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The problem of induction
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Original thought experiment due to W. V. Quine (1960).
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Original thought experiment due to W. V. Quine (1960).




The problem of induction
now you get more data...

“gavagail”




The problem of induction
now you get more data...
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How do we learn so much from so little?

e |f our inferences go beyond the data given, then something
must be making up the difference...

e What is it? constraints (as described by psychologists and
linguists), inductive biases (machine learning and Al
researchers), priors (statisticians), etc.

e Key questions: What does this prior knowledge look like? How
do we combine prior knowledge with data to make inferences?

What are the models and algorithms?

For more discussion see, Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How
to grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 1279-1285.



Bayesian modeling is an approach for understanding inductive
problems, and it typically takes a strong “top-down” strategy

Three levels of description (David Marr, 1982)

Computational

Why d.o things work the way they.do?

What are the unifying principles? p(hy|D) = L PPt
>_; P(Dlh;)P(h;)

Algorthmic

What representations can implement
such computations?

How does the choice of representations
determine the algorithm?

Implementational

How can such a system be built in
hardware?

How can neurons carry out the
computations?



Key principles of Bayesian models
of cognition

e Start by analyzing the computational problem at hand, and
describe it as a problem of Bayesian inference

e A successful “computational level” account provides strong
constraints when developing an “algorithmic” and
“implementational” level accounts

e Bayesian inference provides a flexible framework for testing
different types of representation, without having to worry about
defining special algorithms for inference and learning



Bayesian inference for evaluating
hypotheses In light of data

Data (D): John is coughing

“Bayes’ rule”
posterior likelihood prior
Hypotheses: \ \ v
h1 = John has a cold P(hi\D) _ P(D‘hi)P(hi)
ho = John has emphysema Zj P(D|hj)P(hj)

hs = John has a stomach flu

Which hypotheses should we believe, and with what certainty?

We want to calculate the posterior probabilities: P(h1|D), P(h2|D), and P(hs|D)

Review Russell & Norvig reading for basics on probability. This example is from Josh Tenenbaum.



posterior likelihood prior

Bayesian inference \ )
Data (D): John is coughing P(h>|D) _ P(D|hz)P(hz)
2_; P(D|h;)P(h;)
Hypotheses: B B
h1 = John has a cold P(hi) =.75  P(D[hi) =1
ho = John has emphysema P(hg) = .05 P(Dlhg) =1
hs = John has a stomach flu P(h3) =.2  P(D|hs) = .2

Prior favors hy and hs, over hs
Likelihood favors h; and hsy, over hs

Posterior favors hi, over ho and hjs

o 75(1)
P(h|D) =89 = 2oy 050) + 2(2)
P(hy|D) = .06

P(h3|D) = .05




Where does Bayes’ rule come from?

Definition of conditional probability:
“product rule”

P(alb) = P;)Cgé;?) P(a,b) = P(alb)P(b)
Derivation
P(h, D) h|D)P(D) product rule applied
P(h,D) —p D‘h P h) twice
P(h‘D)P(D P(D|h)P(h) Equatri]r;gr;];h;(;[\év;) right
B P(D‘h)P(h) B P(D‘h)P(h) Divide by P(D)
b= P(D) >, P(D|n)P(I)




Why is this a reasonable way to represent beliefs?

» If your beliefs are inconsistent with axioms of probability, someone
can take advantage of you in gambling (see example from Russel
and Norvig reading)

Agent 1 Agent 2 Outcome for Agent 1 |
Proposition  Belief Bet Stakes aNb aA-b —aANb —aA-b

a 0.4 a 4106 ~6 -6 4 4
b 0.3 b 3to7 —7 3 —7 3
aVb 0.8 -(aVb) 2t08 2 2 2 -8
~11 -1 -1 -1

Figure 13.2  Because Agent | has inconsistent beliefs, Agent 2 is able to devise a set of

bets that guarantees a loss for Agent 1, no matter what the outcome of a and b.

