per-
ceptual space to shrink toward the center of the category. The
resulting perceptual pattern is shown in Figure 2a. If there is no
uncertainty about category membership, perception of distant
speech sounds is more biased than perception of proximal speech
sounds so that all of perceptual space is shrunk to the same degree.

In order to optimally infer a speaker’s target production in the
context of multiple phonetic categories, listeners must determine
which categories are likely to have generated a speech sound. They
can then predict the speaker’s target production on the basis of the
structure of these categories. If they are certain of a speech sound’s
category membership, their perception of the speech sound should
be biased toward the mean of that category, as was the case in a

Actual Stimulus

Perceived Stimulus

(a)

Actual Stimulus

Perceived Stimulus

(b)

Figure 2. Predicted relationship between acoustic and perceptual space in
the case of (a) one category and (b) two categories.
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FIGURE 2 | As a physical variable (the direction and extent of the second formant transition) describing speech sounds is varied linearly along the
horizontal axis, a person’s perception relatively rapidly shifts from hearing the sound as a /be/ to hearing it as a /de/, and then rapidly shifts again to
hearing it as a /ge/ (upper left panel). The perceiver’s ability to discriminate sounds improves as the sounds become less similar—going from
discriminations of sounds that differ by one step to two steps to three steps along the horizontal continuum. However, in all cases, discrimination
ability peaks near the boundary separating phonemic categories. Reprinted with permission from Liberman et al.13

were variants of the same category, even when
physical differences were equated. As shown in
Figure 2, observers’ discrimination accuracy tended
to peak at the boundaries between the phonemic
categories. Liberman et al.13 concluded that the
phonemic categories possessed by an adult speaker
of English influence the perceptual discriminations
that they can make.

The strongest version of CP claims that the
probabilities from the category identification task can
completely predict discrimination performance. That
is, people use only their categorizations in order to
determine whether two stimuli are identical. For a
situation in which each stimulus must belong to either

Category A or Category B, this strong statement can
be mathematically expressed as

P(c) = 1 + (p1 − p2)
2

where P(c) is the probability of a correct ABX
discrimination between Stimulus 1 and Stimulus 2,
p1 is the probability of placing Stimulus 1 in category
A, and p2 is the probability of placing Stimulus 2 in
that same category.15 This strong relation is rarely
found in empirical results.16 Listeners are better able
to discriminate between two sounds than is predicted
only by their categorization performance, indicating
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The Influence of Categories on Perception: Explaining the Perceptual
Magnet Effect as Optimal Statistical Inference
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A variety of studies have demonstrated that organizing stimuli into categories can affect the way the
stimuli are perceived. We explore the influence of categories on perception through one such phenom-
enon, the perceptual magnet effect, in which discriminability between vowels is reduced near prototyp-
ical vowel sounds. We present a Bayesian model to explain why this reduced discriminability might
occur: It arises as a consequence of optimally solving the statistical problem of perception in noise. In
the optimal solution to this problem, listeners’ perception is biased toward phonetic category means
because they use knowledge of these categories to guide their inferences about speakers’ target
productions. Simulations show that model predictions closely correspond to previously published human
data, and novel experimental results provide evidence for the predicted link between perceptual warping
and noise. The model unifies several previous accounts of the perceptual magnet effect and provides a
framework for exploring categorical effects in other domains.

Keywords: perceptual magnet effect, categorical perception, speech perception, Bayesian inference,
rational analysis

The influence of categories on perception is well known in
domains ranging from speech sounds to artificial categories of
objects. Liberman, Harris, Hoffman, and Griffith (1957) first de-
scribed categorical perception of speech sounds, noting that lis-
teners’ perception conforms to relatively sharp identification
boundaries between categories of stop consonants and that
whereas between-category discrimination of these sounds is nearly
perfect, within-category discrimination is little better than chance.
Similar patterns have been observed in the perception of colors
(Davidoff, Davies, & Roberson, 1999), facial expressions (Etcoff
& Magee, 1992), and familiar faces (Beale & Keil, 1995), as well

as the representation of objects belonging to artificial categories
that are learned over the course of an experiment (Goldstone,
1994; Goldstone, Lippa, & Shiffrin, 2001). All of these categorical
effects are characterized by better discrimination of between-
category contrasts than within-category contrasts, although the
magnitude of the effect varies between domains.
In this article, we develop a computational model of the influ-

ence of categories on perception through a detailed investigation of
one such phenomenon, the perceptual magnet effect (Kuhl, 1991),
which has been described primarily in vowels. The perceptual
magnet effect involves reduced discriminability of speech sounds
near phonetic category prototypes. For several reasons, speech
sounds, particularly vowels, provide an excellent starting point for
assessing a model of the influence of categories on perception.
Vowels are naturally occurring, highly familiar stimuli that all
listeners have categorized. As discussed later, a precise two-
dimensional psychophysical map of vowel space can be provided,
and using well-established techniques, discrimination of pairs of
speech sounds can be systematically investigated under well-
defined conditions so that perceptual maps of vowel space can be
constructed. By comparing perceptual and psychophysical maps,
we can measure the extent and nature of perceptual warping and
assess such warping with respect to known categories. In addition,
the perceptual magnet effect shows several qualitative similarities
to categorical effects in perceptual domains outside of language, as
vowel perception is continuous rather than sharply categorical
(Fry, Abramson, Eimas, & Liberman, 1962) and the degree of
category influence can vary substantially across testing conditions
(Gerrits & Schouten, 2004). Finally, the perceptual magnet effect
has been the object of extensive empirical and computational
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• Speaker produces a speech sound T.
• Noise perturbs T into percept S (internal and external 

noise possible).
• The listener calculates the posterior P(T|S) with goal of 

reconstructing the original sound T.
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The prototype model does not give independent justification for
the assumption that prototypes should exert a pull on neighboring
speech sounds; several models cannot account for better than
chance within-category discriminability of vowels. Other models
give explanations of how the effect might occur but do not address
the question of why it should occur. Our rational model fills these
gaps by providing a mathematical formalization of the perceptual
magnet effect at Marr’s (1982) computational level, considering
the goals of the computation and the logic by which these goals
can be achieved. It gives independent justification for the optimal-
ity of a perceptual bias toward category centers and simultaneously
predicts a baseline level of within-category discrimination. Fur-
thermore, our model goes beyond these previous models to make
novel predictions about the types of variability that should be seen
in the perceptual magnet effect.

Theoretical Overview of the Model

Our model of the perceptual magnet effect focuses on the idea
that we can analyze speech perception as a kind of optimal statis-
tical inference. The goal of listeners, in perceiving a speech sound,
is to recover the phonetic detail of a speaker’s target production.
They infer this target production using the information that is
available to them from the speech signal and their prior knowledge
of phonetic categories. Here we give an intuitive overview of our
model in the context of speech perception, followed by a more
general mathematical account in the next section.

Phonetic categories are defined in the model as distributions of
speech sounds. When speakers produce a speech sound, they
choose a phonetic category and then articulate a speech sound
from that category. They can use their specific choice of speech
sounds within the phonetic category to convey coarticulatory in-
formation, affect, and other relevant information. Because there
are several factors that speakers might intend to convey, and given
that each factor can cause small fluctuations in acoustics, we
assume that the combination of these factors approximates a
Gaussian, or normal, distribution. Phonetic categories in the model
are thus Gaussian distributions of target speech sounds. Categories
may differ in the location of their means, or prototypes, and in the
amount of variability they allow. In addition, categories may differ
in frequency so that some phonetic categories are used more
frequently in a language than others. The use of Gaussian phonetic
categories in this model does not reflect a belief that speech sounds
actually fall into parametric distributions. Rather, the mathematics
of the model are easiest to derive in the case of Gaussian catego-
ries. As discussed later, the general effects that are predicted in the
case of Gaussian categories are similar to those predicted for other
types of unimodal distributions.

In the speech sound heard by listeners, the information about the
target production is masked by various types of articulatory, acous-
tic, and perceptual noise. The combination of these noise factors is
approximated through Gaussian noise, so that the speech sound
heard is normally distributed around the speaker’s target produc-
tion.

Formulated in this way, speech perception becomes a statistical
inference problem. When listeners perceive a speech sound, they
can assume it was generated by selecting a target production from
a phonetic category and then generating a noisy speech sound on
the basis of the target production. Listeners hear the speech sound

and know the structure and location of phonetic categories in their
native language. Given this information, they need to infer the
speaker’s target production. They infer phonetic detail in addition
to category information in order to recover the gradient coarticu-
latory and nonlinguistic information that the speaker intended.

With no prior information about phonetic categories, listeners’
perception should be unbiased, given that under Gaussian noise,
speech sounds are equally likely to be shifted in either direction. In
this case, listeners’ safest strategy is to guess that the speech sound
they heard was the same as the target production. However,
experienced listeners know that they are more likely to hear speech
sounds near the centers of phonetic categories than speech sounds
farther from category centers. The optimal way to use this knowl-
edge of phonetic categories to compensate for a noisy speech
signal is to bias perception toward the center of a category, toward
the most likely target productions.

In a hypothetical language with a single phonetic category,
where listeners are certain that all sounds belong to that category,
this perceptual bias toward the category mean causes all of per-
ceptual space to shrink toward the center of the category. The
resulting perceptual pattern is shown in Figure 2a. If there is no
uncertainty about category membership, perception of distant
speech sounds is more biased than perception of proximal speech
sounds so that all of perceptual space is shrunk to the same degree.

In order to optimally infer a speaker’s target production in the
context of multiple phonetic categories, listeners must determine
which categories are likely to have generated a speech sound. They
can then predict the speaker’s target production on the basis of the
structure of these categories. If they are certain of a speech sound’s
category membership, their perception of the speech sound should
be biased toward the mean of that category, as was the case in a

Actual Stimulus

Perceived Stimulus

(a)

Actual Stimulus

Perceived Stimulus

(b)

Figure 2. Predicted relationship between acoustic and perceptual space in
the case of (a) one category and (b) two categories.
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P(T|S)

The speaker makes a sound production T.
Noise in the air perturbs T into S.