* Also, Bayes’ rule provides a very general account of learning, where
prior knowledge can be combined with data to update beliefs



Bayesian concept learning with the number game

Rules and Similarity in Concept Learning

Joshua B. Tenenbaum

Department of Psychology . . .
Stanford University, Stanford, CA 94305 In Advances in neural information
jbt@psych.stanford.edu processing systems (1999)
Abstract

This paper argues that two apparently distinct modes of generalizing con-

cepts — abstracting rules and computing similarity to exemplars — should

both be seen as special cases of a more general Bayesian learning frame-

work. Bayes explains the specific workings of these two modes — which N )

rules are abstracted, how similarity is measured — as well as why gener- (YOU will Implement this model
alization should appear rule- or similarity-based in different situations. (m OStIy frOm scratch |) in

This analysis also suggests why the rules/similarity distinction, even if ]

not computationally fundamental, may still be useful at the algorithmic homework 3)

level as part of a principled approximation to fully Bayesian learning.

1 Introduction

In domains ranging from reasoning to language acquisition, a broad view is emerging of
cognition as a hybrid of two distinct modes of computation, one based on applying abstract
rules and the other based on assessing similarity to stored exemplars [7]. Much support for
this view comes from the study of concepts and categorization. In generalizing concepts,
people’s judgments often seem to reflect both rule-based and similarity-based computations
[9], and different brain systems are thought to be involved in each case [8]. Recent psycho-
logical models of classification typically incorporate some combination of rule-based and
similarity-based modules [1,4]. In contrast to this currently popular modularity position, I
will argue here that rules and similarity are best seen as two ends of a continuum of possible
concept representations. In [11,12], I introduced a general theoretical framework to account



The number game

There is an unknown computer program that generates numbers in the range 1 to
100. You are provided with a small set of random examples from this program.

1 random “yes” example

Which numbers will be accepted by the same
computer program?

517 587 207?



The number game

There is an unknown computer program that generates numbers in the range 1 to
100. You are provided with a small set of random examples from this program.

4 random “yes” examples

=P 60 80 10 30

Which numbers will be accepted by the same
computer program?

517 587 207?



The number game

There is an unknown computer program that generates numbers in the range 1 to
100. You are provided with a small set of random examples from this program.

4 random “yes” examples

mP 60 52 57 55

Which numbers will be accepted by the same
computer program?

517 587 207?



A Bayesian model of the number game

random “yes” examples of an unknown concept C

Observations

X={xW . x"
= {60, 52, 57, 55}

Predictions:

Which numbers y will be accepted by the same
computer program C?

Py € C|X)

517 587 207
P51 €C|X) PGB8SeC|X) PROeC|X)



A Bayesian model of the number game

We have observations:

X = {zW, .. ="

We have a space of hypotheses, which are sets of numbers he H
and prior P (h) (more details next slide)

- mathematical hypotheses: odd numbers (h =[1, 3, 5, ..., 99]), even numbers (h = 2, 4, 6,
.. ,100)), square numbers (h = [1, 4, 9, 16]), cube numbers, primes, multiples of n, etc.

* interval hypotheses: continuous intervals of the number line

Likelihood P(X|h) |
PzWh) = — if 2 e b
(4) 7 -
X’h H P |h |hl is the “size” of h

= (0 otherwise
(assumption that examples are independent)

Bayes’ rule for computing posterior beliefs:

P(X[h)P(h)
P = s PR P




A Bayesian model of the number game
The hypothesis space and prior

Mathematical hypotheses
» odd numbers

« even numbers (Mathematical hypotheses are
* square numbers equally likely in the prior)

* cube numbers P(h)

* primes

» multiples of n, suchthat3<n<12
« powers of n, suchthat2=n <10
* numbers ending in n, suchthat0=n <9

Interval hypotheses
* Intervals between n and m, suchthat 1 =n<100;n<m <100

(Interval hypotheses reweighted to P( h)
favor intermediate sizes)

)\ is free parameter that trades off “math” vs. “interval” hypotheses



A Bayesian model of the number game

We have observations:
X 1

We want to make predictions for new numbers y:

P(yeC | X)
Bayes’ rule for computing posterior beliefs:

P(X|h)P(h

p(hx) — — PP

- Dwen PX[R)P(I)

Posterior predictions about new example y:

PlyeC|X)=)>» P(yeC|h)P(hX)

first term is 1 or O based on membership

Bayesian hypothesis averaging : when making Bayesian predictions, one must average
over all possible hypotheses, weighted by their posterior belief



Examples: Bayesian hypothesis averaging

Say you are an insurance company, and you want to predict which customers are
more likely to get in a car accident.

P(new accident|previous accident) = Z P(new accident|h)P(h|previous accident)
h

h € {good driver, bad driver}

previous new
accident accident

Another example (the previous evidence does not necessarily need to be relevant)

also known as “marginalization” of a variable (h)

P(new accident|born in Feb.) = Z P(new accident|h)P(h|born in Feb.)
h

h € {good driver, bad driver}



The size principle: hypotheses with smaller extensions are more
likely than hypotheses with larger extensions

Py € C|X) o

0

X = [16]

4 8 12162024 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96100

Most likely hypotheses
powers of 4 —

powers of 2 ee—e

numbers endingin 6 —

square numbers oo

<

even num be [S ©0000000000000000000000000000000000000000000000000

top hypotheses

Likelihood .
P(zD|h) = i if (9 ¢ h
= (0 otherwise
w
P(h|X)




The size principle: hypotheses with smaller extensions are more
likely than hypotheses with larger extensions

X =[16, 8, 2, 64] Likelihood compounding evidence
T n
Plyeclx) . P(X|h) = | [ PR
. i=1
i @Dy — L i)
Most Iikely hypotheses 4 8 1216 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96100 P(CE ‘h) — W ].f x E h
powers of 2 e . . .
EVEN NUMbersg **eeeeessessssssscsscacsscsscsescanconsasassse = 0 otherwise

@

P

Size principle leads to very sharp,
rule-like generalizations from just a
few examples

top hypotheses

S

P(h|X)

0 0.5 1



How the size principle influences generalization

With size principle (strong sampling): Pz h) = 1 if () ¢ p
1]
= (0 otherwise
Py € C|X) X=[16, 8, 2, 64]
10 -
0.5 -
0.0 -
0 4 B8 12 16 20 24 28 32 36 40 44 43 52 56 60 64 63 72 76 80 84 88 92 96 100
Without size principle (weak sampling): P(X‘h) — 1 1if :E(i) c h for all 7
P(y € C|X) — (0 otherwise
X=[16, 8, 2, 64]
10 -
05 -
0.0 -

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 &4 68 72 76 80 84 88 92 96 100



Human vs. model predictions in the number game

Human judgments in number game

X=[16]

£ 1l 1
= | | I
g | 1 1 1 | | | 1 1 | | 1 1 1 | | 1 1 1 | | 1 1 | |
g 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100
s 1} X=[16, 8, 2, 64]
]
® 05
©
5 o 1 | ] il
2 | 1 1 1 | | 1 1 1 | | 1 1 L | | 1 1 1 | 1 1 1 1 |
S 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100
Q
g 1+ X=[16, 23, 19, 20]
o 05
>
© o | [ 0 0 il
| 1 1 1 | | 1 1 1 | | 1 1 1 | | 1 1 | | 1 1 1 1 |

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

Predictions of Bayesian model (strong sampling)
X=[16]

' | | ‘ ’ ‘ T l T Ll T T T T T T Il T Ll T

48121620242832364044 52 56 60 64 68 72 76 80 84 88 92 96 100
X—[16, 8, 2, 64]

10 -

05

0-0‘ T ll ' 'I T T T 'I T T T T Ll Il T lll T
64 68 72 76 80

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
X=[16, 23, 19, 20]

10 4
0.5 - |
007 T T T ! T . . T T T T T Il T l! T

048121620242832 404448525660646872768084889296100
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o

<
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prob. of membership

o
o




Human vs. model predictions in the number game (weak sampling)

average predicted probability

1+ X=[16, 23, 19, 20]
0.5 IIlI“III
of | |

Human judgments in number game

X=[16]

. N | 1ol

| 1 1 1 | | | 1 ! | 1 1 1 1 | | | | ! | | 1 1 L |

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

X=[16, 8, 2, 64]
| IJ 1 l

| | | 1 | | 1 | 1 | | | 1 1 | 1 1 1 1 | 1 1 1 1 |

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

| B | | ||

| | 1 1 | | | 1 1 | | 1 1 1 | | 1 1 1 | 1 1 1 | |

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

Predictions of Bayesian model (weak sampling)