Prior on utterance (Gaussian)

Likelihood (Gaussian)

Posterior

Posterior is Gaussian, where the mean is a weighted average between the actual stimulus S and the 
prior mean μc. 
• If the perceptual noise is high (high σS), rely more on the prior category mean
• If the category is highly variable (high σc), rely more on the actual stimulus S

Bayesian model of speech perception

If the stimulus is noisy, pull your perception towards 
the category you think it comes from.
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Key technical concept: Conjugate priors

prior likelihood posterior common use 
case

Normal Normal (unknown 
mean, known variance) Normal estimating mean of a 

continuous sample

Beta Binomial Beta
estimating fairness of 

a coin based on 
counts

Dirichelt Multinomial Dirichelt
estimating weights on 
k-sided dice based on 

counts

…

https://en.wikipedia.org/wiki/Conjugate_prior

When prior and posterior are in the same family, then we have a 
conjugate prior for the likelihood function.

This makes it very easy to compute posterior distributions, as it can 
be done in closed form with standard formulas.



Bayesian model of speech perception: Multiple categories

Bayesian Model of Speech Perception
Our model sets up perception of speech sounds as a statis-
tical problem. The goal of listeners, in perceiving a speech
sound, is to reconstruct the acoustic detail of a speaker’s tar-
get production. They extract this detail using the informa-
tion that is available to them from the speech signal and their
prior knowledge of phonetic categories. Phonetic categories
are defined in this model as Gaussian distributions of speech
sounds; in producing a speech sound, speakers select a pho-
netic category and articulate a target production from that cat-
egory. Listeners hear a distorted version of this target produc-
tion due to articulatory and acoustic noise, approximated in
the model as Gaussian noise. In laying out the mathematics
of the model, we begin by examining the case of a hypotheti-
cal language with one phonetic category; we then move on to
the more complex case of multiple categories.

One Phonetic Category
When listeners perceive a speech sound, they can assume it
was generated by selecting a target production from a pho-
netic category and then generating a noisy speech sound
based on the target production. More formally, if phonetic
category c has mean µc and variance σ2

c , speakers generate
target production T from that phonetic category. Listeners
hear speech sound S through speech signal noise σ2

S. This
statistical model can be written as

T |c ∼ N(µc,σ2
c) (1)

S|T ∼ N(T,σ2
S) (2)

Listeners hear the speech sound S and know the structure and
location of phonetic categories in their native language; their
task is to infer the speaker’s target production T based on this
information.

Using the speech sound S as data and the structure of pho-
netic category c as a prior, listeners can use Bayes’ rule

p(T |S,c) ∝ p(S|T )p(T |c) (3)

to infer the speaker’s target production T . The likelihood
p(S|T ), given by the speech signal noise (Equation 2), assigns
highest probability to speech sound S; the prior p(T |c), given
by phonetic category structure (Equation 1), assigns highest
probability to the mean of the phonetic category. Since both
likelihood and prior are Gaussian, their combination yields
a posterior distribution that is a Gaussian whose mean falls
between the speech sound S and the mean µc of the phonetic
category. This posterior probability distribution can be sum-
marized by its mean (the expectation of T given S and c),
which is

E[T |S,c] =
σ2

cS+σ2
Sµc

σ2
c +σ2

S
(4)

The optimal guess at the speaker’s intended production, then,
is a weighted average of the speech sound heard and the mean
of the speech sound’s phonetic category, where the weights

are determined by the ratio of category variance to speech
signal noise.1

Equation 4 formalizes the idea of a perceptual magnet:
the term µc pulls the perception of speech sounds toward the
mean of the phonetic category, effectively shrinking percep-
tual space around the phonetic category. The resulting per-
ceptual pattern is shown in Figure 1 (a). Note that if there
is no uncertainty about category membership, perception of
speech sounds further from the category mean is more bi-
ased than perception of speech sounds closer to the category
mean. Consequently, all of perceptual space is shrunk to the
same degree. If listeners are certain that all sounds belong to
a single category, perceptual bias toward the category mean
causes all of perceptual space to shrink toward the center of
the category.

The analysis given above is the solution to a standard prob-
lem in Bayesian statistics (e.g., Gelman, Carlin, Stern, & Ru-
bin, 1995), but Huttenlocher, Hedges, and Vevea (2000) also
worked out the solution to an inference problem similar to this
in the domain of non-linguistic stimuli. They noted that sub-
jects’ responses in visual stimulus reproduction tasks are gen-
erally biased toward the mean of the set of stimuli in an exper-
iment and developed a model to account for that bias. Their
model of visual stimulus reproduction assumes that subjects
in an experiment form an implicit category consisting of all
the stimuli they have seen and that they use this implicit cat-
egory to correct for memory uncertainty when asked to re-
produce a stimulus. For a Gaussian category distribution and
Gaussian noise, the optimal way to correct for memory un-
certainty using this implicit category is to bias all responses
toward the mean value of the category, which in this case is
the mean value of the set of stimuli. The mathematical anal-
ysis of this problem is nearly identical to ours, reflecting the
similar structure of the two problems.

Multiple Phonetic Categories
The one-category case, while appropriate to explain the bias
caused by an implicit category of visual stimuli within an ex-
perimental setting, is not appropriate for describing natural
language. We therefore extend the model so that it applies to
the more realistic case of multiple phonetic categories. With
multiple categories, the probability that a particular category
generated a speech sound can be calculated using Bayes’ rule:

p(c|S) =
p(S|c)p(c)

∑c p(S|c)p(c)
(5)

where p(S|c) is computed by summing over all possible target
sounds, p(S|c) =

∫
p(S|T )p(T |c) dT , and p(c) reflects the

prior probability assigned to category c.
The probability that a particular category generated a

speech sound can be used in evaluating what the speaker’s tar-
get production might have been. In reconstructing the target,
listeners should take into account all the categories that could

1The expectation is optimal when the penalty for misidentifying
a speech sound increases with squared distance from the target.
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Bayesian Model of Speech Perception
Our model sets up perception of speech sounds as a statis-
tical problem. The goal of listeners, in perceiving a speech
sound, is to reconstruct the acoustic detail of a speaker’s tar-
get production. They extract this detail using the informa-
tion that is available to them from the speech signal and their
prior knowledge of phonetic categories. Phonetic categories
are defined in this model as Gaussian distributions of speech
sounds; in producing a speech sound, speakers select a pho-
netic category and articulate a target production from that cat-
egory. Listeners hear a distorted version of this target produc-
tion due to articulatory and acoustic noise, approximated in
the model as Gaussian noise. In laying out the mathematics
of the model, we begin by examining the case of a hypotheti-
cal language with one phonetic category; we then move on to
the more complex case of multiple categories.

One Phonetic Category
When listeners perceive a speech sound, they can assume it
was generated by selecting a target production from a pho-
netic category and then generating a noisy speech sound
based on the target production. More formally, if phonetic
category c has mean µc and variance σ2

c , speakers generate
target production T from that phonetic category. Listeners
hear speech sound S through speech signal noise σ2

S. This
statistical model can be written as

T |c ∼ N(µc,σ2
c) (1)

S|T ∼ N(T,σ2
S) (2)

Listeners hear the speech sound S and know the structure and
location of phonetic categories in their native language; their
task is to infer the speaker’s target production T based on this
information.

Using the speech sound S as data and the structure of pho-
netic category c as a prior, listeners can use Bayes’ rule

p(T |S,c) ∝ p(S|T )p(T |c) (3)

to infer the speaker’s target production T . The likelihood
p(S|T ), given by the speech signal noise (Equation 2), assigns
highest probability to speech sound S; the prior p(T |c), given
by phonetic category structure (Equation 1), assigns highest
probability to the mean of the phonetic category. Since both
likelihood and prior are Gaussian, their combination yields
a posterior distribution that is a Gaussian whose mean falls
between the speech sound S and the mean µc of the phonetic
category. This posterior probability distribution can be sum-
marized by its mean (the expectation of T given S and c),
which is

E[T |S,c] =
σ2

cS+σ2
Sµc

σ2
c +σ2

S
(4)

The optimal guess at the speaker’s intended production, then,
is a weighted average of the speech sound heard and the mean
of the speech sound’s phonetic category, where the weights

are determined by the ratio of category variance to speech
signal noise.1

Equation 4 formalizes the idea of a perceptual magnet:
the term µc pulls the perception of speech sounds toward the
mean of the phonetic category, effectively shrinking percep-
tual space around the phonetic category. The resulting per-
ceptual pattern is shown in Figure 1 (a). Note that if there
is no uncertainty about category membership, perception of
speech sounds further from the category mean is more bi-
ased than perception of speech sounds closer to the category
mean. Consequently, all of perceptual space is shrunk to the
same degree. If listeners are certain that all sounds belong to
a single category, perceptual bias toward the category mean
causes all of perceptual space to shrink toward the center of
the category.

The analysis given above is the solution to a standard prob-
lem in Bayesian statistics (e.g., Gelman, Carlin, Stern, & Ru-
bin, 1995), but Huttenlocher, Hedges, and Vevea (2000) also
worked out the solution to an inference problem similar to this
in the domain of non-linguistic stimuli. They noted that sub-
jects’ responses in visual stimulus reproduction tasks are gen-
erally biased toward the mean of the set of stimuli in an exper-
iment and developed a model to account for that bias. Their
model of visual stimulus reproduction assumes that subjects
in an experiment form an implicit category consisting of all
the stimuli they have seen and that they use this implicit cat-
egory to correct for memory uncertainty when asked to re-
produce a stimulus. For a Gaussian category distribution and
Gaussian noise, the optimal way to correct for memory un-
certainty using this implicit category is to bias all responses
toward the mean value of the category, which in this case is
the mean value of the set of stimuli. The mathematical anal-
ysis of this problem is nearly identical to ours, reflecting the
similar structure of the two problems.

Multiple Phonetic Categories
The one-category case, while appropriate to explain the bias
caused by an implicit category of visual stimuli within an ex-
perimental setting, is not appropriate for describing natural
language. We therefore extend the model so that it applies to
the more realistic case of multiple phonetic categories. With
multiple categories, the probability that a particular category
generated a speech sound can be calculated using Bayes’ rule:

p(c|S) =
p(S|c)p(c)

∑c p(S|c)p(c)
(5)

where p(S|c) is computed by summing over all possible target
sounds, p(S|c) =

∫
p(S|T )p(T |c) dT , and p(c) reflects the

prior probability assigned to category c.
The probability that a particular category generated a

speech sound can be used in evaluating what the speaker’s tar-
get production might have been. In reconstructing the target,
listeners should take into account all the categories that could

1The expectation is optimal when the penalty for misidentifying
a speech sound increases with squared distance from the target.
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Figure 1: Predicted relationship between acoustic and perceptual space in the case of (a) one category and (b) two categories.

have produced the speech sound they heard, but they should
weight the influence of each category by the probability that
it produced the speech sound. To do this, they marginalize
over phonetic categories, so that

p(T |S) = Σc p(T |S,c)p(c|S) (6)

where p(T |S,c) is the posterior distribution over T computed
by assuming that it comes from category c, as in the single
category case analyzed above (Equation 3).