X=[16]
o
N — .
S 10
DY)
ie]
5
g 05
: ‘
g
(=]
ao-o UI T T T Ll II T T T T T Il T ll T
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100
X=[16, 8, 2, 64]

10 -

05 1

0.0 1 ‘

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 63 72 76 80 84 88 92 9 100
X=[16, 23, 19, 20]

10 -

05 1 I |

0.0 { L1 1

1]
0 4812162024283236404448525660646872768084889296100

(weak sampling does not
capture the sharpness of
people’s generalization
curves)



Conclusions from Bayesian concept learning
and the number game

* People can make meaningful predictions from very sparse evidence, aided by
strong assumptions for how the data is generated (strong sampling)

* People display a mixture of both “rule-like” and “similarity-like” generalizations,
depending on what the data entails — where most previous psychological
theories posited two different mechanisms, one for rules and one for similarity

» A Bayesian account of concept learning displays both of these characteristics,

and can make quantitative predictions regarding how people generalize to new
examples.

 Discussion point: Where does the hypothesis space come from?

(see final project idea on “Bayesian modeling / Probabilistic programming -
Number game”)



Word learning as Bayesian inference

(Xu and Tenenbaum, 2007, Psychological Review)

Prompt: “This is a dax”

Training
examples:

Children’s
generalizations

Test object
match level: »

Bayesian

concept learning with
tree-structured
hypothesis space

3 subordinate 3 basic 3 superordinate

i 1 ] k
0.5 “l 0.5 ' 0.5 'I 0.5 “L
b;,\c*oﬁb'\c‘?

\\
RS

SIS
C,\»‘z\o«\

L1 -IL-W

Slide credit: Josh Tenenbaum
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Per cent identification

Categorical perception in speech
A link between categorization and discrimination

Identification (labeling) task Discrimination task

(“ba” vs. “da” vs. “ga”) (ABX; which is X identical to, A or B?)

100 O- A A A —A—A p BB 100 - obtained data
A \ /
b \ / d \ // g
\
75 _ \‘ \ ?ﬁ _ 75
| \; :
\ \ S
50 | \/ / "E 50 @ — - "
/‘\ ,I\ 8
/ \\ /I gf
/ A\ a o5 _ Two-step
25 - \ A discrimination
/ \ A \
i 2 N
\ /
0 A/I I A s B B A e AN, n 0 et
1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12
Stimulus value Value of "A" stimulus

From Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The
discrimination of speech sounds within and across phoneme boundaries. Journal of
experimental psychology, 54(5), 358.



Categorical perception for artificial visual categories
A link between categorization and discrimination

4
A A A A
3 enhanced discrimination
2 A A A A along this dimension,
£ especially at the “A” vs.
(@) “eyy
= B” boundary
2
B B B B
;
B B B B
1 2 3 4
Size

Goldstone, R. L. (1994). Influences of categorization on perceptual discrimination.
Journal of Experimental Psychology: General, 123(2), 178.



Categorical perception: A link between categorization and
discrimination

Discrimination task

Per cent correct

Categorical perception is very

o5 | Two-step closely related to the “perceptual
discrimination magnet effect” in speech studied by
A Pat Kuh_l etal.,wh.ich describes
1 2 34586 7 8 91011 12 categories as pulling your
Value of "A" stimulus perception toward the categories
centers
(b) Actual Stimulus
T T

|

/

Let’s try to understand the
perceptual magnet effect through
i

\‘ 1 a Bayesian model

I
IIII'""I. i

><

Perceived Stimulus




Psychological Review
2009, Vol. 116, No. 4, 752-782

© 2009 American Psychological Association
0033-295X/09/$12.00 DOI: 10.1037/a0017196

The Influence of Categories on Perception: Explaining the Perceptual
Magnet Effect as Optimal Statistical Inference

Naomi H. Feldman
Brown University

Thomas L. Griffiths

University of California, Berkeley

James L. Morgan
Brown University

A variety of studies have demonstrated that organizing stimuli into categories can affect the way the
stimuli are perceived. We explore the influence of categories on perception through one such phenom-
enon, the perceptual magnet effect, in which discriminability between vowels is reduced near prototyp-
ical vowel sounds. We present a Bayesian model to explain why this reduced discriminability might
occur: It arises as a consequence of optimally solving the statistical problem of perception in noise. In
the optimal solution to this problem, listeners’ perception is biased toward phonetic category means
because they use knowledge of these categories to guide their inferences about speakers’ target
productions. Simulations show that model predictions closely correspond to previously published human
data, and novel experimental results provide evidence for the predicted link between perceptual warping
and noise. The model unifies several previous accounts of the perceptual magnet effect and provides a
framework for exploring categorical effects in other domains.

Keywords: perceptual magnet effect, categorical perception, speech perception, Bayesian inference,

rational analysis

The influence of categories on perception is well known in
domains ranging from speech sounds to artificial categories of
objects. Liberman, Harris, Hoffman, and Griffith (1957) first de-
scribed categorical perception of speech sounds, noting that lis-
teners’ perception conforms to relatively sharp identification
boundaries between categories of stop consonants and that
whereas between-category discrimination of these sounds is nearly
perfect, within-category discrimination is little better than chance.
Similar patterns have been observed in the perception of colors
(Davidoff, Davies, & Roberson, 1999), facial expressions (Etcoff
& Magee, 1992), and familiar faces (Beale & Keil, 1995), as well

Naomi H. Feldman and James L. Morgan, Department of Cognitive and
Linguistic Sciences, Brown University; Thomas L. Griffiths, Department
of Psychology, University of California, Berkeley.

— e . .-

as the representation of objects belonging to artificial categories
that are learned over the course of an experiment (Goldstone,
1994; Goldstone, Lippa, & Shiffrin, 2001). All of these categorical
effects are characterized by better discrimination of between-
category contrasts than within-category contrasts, although the
magnitude of the effect varies between domains.

In this article, we develop a computational model of the influ-
ence of categories on perception through a detailed investigation of
one such phenomenon, the perceptual magnet effect (Kuhl, 1991),
which has been described primarily in vowels. The perceptual
magnet effect involves reduced discriminability of speech sounds
near phonetic category prototypes. For several reasons, speech
sounds, particularly vowels, provide an excellent starting point for
assessing a model of the influence of categories on perception.
Vowels are naturally occurring, highly familiar stimuli that all
listeners have categorized. As discussed later, a precise two-



Bayesian model of speech perception

speaker noise listener

goal of noise model intended
perception produces actual utterance from

stimulus speaker
\v

P(T|S) = (S]LT(?;;) )

« Speaker produces a speech sound T.

- Noise perturbs T into percept S (internal and external
noise possible).

* The listener calculates the posterior P(TIS) with goal of
reconstructing the original sound T.




Bayesian model of speech perception

The speaker makes a sound production T.
Noise in the air perturbs T into S.
Prior on utterance (Gaussian)

P(T) = N(M 52) _ If the stimulus is noisy, pull your perception towards
¢ =c the category you think it comes from.

Likelihood (Gaussian) (a) Actual Stimulus S
2
P(S|T) = N(T, 0%) Pt

Posterior

.

P(S|T)P(T)

PO /////////////////,,,, P(T|S)

2 2 I I s
GCS GSIMC GCGS

P(T|S) =

= N(

) Perceived Stimulus

9
o2+ 08 0%+ 0%

Posterior is Gaussian, where the mean is a weighted average between the actual stimulus S and the
prior mean pc.

- If the perceptual noise is high (high os), rely more on the prior category mean

- If the category is highly variable (high oc), rely more on the actual stimulus S



Key technical concept: Conjugate priors

When prior and posterior are in the same family, then we have a
conjugate prior for the likelihood function.

common use

prior likelihood posterior
case
Normal (unknown estimating mean of a
Normal . Normal .
mean, known variance) continuous sample
estimating fairness of
Beta Binomial Beta a coin based on
counts
estimating weights on
Dirichelt Multinomial Dirichelt k-sided dice based on
counts

This makes it very easy to compute posterior distributions, as it can
be done in closed form with standard formulas.

https://en.wikipedia.org/wiki/Conjugate_prior




Bayesian model of speech perception: Multiple categories

The speaker makes a sound production T.
Noise in the air perturbs T into S.