The posterior distribution on T given S is now a mixture
of Gaussians rather than a single Gaussian, but we can still
compute its mean. Restricting our analysis to the case of cat-
egories with equal variance, the expected value of T given S,
aggregating over all categories, is simply

E[T |S] =
σ2

c

σ2
c +σ2

S
S+

σ2
S

σ2
c +σ2

S
Σc p(c|S)µc (7)

The estimated value of T is thus a weighted average of speech
sound S and the means µc of all the phonetic categories that
might have produced S, where the contribution of µc is reg-
ulated by p(c|S). When listeners are certain of a speech
sound’s phonetic category, this reduces to Equation 4, and
perception of a speech sound S is biased toward the mean of
its phonetic category. However, a speech sound directly on
the border between two categories, with a high probability of
having been generated from either, is pulled simultaneously
toward both category means, each cancelling out the other’s
effect. Shrinkage of perceptual space is thus strongest in areas
of unambiguous speech sound categorization – the centers of
phonetic categories – and weakest at category borders. The
correspondence between acoustic and perceptual spaces for
the two-category case is shown in Figure 1 (b).

Characterizing Perceptual Warping
Our statistical analysis of the problem of speech perception
establishes a simple function mapping an acoustic stimulus,
S, to a percept of the intended speech sound, given by E[T |S].
In the case where multiple phonetic categories are present,
this mapping is given by Equation 7. In order to formally
analyze the qualitative behavior of the model, this section fo-
cuses on the relationship between three measures in the two-
category case: identification, the posterior probability of cat-
egory membership; displacement, the difference between the

actual and perceived stimulus; and warping, the degree of
shrinkage or expansion of perceptual space.

In the two-category case, under the assumptions outlined
above, the identification function has the form of a logistic
function. If both categories have equal prior probability, the
posterior probability of membership in a given category c1
can be written as

p(c1|S) =
1

1+ e−gS+b (8)

where g = µ1−µ2
σ2

c+σ2
S

and b = µ2
1−µ2

2
2(σ2

c+σ2
S)

. A logistic function of this

form is shown in Figure 2 (a). In areas of certain categoriza-
tion, the identification function is at either 1 or 0; a value of
0.5 indicates maximum uncertainty about category member-
ship.

Displacement involves a comparison between the location
of a speech sound in perceptual space E[T |S] and its location
in acoustic space S, where

E[T |S]−S =
σ2

S

σ2
c +σ2

S
(∑

c
p(c|S)µc −S) (9)

In the one-category case, this means the amount of displace-
ment is proportional to the distance between the speech sound
S and the mean µc of the phonetic category. As speech sounds
get farther away from the category mean, they are pulled pro-
portionately farther toward the center of the category. The
dashed lines in Figure 2 (b) show two cases of this. In the case
of multiple categories, the amount of displacement is propor-
tional to the distance between S and a weighted average of the
means of more than one phonetic category. This is shown in
the solid line, where ambiguous speech sounds are displaced
less than would be predicted in the one-category case because
of the competing influence of a second category mean.

Finally, perceptual warping can be characterized based on
the distance between two neighboring points in perceptual
space that are separated by a fixed step ∆S in acoustic space.
This quantity is reflected in the distance between neighbor-
ing points on the bottom layer of each diagram in Figure 1.
By the standard definition of the derivative as a limit, as ∆S
approaches zero this measure of perceptual warping corre-
sponds to the derivative of E[T |S] with respect to S. This
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weight the influence of each category by the probability that
it produced the speech sound. To do this, they marginalize
over phonetic categories, so that
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where p(T |S,c) is the posterior distribution over T computed
by assuming that it comes from category c, as in the single
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Our statistical analysis of the problem of speech perception
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this mapping is given by Equation 7. In order to formally
analyze the qualitative behavior of the model, this section fo-
cuses on the relationship between three measures in the two-
category case: identification, the posterior probability of cat-
egory membership; displacement, the difference between the

actual and perceived stimulus; and warping, the degree of
shrinkage or expansion of perceptual space.

In the two-category case, under the assumptions outlined
above, the identification function has the form of a logistic
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tion, the identification function is at either 1 or 0; a value of
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in acoustic space S, where
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In the one-category case, this means the amount of displace-
ment is proportional to the distance between the speech sound
S and the mean µc of the phonetic category. As speech sounds
get farther away from the category mean, they are pulled pro-
portionately farther toward the center of the category. The
dashed lines in Figure 2 (b) show two cases of this. In the case
of multiple categories, the amount of displacement is propor-
tional to the distance between S and a weighted average of the
means of more than one phonetic category. This is shown in
the solid line, where ambiguous speech sounds are displaced
less than would be predicted in the one-category case because
of the competing influence of a second category mean.

Finally, perceptual warping can be characterized based on
the distance between two neighboring points in perceptual
space that are separated by a fixed step ∆S in acoustic space.
This quantity is reflected in the distance between neighbor-
ing points on the bottom layer of each diagram in Figure 1.
By the standard definition of the derivative as a limit, as ∆S
approaches zero this measure of perceptual warping corre-
sponds to the derivative of E[T |S] with respect to S. This
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Step 2) Compute reconstruction of T as weighted mixture of posteriors
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Figure 1: Predicted relationship between acoustic and perceptual space in the case of (a) one category and (b) two categories.
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weight the influence of each category by the probability that
it produced the speech sound. To do this, they marginalize
over phonetic categories, so that

p(T |S) = Σc p(T |S,c)p(c|S) (6)

where p(T |S,c) is the posterior distribution over T computed
by assuming that it comes from category c, as in the single
category case analyzed above (Equation 3).

The posterior distribution on T given S is now a mixture
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might have produced S, where the contribution of µc is reg-
ulated by p(c|S). When listeners are certain of a speech
sound’s phonetic category, this reduces to Equation 4, and
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its phonetic category. However, a speech sound directly on
the border between two categories, with a high probability of
having been generated from either, is pulled simultaneously
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of unambiguous speech sound categorization – the centers of
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S, to a percept of the intended speech sound, given by E[T |S].
In the case where multiple phonetic categories are present,
this mapping is given by Equation 7. In order to formally
analyze the qualitative behavior of the model, this section fo-
cuses on the relationship between three measures in the two-
category case: identification, the posterior probability of cat-
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above, the identification function has the form of a logistic
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can be written as
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In the one-category case, this means the amount of displace-
ment is proportional to the distance between the speech sound
S and the mean µc of the phonetic category. As speech sounds
get farther away from the category mean, they are pulled pro-
portionately farther toward the center of the category. The
dashed lines in Figure 2 (b) show two cases of this. In the case
of multiple categories, the amount of displacement is propor-
tional to the distance between S and a weighted average of the
means of more than one phonetic category. This is shown in
the solid line, where ambiguous speech sounds are displaced
less than would be predicted in the one-category case because
of the competing influence of a second category mean.

Finally, perceptual warping can be characterized based on
the distance between two neighboring points in perceptual
space that are separated by a fixed step ∆S in acoustic space.
This quantity is reflected in the distance between neighbor-
ing points on the bottom layer of each diagram in Figure 1.
By the standard definition of the derivative as a limit, as ∆S
approaches zero this measure of perceptual warping corre-
sponds to the derivative of E[T |S] with respect to S. This
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(mixture of Gaussians)

• If the perceptual noise is high (high σS), rely 
more on the category means

• If the category is highly variable (high σc), rely 
more on the actual stimulus S
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Figure 3: Relative distances between neighboring stimuli in
Iverson and Kuhl (1995)’s multidimensional scaling analysis
and in the model. The labels µ/i/ and µ/e/ show locations
of category means in the model; distances are smallest near
these means and largest at the boundary between them.

dimensional scaling solution. Since multidimensional scal-
ing gives relative, and not absolute, distances between stim-
uli, this comparison was evaluated based on whether mel
distances in the model were proportional to distances found
through multidimensional scaling. As shown in Figure 3, the
model yielded an extremely close fit to the empirical data,
with interstimulus distances that were proportional to those
found in multidimensional scaling (r=0.97). This simulation
used the following parameters:

µ/i/: F1=224 Hz, F2=2,413 Hz
µ/e/: F1=423 Hz, F2=1,936 Hz
σ2

c : 5,873 (σc = 77 mels)
σ2

S: 4,443 (σS = 67 mels)
The fit obtained between the simulation and the empirical

data is extremely close; however, model parameters derived
in this simulation are meant to serve only as a first approxima-
tion of the actual parameters in vowel perception. Because of
the variability that has been found in subjects’ goodness rat-
ings of speech stimuli, it is likely that these parameters are
somewhat off from their actual values, and it is also possible
that the parameters vary between subjects.

To understand the behavior of the model under various pa-
rameter combinations, we varied the prior probability, cate-
gory variance, and speech signal noise independently in simu-
lations. Varying the prior probability of the categories causes
a shift in the discriminative boundary between the /i/ and /e/
categories. The boundary is shifted toward the category with
lower prior probability, so that a larger region of acoustic
space between the two categories is classified as belonging
to the category with higher prior probability. This sort of
boundary shift has been documented based on lexical context
(Ganong, 1980): in contexts where one phoneme would form

a lexical item and the other would not, phoneme boundaries
are shifted toward the phoneme that makes the non-word.

Manipulating category variance yields extreme categorical
perception in categories with low variance and perception that
is less categorical in categories with high variance. When the
variance is so high that the distribution of speech sounds in
the two categories is unimodal, the model predicts that all
speech sounds are biased toward a point between the two cat-
egory means.

Finally, manipulating the speech signal noise produces a
complex effect. Whereas adding low levels of noise makes
perception more categorical, there comes a point where noise
is too high to determine which category produced a speech
sound, blurring the boundary between categories.

In this section, we have demonstrated through quantitative
simulations based on a reasonable set of parameters that the
model can reproduce Iverson and Kuhl (1995)’s quantitative
multidimensional scaling data for the /i/ and /e/ categories.
In addition, we have shown that the model captures similar
patterns of perception using a wide range of parameter val-
ues and that parameter changes cause predictable shifts in
boundary location and in the degree to which perception is
categorical. Our model thus provides quantitative, as well as
qualitative, predictions of the perceptual magnet effect.