Step 1) Bayesian classification of the speech sound in category ¢

p(c|S) = p(Sle)p(c) p(Sle) = [ p(S|T)p(T|c) dT

p(S‘ C)p(C) (this term is another Gaussian distribution)

Step 2) Compute reconstruction of T as weighted mixture of posteriors

2 2 2 2

oS+ oiu. oo

p(T|S) =Zcp(T|S,c)p(clS) P(T|S,c) = N(=5—5—=, —<=25)

| | O +0g O T 0%
(mixture of Gaussians) (term is posterior from previous slide with known category)

Posterior mean (expected value F|x Z rp(x

Actual Stimulus
2 62 * % are aﬁe ¥ **T
E[T|S] = S+ Zep(clS)ue

2 2
G2 —I—GS 02+ 03

- If the perceptual noise is high (high os), rely
more on the category means

- If the category is highly variable (high o), rely
more on the actual stimulus S B - ‘

K ¥

NNV AN AN AN I AN

Perceived Stimulus



Comparing the Bayesian model to perceptual data

Relative Distances Between Neighboring Stimuli

2 T T T T T T I ' ! ! I
o MDS
i sl *  Model | -
5
161 5 |
1.4} |
3
O {
: _ |
& 1.2 g%
2 O
® 1F |
2 & * ¢
Q.
3 0.8l N v 0
I -
0.6 O |
0.41 |
0.2} |
O l l l I I I l l | I I
i 2 3 4 5 6 7 8 9 10 11 12 13
M/l. Stimulus Number u/e/

participant data
Bayesian model

Computing perceptual

distance

* Participant
discrimination
judgments converted to
perceptual distance
using multi-dimensional
scaling (MDS)

* Bayesian model
predictions computed
as E[TIS]



Conclusions from the Bayesian models of the
perceptual magnet effect

» Categories influence perception in a range of
domains: speech, color, faces, etc...

Although it’s clear that categories influence
perception, it’s not clear WHY they should

* There are many other models of categorical
perception and perceptual magnet effect, but
they don’t really answer the “why” question.

The Bayesian model suggests why perception should
have this characteristic: It's a rational adaption for
perceiving/reconstructing stimuli under noise.



Implications for understanding behavioral data: User ratings

. [ \
Actual object T (in pr;?clzseeption, S @ — P(T|S)

memory, etc.)
\ J

Perceived experience may
warped by the category c

More business info

Kiin Thai Eatery o . Takes Reservations Yes
| |
LI I db 228 reviews | . Details Delivery Yes
$$ - Thai | 2 Edit Take-out Yes
N R Accepts Credit Cards Yes
% £ Orp, Sy w
9 s Accepts Apple Pay No
G Washington . : Good For Lunch, Dinner
Square Park 8 Streetll
Astor Pl [ .
03,?.‘36255 Map data ©2018 Google Parkmg Street
Q 36EBth St 2 Edit Bike Parking Yes
D Groane St & Unive Good for Kids Yes
1 : b/t Greene St & University Pl 00
Price, quality, and many Greenwich Vilage

@ Get Directions Good for Groups Yes

other attribute ratings (attire, 5 & aes: - a2 more stions

¢ (212) 529-2363

good for groups, etc.) will be i ccencon Amblence Casual
Warped by Category ) Send to your Phone Noise Level Average
knowledge (Thai

restaurant), especially if

Attire Casual

* “We ordered thai iced tea, spring rolls, papaya salad, chicken wings, green curry, beef Alcohol Full Bar
pad thai, and a brownie with ice-cream for dessert.” in 50 reviews o .
Outdoor Seating No

$13 Classic Pad Thai

[}
. . ) , . . , Wi-Fi Free
ratl ngs are ente red Wlth a “'Nham Prik Ong' relish Set ($12): a very typical Thai dish (that | had and saw often in
Bangkok) done very well.” in 9 reviews Has TV No
delay' Waiter Service Yes
4 ’% “The sai oua sausage is really authentic, and the seafood som tum is actually very spicy L
¥ '; and delicious.” in 31 reviews - Caters No

Gender Neutral Restrooms Yes
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Predicting the future with Bayesian inference

PSYCHOLOGICAL SCIENCE

Research Article

Optimal Predictions in Everyday

Cognition

Thomas L. Griffiths! and Joshua B. Tenenbaum?

'Department of Cognitive and Linguistic