Discussion
This paper has described a Bayesian model of speech per-
ception in which listeners reconstruct the acoustic detail of a
speaker’s target production based on the speech sound they
hear and their prior knowledge of phonetic categories. Un-
certainty in the speech signal causes listeners to infer a target
production that is closer to the mean of a phonetic category
than the speech sound they actually heard. Assuming a lan-
guage has multiple phonetic categories, listeners must first in-
fer which category produced a speech sound and can then use
that information to guide their inference of acoustic detail.

A basic assumption in the model is that listeners have
knowledge of phonetic categories but are trying to infer pho-
netic detail. This assumption contrasts with previous models
but is consistent with empirical data showing that listeners
are sensitive to sub-phonemic detail at both neural and be-
havioral levels (Pisoni & Tash, 1974; Blumstein, Myers, &
Rissman, 2005). Phonetic detail provides coarticulatory in-
formation that can help listeners identify upcoming words,
and data have suggested that listeners use this coarticulatory
information on-line in lexical recognition tasks (Gow, 2001).
Though one could contend that listeners’ ultimate goal is to
categorize speech sounds into discrete phonemes, they seem
to attend to phonetic detail in the speech signal as well.

The model brings three different analyses of categorical ef-
fects together under a single framework. The first piece of this
model relates to Huttenlocher et al. (2000)’s account of cate-
gory effects on visual stimulus reproduction. In their model,
when category structure was present in the stimuli, subjects
used this structure to compensate for uncertainty in memory
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Comparing the Bayesian model to perceptual data

Computing perceptual 
distance
• Participant 

discrimination 
judgments converted to 
perceptual distance 
using multi-dimensional 
scaling (MDS)

• Bayesian model 
predictions computed 
as E [T |S ]



• Categories influence perception in a range of 
domains: speech, color, faces, etc...

Although it’s clear that categories influence 
perception, it’s not clear WHY they should

• There are many other models of categorical 
perception and perceptual magnet effect, but 
they don’t really answer the “why” question.

The Bayesian model suggests why perception should 
have this characteristic: It’s a rational adaption for 
perceiving/reconstructing stimuli under noise.

Conclusions from the Bayesian models of the 
perceptual magnet effect



Implications for understanding behavioral data: User ratings
Actual object Snoise

( in perception, 
memory, etc.) P(T|S)

T

Perceived experience may 
warped by the category c

Price, quality, and many 
other attribute ratings (attire, 
good for groups, etc.) will be 
warped by category 
knowledge (Thai 
restaurant), especially if 
ratings are entered with a 
delay.
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ABSTRACT—Human perception and memory are often ex-
plained as optimal statistical inferences that are informed
by accurate prior probabilities. In contrast, cognitive judg-
ments are usually viewed as following error-prone heuris-
tics that are insensitive to priors. We examined the optimality
of human cognition in a more realistic context than typical
laboratory studies, asking people to make predictions
about the duration or extent of everyday phenomena such
as human life spans and the box-office take of movies. Our
results suggest that everyday cognitive judgments follow
the same optimal statistical principles as perception and
memory, and reveal a close correspondence between peo-
ple’s implicit probabilistic models and the statistics of the
world.

If you were assessing the prospects of a 60-year-old man, how

much longer would you expect him to live? If you were an ex-
ecutive evaluating the performance of a movie that had made

$40 million at the box office so far, what would you estimate for
its total gross? Everyday life routinely poses such challenges of
prediction, situations in which the true answer cannot be de-

termined on the basis of the limited data available, yet common
sense suggests at least a reasonable guess. Analogous inductive

problems—for example, identifying the three-dimensional
structure underlying a two-dimensional image (Freeman, 1994;

Knill & Richards, 1996) or judging when a particular fact is
likely to be needed in the future (Anderson, 1990; Anderson &
Milson, 1989)—arise in many domains of human psychology.

Accounts of human perception and memory suggest that these
systems effectively approximate optimal statistical inference,

correctly combining new data with an accurate probabilistic
model of the environment (Anderson, 1990; Anderson & Milson,
1989; Anderson & Schooler, 1991; Freeman, 1994; Geisler,

Perry, Super, & Gallogly, 2001; Huber, Shiffrin, Lyle, & Ruys,
2001; Knill & Richards, 1996; Körding & Wolpert, 2004;

Shiffrin & Steyvers, 1997; Simoncelli & Olshausen, 2001;
Weiss, Simoncelli, & Adelson, 2002). In contrast—perhaps as a

result of the great attention garnered by the work of Kahneman,
Tversky, and their colleagues (e.g., Kahneman, Slovic, &

Tversky, 1982; Tversky & Kahneman, 1974)—cognitive judg-
ments under uncertainty are often characterized as the result of
error-prone heuristics that are insensitive to prior probabilities.

This view of cognition, based on laboratory studies, appears
starkly at odds with the near-optimality of other human capac-

ities, and with people’s ability to make smart predictions from
sparse data in the real world.

To evaluate how cognitive judgments compare with optimal

statistical inferences in real-world settings, we asked people to
predict the duration or extent of everyday phenomena such as

human life spans and the gross of movies. We varied the phe-
nomena that were described and the amount of data available,

and we compared the predictions of human participants with
those of an optimal Bayesian model, described in detail in the
appendix. Here, we illustrate the principles behind this Bayes-

ian analysis by taking the example of trying to predict the total
life span of a man we have just met, on the basis of the man’s

current age. If ttotal indicates the total amount of time the man
will live and t indicates his current age, the task is to estimate

ttotal from t. The Bayesian predictor computes a probability
distribution over ttotal given t, by applying Bayes’s rule:

pðttotaljtÞ / pðtjttotalÞpðttotalÞ ð1Þ

The probability assigned to a particular value of ttotal given t is

proportional to the product of two factors: the likelihood p(t|ttotal)
and the prior probability p(ttotal).

The likelihood is the probability of first encountering a man at
age t given that his total life span is ttotal. Assuming for simplicity
that we are equally likely to meet a man at any point in his life,

this probability is uniform, p(t|ttotal) 5 1/ttotal, for all possible
values of t between 0 and ttotal (and 0 for values outside that

range). This assumption of uniform random sampling is analo-
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You stopped by a friend’s apartment, and she has been 
watching a movie for 15 minutes. What would you predict for 
the length of the movie in total?

Let’s make some predictions

You stopped by a friend’s apartment, and she has been 
watching a movie for 75 minutes. What would you predict for 
the length of the movie in total?



A movie has grossed 75 million dollars at the box office, but 
you don’t know how long it’s been running. How much will it 
gross in total?

A movie has grossed 15 million dollars at the box office, but 
you don’t know how long it’s been running. How much will it 
gross in total?

Let’s make some predictions

You stopped by a friend’s apartment, and she has been 
watching a movie for 15 minutes. What would you predict for 
the length of the movie in total?

You stopped by a friend’s apartment, and she has been 
watching a movie for 75 minutes. What would you predict for 
the length of the movie in total?



Let’s make some predictions

best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2. People’s predictions for various everyday phenomena. The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximately Erlang. The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
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Fig. 2. People’s predictions for various everyday phenomena. The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximately Erlang. The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
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dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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ttotal :  the total quantity you are estimating

t :  the current quantity you are given (current 
runtime of movie, current gross, etc.)

Assumption: you are equally likely to encounter a 
quantity at any point across its lifespan (movie / person / 
etc.)

P (ttotal) is estimated from real world statistics

P (ttotal|t) =
P (t|ttotal)P (ttotal)

P (t)

Bayesian estimation problem

likelihoodposterior prior

Likelihood

Prior

P (t|ttotal) = 1/ttotal

Simple Bayesian model of predicting the future

ttotal
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Fig. 2. People’s predictions for various everyday phenomena. The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximately Erlang. The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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A movie has grossed 15 million dollars at the box office, but you 
don’t know how long it’s been running. How much will it gross total?



gous to the Copernican anthropic principle in Bayesian cos-

mology (Buch, 1994; Caves, 2000; Garrett & Coles, 1993; Gott,
1993, 1994; Ledford, Marriott, & Crowder, 2001) and the ge-

neric-view principle in Bayesian models of visual perception
(Freeman, 1994; Knill & Richards, 1996). The prior probability

p(ttotal) reflects our general expectations about the relevant class
of events—in this case, about how likely it is that a man’s life
span will be ttotal. Analysis of actuarial data shows that the

distribution of life spans in our society is (ignoring infant mor-
tality) approximately Gaussian—normally distributed—with a

mean, m, of about 75 years and a standard deviation, s, of about
16 years.

Combining the prior with the likelihood according to Equation
1 yields a probability distribution p(ttotal|t) over all possible total
life spans ttotal for a man encountered at age t. A good guess for

ttotal is the median of this distribution—that is, the point at which
it is equally likely that the true life span is longer or shorter.

Taking the median of p(ttotal|t) defines a Bayesian prediction
function, specifying a predicted value of ttotal for each observed
value of t. Prediction functions for events with Gaussian priors

are nonlinear: For values of t much less than the mean of the
prior, the predicted value of ttotal is approximately the mean;

once t approaches the mean, the predicted value of ttotal in-
creases slowly, converging to t as t increases but always re-

maining slightly higher, as shown in Figure 1. Although its
mathematical form is complex, this prediction function makes
intuitive sense for human life spans: A predicted life span of

about 75 years would be reasonable for a man encountered at age
18, 39, or 51; if we met a man at age 75, we might be inclined to

give him several more years at least; but if we met someone at age
96, we probably would not expect him to live much longer.

This approach to prediction is quite general, applicable to any

problem that requires estimating the upper limit of a duration,
extent, or other numerical quantity given a sample drawn from

that interval (Buch, 1994; Caves, 2000; Garrett & Coles, 1993;
Gott, 1993, 1994; Jaynes, 2003; Jeffreys, 1961; Ledford et al.,

2001; Leslie, 1996; Maddox, 1994; Shepard, 1987; Tenenbaum
& Griffiths, 2001). However, different priors will be appropriate
for different kinds of phenomena, and the prediction function

will vary substantially as a result. For example, imagine trying to
predict the total box-office gross of a movie given its take so far.

The total gross of movies follows a power-law distribution, with
p(ttotal) / ttotal

!g for some g> 0.1 This distribution has a highly

non-Gaussian shape (see Fig. 1), with most movies taking in only
modest amounts, but occasional blockbusters making huge
amounts of money. In the appendix, we show that for power-law

priors, the Bayesian prediction function picks a value for ttotal

that is a multiple of the observed sample t. The exact multiple

depends on the parameter g. For the particular power law that
best fits the actual distribution of movie grosses, an optimal

Bayesian observer would estimate the total gross to be approx-
imately 50% greater than the current gross: Thus, if we observe a
movie has made $40 million to date, we should guess a total

gross of around $60 million; if we observe a current gross of only
$6 million, we should guess about $9 million for the total.

Although such constant-multiple prediction rules are optimal
for event classes that follow power-law priors, they are clearly

inappropriate for predicting life spans or other kinds of events
with Gaussian priors. For instance, upon meeting a 10-year-old
girl and her 75-year-old grandfather, we would never predict

that the girl will live a total of 15 years (1.5 " 10) and the
grandfather will live to be 112 (1.5" 75). Other classes of priors,

such as the exponential-tailed Erlang distribution, p(ttotal) /
ttotalexp(!ttotal/b) for b> 0,2 are also associated with distinctive
optimal prediction functions. For the Erlang distribution, the

Fig. 1. Bayesian prediction functions and their associated prior distri-
butions. The three columns represent qualitatively different statistical
models appropriate for different kinds of events. The top row of plots
shows three parametric families of prior distributions for the total dura-
tion or extent, ttotal, that could describe events in a particular class. Lines
of different styles represent different parameter values (e.g., different
mean durations) within each family. The bottom row of plots shows the
optimal predictions for ttotal as a function of t, the observed duration or
extent of an event so far, assuming the prior distributions shown in the top
panel. For Gaussian priors (left column), the prediction function always
has a slope less than 1 and an intercept near the mean m: Predictions are
never much smaller than the mean of the prior distribution, nor much
larger than the observed duration. Power-law priors (middle column)
result in linear prediction functions with variable slope and a zero inter-
cept. Erlang priors (right column) yield a linear prediction function that
always has a slope equal to 1 and a nonzero intercept.

1When g > 1, a power-law distribution is often referred to in statistics and
economics as a Pareto distribution.

2The Erlang distribution is a special case of the gamma distribution. The
gamma distribution is p(ttotal) / ttotal

k!1exp(!ttotal/b), where k > 0 and b > 0
are real numbers. The Erlang distribution assumes that k is an integer. Following
Shepard (1987), we use a one-parameter Erlang distribution, fixing k at 2.
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Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
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TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2. People’s predictions for various everyday phenomena. The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximately Erlang. The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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Fig. 2. People’s predictions for various everyday phenomena. The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximately Erlang. The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).

Volume 17—Number 9 769

Thomas L. Griffiths and Joshua B. Tenenbaum

Movie runtimes
(Gaussian)

ttotal

P (ttotal|t) =
P (t|ttotal)P (ttotal)

P (t)

P (ttotal) / t��
total

P (ttotal) / exp(� 1

2�2
(ttotal � µ)2)

Gaussian prior

Power-law prior

Posterior

Different priors have qualitatively different predictions



best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2. People’s predictions for various everyday phenomena. The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximately Erlang. The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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included in a booklet that participants completed for a set of

unrelated experiments.

Materials
Each participant made a prediction about one instance from
each of the five different classes seen by his or her group. Each

prediction was based on one of five possible values of t, varied
randomly between subjects. These values were $1, $6, $10, $40,

and $100 million for movie grosses; 2, 5, 12, 32, and 67 lines for
poem lengths; 18, 39, 61, 83, and 96 years for life spans; 1, 3, 7,
11, and 23 years for reigns of pharaohs; 1, 3, 7, 11, and 23 years

for lengths of marriages; 30, 60, 80, 95, and 110 min for movie
run times; 1, 3, 7, 15, and 31 years for terms of U.S. repre-

sentatives; 10, 20, 35, 50, and 70 min for baking times for cakes;
and 1, 3, 7, 11, and 23 min for waiting times. In each case,
participants read several sentences establishing context and

then were asked to predict ttotal given t.
The questions were presented in survey format. Each survey

began as follows:

Each of the questions below asks you to predict something—either

a duration or a quantity—based on a single piece of information.

Please read each question and write your prediction on the line

below it. We’re interested in your intuitions, so please don’t make

complicated calculations—just tell us what you think!

Each question was then introduced with a couple of sentences

to provide a context. Following are sample questions:

Movie grosses: Imagine you hear about a movie that has taken in 10

million dollars at the box office, but don’t know how long it has

been running. What would you predict for the total amount of box

office intake for that movie?

Poem lengths: If your friend read you her favorite line of poetry,

and told you it was line 5 of a poem, what would you predict for the

total length of the poem?

Life spans: Insurance agencies employ actuaries to make predic-

tions about people’s life spans—the age at which they will die—

based upon demographic information. If you were assessing an

insurance case for an 18-year-old man, what would you predict for

his life span?

Reigns of pharaohs: If you opened a book about the history of

ancient Egypt to a page listing the reigns of the pharaohs, and

noticed that at 4000 BC a particular pharaoh had been ruling for

11 years, what would you predict for the total duration of his reign?

Lengths of marriages: A friend is telling you about an acquaintance

whom you do not know. In passing, he happens to mention that this

person has been married for 23 years. How long do you think this

person’s marriage will last?

Movie run times: If you made a surprise visit to a friend, and found

that they had been watching a movie for 30 minutes, what would

you predict for the length of the movie?

Terms of U.S. representatives: If you heard a member of the House

of Representatives had served for 15 years, what would you predict

his total term in the House would be?

Baking times for cakes: Imagine you are in somebody’s kitchen and

notice that a cake is in the oven. The timer shows that it has been

baking for 35 minutes. What would you predict for the total amount

of time the cake needs to bake?

Waiting times: If you were calling a telephone box office to book

tickets and had been on hold for 3 minutes, what would you predict

for the total time you would be on hold?

RESULTS

We first filtered out responses that could not be analyzed or that

indicated a misunderstanding of the task, removing predictions
that did not correspond to numerical values or were less than
ttotal. Only a small minority of responses failed to meet these

criteria, except in the case of the marriage predictions. The total
number of responses analyzed was 174 for movie grosses, 197 for

poem lengths, 197 for life spans, 191 for reigns of pharaohs, 136
for movie run times, 130 for terms of U.S. representatives, 126

for baking times for cakes, and 158 for waiting times. The re-
sponses for the marriage stimuli were problematic because the
majority of participants (52%) indicated that marriages last

‘‘forever.’’ This accurately reflects the proportion of marriages
that do not end in divorce (Kreider & Fields, 2002), but pre-

vented us from analyzing the data using methods based on
median values. We therefore did not analyze responses for the

marriage stimuli further.
People’s judgments for life spans, movie run times, movie

grosses, poem lengths, and terms of U.S. representatives were

indistinguishable from optimal Bayesian predictions based on
the empirical prior distributions, as shown in Figure 2. People’s

prediction functions took on very different shapes in domains
characterized by Gaussian, power-law, and Erlang priors, just as
expected under the ideal Bayesian analysis. Notably, the model

predictions shown in Figure 2 have no free parameters tuned
specifically to fit the human data, but are simply the optimal

functions prescribed by Bayesian inference given the relevant
world statistics. These results are inconsistent with claims that

cognitive judgments are based on non-Bayesian heuristics that
are insensitive to priors (Kahneman et al., 1982; Tversky &
Kahneman, 1974). The results are also inconsistent with simpler

Bayesian prediction models that adopt a single uninformative
prior, p(ttotal) / 1/ttotal, regardless of the phenomenon to be

predicted (Gott, 1993, 1994; Jaynes, 2003; Jeffreys, 1961;
Ledford et al., 2001).

Examining the results for the remaining stimuli—reigns of

pharaohs, baking times for cakes, and waiting times—provides
an opportunity to learn about the limits of people’s capacity for

prediction. As shown in Figure 2, people’s predictions about the
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been running. What would you predict for the total amount of box

office intake for that movie?

Poem lengths: If your friend read you her favorite line of poetry,

and told you it was line 5 of a poem, what would you predict for the

total length of the poem?

Life spans: Insurance agencies employ actuaries to make predic-

tions about people’s life spans—the age at which they will die—

based upon demographic information. If you were assessing an

insurance case for an 18-year-old man, what would you predict for

his life span?

Reigns of pharaohs: If you opened a book about the history of

ancient Egypt to a page listing the reigns of the pharaohs, and

noticed that at 4000 BC a particular pharaoh had been ruling for

11 years, what would you predict for the total duration of his reign?

Lengths of marriages: A friend is telling you about an acquaintance

whom you do not know. In passing, he happens to mention that this

person has been married for 23 years. How long do you think this

person’s marriage will last?

Movie run times: If you made a surprise visit to a friend, and found

that they had been watching a movie for 30 minutes, what would

you predict for the length of the movie?

Terms of U.S. representatives: If you heard a member of the House

of Representatives had served for 15 years, what would you predict

his total term in the House would be?

Baking times for cakes: Imagine you are in somebody’s kitchen and

notice that a cake is in the oven. The timer shows that it has been

baking for 35 minutes. What would you predict for the total amount

of time the cake needs to bake?

Waiting times: If you were calling a telephone box office to book

tickets and had been on hold for 3 minutes, what would you predict

for the total time you would be on hold?

RESULTS

We first filtered out responses that could not be analyzed or that

indicated a misunderstanding of the task, removing predictions
that did not correspond to numerical values or were less than
ttotal. Only a small minority of responses failed to meet these

criteria, except in the case of the marriage predictions. The total
number of responses analyzed was 174 for movie grosses, 197 for

poem lengths, 197 for life spans, 191 for reigns of pharaohs, 136
for movie run times, 130 for terms of U.S. representatives, 126

for baking times for cakes, and 158 for waiting times. The re-
sponses for the marriage stimuli were problematic because the
majority of participants (52%) indicated that marriages last

‘‘forever.’’ This accurately reflects the proportion of marriages
that do not end in divorce (Kreider & Fields, 2002), but pre-

vented us from analyzing the data using methods based on
median values. We therefore did not analyze responses for the

marriage stimuli further.
People’s judgments for life spans, movie run times, movie

grosses, poem lengths, and terms of U.S. representatives were

indistinguishable from optimal Bayesian predictions based on
the empirical prior distributions, as shown in Figure 2. People’s

prediction functions took on very different shapes in domains
characterized by Gaussian, power-law, and Erlang priors, just as
expected under the ideal Bayesian analysis. Notably, the model

predictions shown in Figure 2 have no free parameters tuned
specifically to fit the human data, but are simply the optimal

functions prescribed by Bayesian inference given the relevant
world statistics. These results are inconsistent with claims that

cognitive judgments are based on non-Bayesian heuristics that
are insensitive to priors (Kahneman et al., 1982; Tversky &
Kahneman, 1974). The results are also inconsistent with simpler

Bayesian prediction models that adopt a single uninformative
prior, p(ttotal) / 1/ttotal, regardless of the phenomenon to be

predicted (Gott, 1993, 1994; Jaynes, 2003; Jeffreys, 1961;
Ledford et al., 2001).

Examining the results for the remaining stimuli—reigns of

pharaohs, baking times for cakes, and waiting times—provides
an opportunity to learn about the limits of people’s capacity for

prediction. As shown in Figure 2, people’s predictions about the

770 Volume 17—Number 9

Everyday Predictions

Patterns of prediction across a range of domains



Black dots are median prediction of participants
Solid lines are optimal Bayesian predictions

best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2. People’s predictions for various everyday phenomena. The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximately Erlang. The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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From this corpus, we extracted a data set, enumerating the poem's author and title, starting line, ending line, and 
length of favorite passage; and length of the poem containing the passage. This data set is available on the website 
associated with the study:  http://www.cs.nyu.edu/faculty/davise/ProbabilisticCognitiveModels/ 

Favorite passages are rarely a single line of poetry; the median length of the passages quoted is four lines. 

Figure 3 below shows the probability that a line randomly chosen from within a favorite passage lies within the 1st, 
2nd, ... 10th decile of the poem. As can be seen, the first and tenth decile are significantly more probable than the 
middle deciles.  

 

 

Our model for using this data for predicting the length of a poem from the position of a “favorite line” is based on 
the following two assumptions: 

x The Life/Lines corpus of favorite passages is representative of the general distribution of favorite passages 
within poems, as a function of the length of the poem.  

x Since favorite passages in the corpus are rarely a simple line, we must somehow give an interpretation of 
the question being asked the participants in a form that can be applied to multi-line favorite passages. A 
seemingly reasonable model would be to use the following calculation: The hypothetical friend chooses 
her favorite passage of poetry, then picks a line randomly within that passage, and states the line number 
of that line. Participants who are told a value of L compute the conditional probability of the length of a 
poem, given that the value L has been produced following the procedure described above. They then 
answer as their prediction the median total length, relative to that distribution.  

The data are noisy, and it is not clear how best to smooth them, but the results of the above procedure seem to be 
more or less as follows: 

DOI:10.1177/0956797613495418
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Critique of “Optimal predictions in everyday cognition”

Are Probabilistic Models of Higher-Level Cognition Robust? 5

set of predictions. Without independent data on subjects’ 
priors, it is impossible to tell whether the Bayesian 
approach yields a good or a bad model, because the 
model’s ultimate fit depends entirely on which priors 
subjects might actually represent. (See the Supplemental 
Material for a detailed discussion of the poetry data and 
their analysis.)

Griffiths and Tenenbaum’s (2006) analysis of movies’ 
gross earnings is likewise flawed. Subjects were asked,

Imagine you hear about a movie that has taken in 
[1/6/10/40/100] million dollars at the box office, but 
don’t know how long it has been running. What 
would you predict for the total amount of box office 
intake for that movie? (p. 770)

The data set used was a record of the gross earnings of 
different movies. The fit of the probabilistic model was 
conditioned on the assumption that movie earnings are 
uniformly distributed over time; for example, if a film 
earns a total of $100 million, the question about this 
movie is equally likely to be raised after it has earned $5 
million, $10 million, $15 million, and so on up to $100 
million. But movies, particularly blockbusters, are heavily 
front-loaded and earn most of their gross during the 
beginning of their run. No one ever heard that The Dark 
Knight (total gross = $533 million) had earned $10 

million, because its gross after the first 3 days was $158 
million (Wikipedia, 2013). Factoring this in would have 
led to a different prior (one in which projected earnings 
would be substantially lower) and a different conclusion 
(that subjects overestimated future movie earnings, and 
that their reasoning was not optimal).

To put this another way, the posterior distribution 
used by Griffiths and Tenenbaum (2006) corresponds to 
a process in which the questioner first picks a movie at 
random, then picks a number between zero and the total 
gross, and then formulates the question. However, if 
instead the questioner randomly picks a movie currently 
playing and formulates the question in terms of the 
amount of money it has earned so far, then the posterior 
distribution of the total gross would be very different, 
because the front-loading of earnings means that most of 
the movies playing at any given moment have earned 
most of their final gross. Again, one cannot legitimately 
infer that the model is accurate without independent evi-
dence as to subject’s priors.

Different seemingly innocuous design choices can 
yield models with arbitrarily different predictions in other 
ways as well. Consider, for instance, a recent study of 
pragmatic reasoning and communication (Frank & 
Goodman, 2012), which purportedly showed that “speak-
ers act rationally according to Bayesian decision theory” 
(p. 998). In the experiment, there were two separate 
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Fig. 2.  Comparison of the predictions of two different probabilistic models of subjects’ responses to the ques-
tion, “If your friend read you her favorite line of poetry and told you it was line [2/5/12/32/67] of a poem, what 
would you predict for the total length of the poem?” (Griffiths & Tenenbaum, 2006, p. 770). The graph on the 
left shows the means of subjects’ actual responses (circles) and the predictions (solid line) based on empirical 
data on the length of poems, combined with the assumption that the choice of favorite line was uniformly dis-
tributed over the lines in a poem. The graph on the right shows the same response data along with predictions 
of a model based on empirical data about distributions of favorite lines. The x-axes indicate the stated number 
of the favorite line of poetry. The y-axes indicate the number of lines in the poem after the chosen line, not 
the total number of lines in the poem.

Marcus, G. and Davis, E. (2013) “How robust are probabilistic 
models of higher-level cognition?”

White dots are mean prediction of participants
Solid lines are Bayesian predictions

If Griffiths and Tenenbaum data is 
replotted to only show “additional 
length” on y-axis, the predictions 
can be less impressive.

If distribution of favorite lines is 
taken into account, the predictions 
are way off.

Favorite lines are not uniformly 
distributed across poem.

Distribution of favorite lines 
per decile of poem.



• Critique for Marcus and Davis notwithstanding, there is a 
surprisingly close fit between people’s predictions and optimal 
Bayesian predictions.

• Implications

1. In many cases, people seem to accurately absorb the 
statistics of their environment for everyday quantities.

2. In addition, people use these learned statistics in 
accordance with Bayesian inference.

3. The simplifying assumptions of “equal likelihood of 
encounter across timespan” could also be important, given 
Marcus and Davis critique.

Conclusions from optimal predictions in everyday cognition



Typical use cases of Bayesian inference

P (h|D) =
P (D|h)P (h)

P (D)

Here is our posterior distribution:

E[�(h)|D] =

Z
�(h)P (h|D)dh

Usually, we want to compute the posterior expectation of some function �(·)

(for discrete hypotheses) (for continuous hypotheses)

Examples of �(·)
in number game (is new number y in the hypothesis?)

�(h) = h for perceptual magnet model, we want the posterior mean

�(h) = h
for optimal predictions, we want the posterior mean (or 
posterior median, which is what is used in paper)

E[�(h)|D] =
X

h

�(h)P (h|D)

(Bayesian hypothesis averaging)

we have seen so far

ϕ(h) = 1{y ∈ C}



The computational challenges of Bayesian inference

The case of discrete hypotheses h (e.g., the number game):
• In most cases, there are so many hypotheses h that it is intractable to 

enumerate them all

The case of continuous hypotheses h (e.g., perceptual magnet, optimal 
predictions in everyday cognition):
• In some cases, we can use a conjugate prior or analytically compute the 

posterior
• Unfortunately, in most cases, the posterior does not have a simple form that 

we can work with.

In practice, we usually need to resort to approximate Bayesian inference. 
And we also want general purpose computational tools that don’t require 
special-purpose derivations for each model.

E[�(h)|D] =

Z
�(h)P (h|D)dh

P (h|D) =
P (D|h)P (h)

P (D)

E[�(h)|D] =
X

h

�(h)P (h|D)



Monte Carlo methods for approximate Bayesian inference

We’re going to discuss three Monte Carlo algorithms for Bayesian inference:

• Rejection sampling (for discrete data D only)

• Importance sampling

• Metropolis-Hastings algorithm (example of Markov Chain Monte Carlo)

P (h|D)where samples are generated fromh(1), . . . , h(M)

[Note: there are other popular approaches for approximate Bayesian inference, 
but we will focus on Monte Carlo methods since they are the most general]

E[ϕ(h) |D] = ∑
h

ϕ(h)P(h |D) ≈
1
M ∑

m

ϕ(h(m))

As M approaches infinity, the sample mean converges to its expected value
(law of large numbers)



Rejection sampling

• Sample hypotheses h(m) from the prior P(h) and data D(m) from the 
likelihood P(D|h)

• If your sample data D(m)  exactly matches your target data D, store h(m) as 
an independent sample from posterior P(h|D)



Rejection sampling

E[�(h)|D] ⇡ 1

M

X

m

�(h(m))

Simple algorithm for a rejection sampler:
m 1
while m < M do

sample h(m) ⇠ P (h)
sample D(m) ⇠ P (D|h(m))
if D(m) and D match exactly then

accept h(m) as a sample
m m+ 1

end if
end while

P (h|D)where samples are generated fromh(1), . . . , h(M)

Goal of approximate inference:

Pros and cons:
pros: very simple to implement
cons: extremely inefficient; only works for discrete data D

(if sampled and real 
data match)

(note, this is different than the “rejection sampler” covered in MacKay reading)



Example: rejection sampling for the number game

16

E[�(h)|D] ⇡ 1

M

X

m

�(h(m))

is new number y in the hypothesis?

rows are h(m)

compute prob. of membership (average)

“filtered” samples that produced D exactly from one sample

ϕ(h) = 1{y ∈ C}



Example: rejection sampling for the number game
Exact Bayesian inference

Rejection sampling (100 included samples)

Efficiency is only about 2% for the set [16] 
(meaning we throw away 98% of samples, or we need about 4900 samples
to get the desired 100)

16



Efficiency is REALLY BAD, accepting only 0.04% for the set [16,19] 
(we need about 265,000 samples to get 100 we can use)

Exact Bayesian inference

Rejection sampling (100 included samples)

This algorithm scales very badly as we get more data.

Example: rejection sampling for the number game

16, 19



Important aside: Probabilistic inference is very flexible!

E[�(h)|D] ⇡ 1

M

X

m

�(h(m))
rows are samples h(m)

Examples of reusing the sample for new 
queries

• Is 64 a member of the set? (probability is 
0.73)

• Are both 36 and 64 members of the set? 
(0.36)

• Is there a member of the set greater than or 
equal to 80? (0.27)

• If we sample a new number from the 
hypothesis, what is the chance it will be 64? 
(0.16)

• If we sample a new number from the 
hypothesis, what is the chance it will be 80? 
(0.02)

If we can compute the posterior, or draw samples 
from the posterior, we can automatically reason 
about a huge range of questions           given a 
single set of generated samples

�(·)
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Important aside: Probabilistic inference is very flexible!

Reusing samples is an example of the flexibility of probabilistic 
inference.

Flexible reasoning is natural in Bayesian models, but it is difficult to 
capture in neural networks trained with supervised learning, or 
model-free reinforcement learning. 

Inference flexibility is not specific to rejection sampling, but to 
Bayesian models in general.



Importance sampling

• Sample hypotheses h(m) from a surrogate distribution Q(h)
• Re-weight the samples to approximate your target posterior P(h|D).



Importance sampling

where samples are generated fromh(1), . . . , h(M)

We want to approximate posterior expectation:

E[�(h)|D] =
X

h

�(h)P (h|D)

=
X

h

�(h)
P (h|D)

Q(h)
Q(h)

⇡ 1

M

X

m

�(h(m))
P (h(m)|D)

Q(h(m))

Q(h(m))

=
1

M

X

m

w(m)�(h(m)) w(m) =
P (h(m)|D)

Q(h(m))
for

introduce a distribution Q we 
can easily sample from 
(and which is non-zero 
everywhere the posterior is 
non-zero)

draw samples from Q

More commonly, we don’t know normalizing constant for either P or Q, so we use:

E[�(h)|D] ⇡ 1P
m w(m)

X

m

w(m)�(h(m))

importance sampling



Importance sampling

E[�(h)|D] ⇡ 1P
m w(m)

X

m

w(m)�(h(m))

Pros and cons:

pros: far more efficient than rejection sampling, and works for continuous data
cons: its effectiveness strongly depends on how close Q is to the posterior

where samples are generated fromh(1), . . . , h(M) Q(h(m))

Strategy:
We replace average over all hypotheses with a set of weighted samples,
which correct for discrepancy between posterior and Q

w(m) =
P (h(m)|D)

Q(h(m))

We can set Q to be the prior, in order to get “Likelihood weighted sampling”

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
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362 29 — Monte Carlo Methods

But P (x) is too complicated a function for us to be able to sample from it
directly. We now assume that we have a simpler density Q(x) from which we
can generate samples and which we can evaluate to within a multiplicative
constant (that is, we can evaluate Q∗(x), where Q(x) = Q∗(x)/ZQ). An
example of the functions P ∗, Q∗ and φ is shown in figure 29.5. We call Q the

x

P ∗(x) Q∗(x)
φ(x)

Figure 29.5. Functions involved in
importance sampling. We wish to
estimate the expectation of φ(x)
under P (x) ∝ P ∗(x). We can
generate samples from the simpler
distribution Q(x) ∝ Q∗(x). We
can evaluate Q∗ and P ∗ at any
point.

sampler density.
In importance sampling, we generate R samples {x(r)}R

r=1 from Q(x). If
these points were samples from P (x) then we could estimate Φ by equa-
tion (29.6). But when we generate samples from Q, values of x where Q(x) is
greater than P (x) will be over-represented in this estimator, and points where
Q(x) is less than P (x) will be under-represented. To take into account the
fact that we have sampled from the wrong distribution, we introduce weights

wr ≡ P ∗(x(r))
Q∗(x(r))

(29.21)

which we use to adjust the ‘importance’ of each point in our estimator thus:

Φ̂ ≡
∑

r wrφ(x(r))∑
r wr

. (29.22)

" Exercise 29.1.[2, p.384] Prove that, if Q(x) is non-zero for all x where P (x) is
non-zero, the estimator Φ̂ converges to Φ, the mean value of φ(x), as R
increases. What is the variance of this estimator, asymptotically? Hint:
consider the statistics of the numerator and the denominator separately.
Is the estimator Φ̂ an unbiased estimator for small R?

A practical difficulty with importance sampling is that it is hard to estimate
how reliable the estimator Φ̂ is. The variance of the estimator is unknown
beforehand, because it depends on an integral over x of a function involving
P ∗(x). And the variance of Φ̂ is hard to estimate, because the empirical
variances of the quantities wr and wrφ(x(r)) are not necessarily a good guide
to the true variances of the numerator and denominator in equation (29.22).
If the proposal density Q(x) is small in a region where |φ(x)P ∗(x)| is large
then it is quite possible, even after many points x(r) have been generated, that
none of them will have fallen in that region. In this case the estimate of Φ
would be drastically wrong, and there would be no indication in the empirical
variance that the true variance of the estimator Φ̂ is large.

(a)
-7.2
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-6.8

-6.6

-6.4

-6.2
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(b)
-7.2

-7

-6.8

-6.6

-6.4

-6.2

10 100 1000 10000 100000 1000000

Figure 29.6. Importance sampling
in action: (a) using a Gaussian
sampler density; (b) using a
Cauchy sampler density. Vertical
axis shows the estimate Φ̂. The
horizontal line indicates the true
value of Φ. Horizontal axis shows
number of samples on a log scale.

Cautionary illustration of importance sampling

In a toy problem related to the modelling of amino acid probability distribu-
tions with a one-dimensional variable x, I evaluated a quantity of interest us-
ing importance sampling. The results using a Gaussian sampler and a Cauchy
sampler are shown in figure 29.6. The horizontal axis shows the number of

Q(h)

P (h|D)
�(h)

from David MacKay



Example: likelihood weighted sampling

16

is new number y in the hypothesis?

rows are samples from prior
h(m)

compute prob. of membership (weighted average)

log(w(m))Q(h) P (h)

E[�(h)|D] ⇡ 1P
m w(m)

X

m

w(m)�(h(m))

non-zero weights (and more specific have larger weight)

ϕ(h) = 1{y ∈ C}



Example: likelihood weighted sampling
Exact Bayesian inference

Importance sampling (with only 2000 samples)



Example: Importance sampling for “Optimal Predictions"

P (ttotal|t = 50)

Lifespan posterior Movie gross posterior

Examples of non-standard posterior distributions 

P (ttotal|t = 50)

relative
probability

ttotal ttotal

Posterior mean E[ttotal|t = 50]

Exact inference: 74.3 82.6

Importance sampler
(with 400 samples) 74.0 82.8

Q(ttotal) = Uniform(1, 200)



Example: Importance sampling for “Optimal Predictions"
(in more detail…)

P (ttotal|t = 50)

Lifespan posterior

relative
probability

ttotal
E[ϕ(h) |D] ≈

1
∑m w(m) ∑

m

w(m)ϕ(h(m))

E[ttotal | t = 50] ≈
1

∑m w(m) ∑
m

w(m)t(m)
total

Q(ttotal) = Uniform(1,200) =
1

200

P(ttotal | t) ∝
1

ttotal
N(ttotal |μ, σ2

2)

P (ttotal|t) =
P (t|ttotal)P (ttotal)

P (t)

Likelihood:

Prior:
P (t|ttotal) = 1/ttotal

P(ttotal) = N(ttotal |μ, σ2
2)

Posterior:

t < ttotalfor
0 otherwise

Importance sampling

t < ttotalfor
0 otherwise

Algorithm…
t(1)
total, …, t(M)

total sample from uniform Q

w(m) =

1
t(m)
total

N(t(m)
total |μ, σ2

2)

1
200

compute weights
ttotal > 50for

0 otherwise



Markov Chain Monte Carlo (MCMC)

• You have a single hypothesis h(t) in mind at any one time, and you make a 
small stochastic adjustment to h(t) to produce h(t+1) 

• The series of hypotheses h(1),…,h(T)  (the Markov chain) converges in 
distribution to your target posterior P(h|D)



Metropolis-Hastings algorithm

Goal of approximate inference:

Q(h0;h(t))

Proposal distribution:

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
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29.4: The Metropolis–Hastings method 365

that the probability density of the x-coordinates of the accepted points must
be proportional to P ∗(x), so the samples must be independent samples from
P (x).

Rejection sampling will work best if Q is a good approximation to P . If Q
is very different from P then, for cQ to exceed P everywhere, c will necessarily
have to be large and the frequency of rejection will be large.

-4 -3 -2 -1 0 1 2 3 4

P(x)
cQ(x)

Figure 29.9. A Gaussian P (x) and
a slightly broader Gaussian Q(x)
scaled up by a factor c such that
c Q(x) ≥ P (x).

Rejection sampling in many dimensions

In a high-dimensional problem it is very likely that the requirement that cQ∗

be an upper bound for P ∗ will force c to be so huge that acceptances will be
very rare indeed. Finding such a value of c may be difficult too, since in many
problems we know neither where the modes of P ∗ are located nor how high
they are.

As a case study, consider a pair of N -dimensional Gaussian distributions
with mean zero (figure 29.9). Imagine generating samples from one with stan-
dard deviation σQ and using rejection sampling to obtain samples from the
other whose standard deviation is σP . Let us assume that these two standard
deviations are close in value – say, σQ is 1% larger than σP . [σQ must be larger
than σP because if this is not the case, there is no c such that cQ exceeds P
for all x.] So, what value of c is required if the dimensionality is N = 1000?
The density of Q(x) at the origin is 1/(2πσ2

Q)N/2, so for cQ to exceed P we
need to set

c =
(2πσ2

Q)N/2

(2πσ2
P )N/2

= exp
(

N ln
σQ

σP

)
. (29.30)

With N = 1000 and σQ

σP
= 1.01, we find c = exp(10) ! 20,000. What will the

acceptance rate be for this value of c? The answer is immediate: since the
acceptance rate is the ratio of the volume under the curve P (x) to the volume
under cQ(x), the fact that P and Q are both normalized here implies that
the acceptance rate will be 1/c, for example, 1/20,000. In general, c grows
exponentially with the dimensionality N , so the acceptance rate is expected
to be exponentially small in N .

Rejection sampling, therefore, whilst a useful method for one-dimensional
problems, is not expected to be a practical technique for generating samples
from high-dimensional distributions P (x).

29.4 The Metropolis–Hastings method

Importance sampling and rejection sampling work well only if the proposal
density Q(x) is similar to P (x). In large and complex problems it is difficult
to create a single density Q(x) that has this property.

xx(1)

Q(x; x(1))

P ∗(x)

xx(2)

Q(x; x(2))

P ∗(x)

Figure 29.10. Metropolis–Hastings
method in one dimension. The
proposal distribution Q(x′; x) is
here shown as having a shape that
changes as x changes, though this
is not typical of the proposal
densities used in practice.

The Metropolis–Hastings algorithm instead makes use of a proposal den-
sity Q which depends on the current state x(t). The density Q(x′;x(t)) might
be a simple distribution such as a Gaussian centred on the current x(t). The
proposal density Q(x′;x) can be any fixed density from which we can draw
samples. In contrast to importance sampling and rejection sampling, it is not
necessary that Q(x′;x(t)) look at all similar to P (x) in order for the algorithm
to be practically useful. An example of a proposal density is shown in fig-
ure 29.10; this figure shows the density Q(x′;x(t)) for two different states x(1)

and x(2).
As before, we assume that we can evaluate P ∗(x) for any x. A tentative

new state x′ is generated from the proposal density Q(x′;x(t)). To decide

Q(h0;h(t))

P (h|D)

h(t) h
Acceptance ratio:

a � 1If then the new state is accepted.
Otherwise, the new state is accepted with probability a

h(t+1)  h0

h(t+1)  h(t)
If the state is accepted, we set
If the state is rejected, we set (warning! common mistake)

(example of Markov Chain Monte Carlo (MCMC))

a =
P (h0|D)Q(h(t);h0)

P (h(t)|D)Q(h0;h(t))

h(t)
proposal       depends 
on the current sample 

h0
unlike importance sampling

h0
proposed sample

E[�(h)|D] ⇡ 1

T

X

t

�(h(t))

P (h|D)where the sequence of samples converges to the posteriorh(1), . . . , h(T )



Metropolis-Hastings algorithm

Goal of approximate inference:
(example of Markov Chain Monte Carlo (MCMC))

E[�(h)|D] ⇡ 1

T

X

t

�(h(t))

P (h|D)where the sequence of samples converges to the posteriorh(1), . . . , h(T )

Full Metropolis-Hastings algorithm:

pick initial h(1)

for t 1 . . . (T � 1) do
sample h0 ⇠ Q(h0|h(t))

a = P (h0|D)Q(h(t)|h0)
P (h(t)|D)Q(h0|h(t))

if a � 1 then
h(t+1)  h0

else
h(t+1)  h0 with probability a
otherwise, h(t+1)  h(t)

end if
end for

P(h |D) =
P(D |H )P(H )

P(D)

(important note: in computing 
acceptance probability ‘a’,
we can safely ignore the normalizing 
constant P(D) in the posterior — it cancels 
out— which we often don’t know for 
complex models!)

X



Metropolis-Hastings algorithm and MCMC

Pros and cons:

• pros: very general; choosing Q is important, but it does not need to be as 
carefully constructed as an importance sampler does

• cons: samples are correlated with each other; it can take a very long 
time to converge

Tricks of the trade:
• If we use a symmetric distribution for Q, like a Gaussian, we can simplify 

the acceptance ratio to:

• Samples are correlated with one another, so you typically throw out the 
samples at the beginning of your chain (called burn in)

• It is good practice to run multiple chains with different starting points, to 
examine convergence.

• MCMC can be used as a stochastic search algorithm as well, when 
searching for the “best hypothesis” by choosing highest-scoring sample

a =
P(h′ |D)

P(h(t) |D)

h* = argmaxh P(h |D)



Example of Metropolis-Hastings for “Optimal Predictions”

t=1 t=2 t=3 t=4

Q(h0;h(t)) = N(h(t), 15)

Acceptance ratio:

Proposal function:

current
proposed

h(1) = 50 h(2) = 50 h(4) = 79h(3) = 70.7

h0 = 42.7 h0 = 70.7 h0 = 79 h0 = 67

a = 0 a = 2.3 a = 0.89 a = 1.09

REJECT ACCEPT ACCEPT ACCEPT

a � 1If then the new state is accepted.
Otherwise, the new state is accepted with probability a

P (ttotal|t = 50)
Lifespan

relative
probability

a =
P (h0|D)

P (h(t)|D)

<latexit sha1_base64="SYZ9IB/pr9q0MihqabEu6WmRUeU=">AAACCXicbZDLSgMxFIbP1Futt1GXboJFbDdlRgq6EYq6cFnBXqCtJZNm2tDMhSQjlHG2bnwVNy4UcesbuPNtzLSz0NYfAl/+cw7J+Z2QM6ks69vILS2vrK7l1wsbm1vbO+buXlMGkSC0QQIeiLaDJeXMpw3FFKftUFDsOZy2nPFlWm/dUyFZ4N+qSUh7Hh76zGUEK231TYTROeq6ApO4XhodP1yVkxTu4pIqJ+mtbxatijUVWgQ7gyJkqvfNr+4gIJFHfUU4lrJjW6HqxVgoRjhNCt1I0hCTMR7SjkYfe1T24ukmCTrSzgC5gdDHV2jq/p6IsSflxHN0p4fVSM7XUvO/WidS7lkvZn4YKeqT2UNuxJEKUBoLGjBBieITDZgIpv+KyAjrWJQOr6BDsOdXXoTmScWuVqo31WLtIosjDwdwCCWw4RRqcA11aACBR3iGV3gznowX4934mLXmjGxmH/7I+PwB2W+YjA==</latexit>



relative
probability P (ttotal|t = 50)

Lifespan Movie gross

samples

chain
over 
time

Posterior mean E[ttotal|t = 50]

Exact Inference: 74.3 82.6

Metropolos-Hastings
(MCMC; 1000 samples)

74.4 83.0

Lifespan Movie

[Samples track region of high 
probability!]

Example of Metropolis-
Hastings for “Optimal 

Predictions”



Probabilistic programming

• Probabilistic programming is a powerful approach for writing Bayesian models

• The probabilistic model is defined in a structured description language (much 
like a programming language) using random elements

• Due to random elements, every time the program executes it returns a 
different output

• Convenient when the prior is too complex to write down as a set of 
hypotheses, or the model is awkward to write as a probabilistic graphical 
model (see upcoming lecture on graphical models)

• This is a very general way to think about Bayesian modeling — most 
Bayesian models can be written as simple probabilistic programs



Probabilistic programming: A simple example

DEMOS_probprog

April 2, 2018

1 Examples with probabilistic programs

In [1]: # Import the necessary packages
from __future__ import print_function
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
import random
import numpy as np
from scipy.stats.mstats import zscore

In [ ]: def flip(theta=0.5):
return random.random() < theta

A = flip()
B = flip()
C = flip()
D = A + B + C

In [2]: class world():
def __init__(self):

self.generate()
def generate(self): # used when sampling over possible world

self.A = flip()
self.B = flip()
self.C = flip()
self.D = self.A + self.B + self.C

In [5]: W = world()
def rejection_sampler(f_return, list_f_conditions, nsamp=10000):

# Input
# f_return : function handle that grabs the variable of interest when executed
# list_f_conditions: list of conditions (function handles) that we are assuming are True
# nsamp : number of samples (10000)
# Output
# samples : (as a numpy-array) of length nsamp

samples = []

1

DEMOS_probprog

April 2, 2018

1 Examples with probabilistic programs

In [1]: # Import the necessary packages
from __future__ import print_function
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
import random
import numpy as np
from scipy.stats.mstats import zscore

In [ ]: def flip(theta=0.5):
return random.random() < theta

A = flip()
B = flip()
C = flip()
D = A + B + C

In [2]: class world():
def __init__(self):

self.generate()
def generate(self): # used when sampling over possible world

self.A = flip()
self.B = flip()
self.C = flip()
self.D = self.A + self.B + self.C

In [5]: W = world()
def rejection_sampler(f_return, list_f_conditions, nsamp=10000):

# Input
# f_return : function handle that grabs the variable of interest when executed
# list_f_conditions: list of conditions (function handles) that we are assuming are True
# nsamp : number of samples (10000)
# Output
# samples : (as a numpy-array) of length nsamp

samples = []

1

Preliminary definitions

Simple probabilistic program

Bayesian inference

P (D) P (A|D = 3) P (A|D � 2)

(again, notice productivity of reasoning abilities!)

Example from Noah 
Goodman and Josh 
Tenenbaum 
https://probmods.org/



Probabilistic programming: Another example
Simple probabilistic program (yet more complex than before)

Bayesian inference P (D)
P (A|D � 2)

DEMOS_probprog

April 2, 2018

1 Examples with probabilistic programs

In [1]: # Import the necessary packages
from __future__ import print_function
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
import random
import numpy as np
from scipy.stats.mstats import zscore

In [21]: def flip(theta=0.5):
return random.random() < theta

A = flip()
B = flip()
C = flip()
D = A + B + C

A = flip()
B = flip()
C = flip()
if C:

D = A + B + C
else:

E = flip()
F = (2*flip())**2
D = A + B + C +E + F

4
6

In [18]: class world():
def __init__(self):

self.generate()
def generate(self): # used when sampling over possible world

1

Key idea: A probabilistic program is a 
generative process for producing data

Hypotheses are then all possible 
ways the data could have been 
generated



Key resource on probabilistic programming perspective
to cognitive modeling (probmods.org)

http://probmods.org


Key principles of Bayesian models 
of cognition

• Start with analyzing the computational problem that has to be 
solved, and describe it as a problem of Bayesian inference

• A successful computational level model provides strong 
constraints when developing an algorithmic and implementational 
level model

• Bayesian inference provides a flexible framework for testing 
different hypotheses about representation, without having to worry 
about how to define special algorithms for inference and learning


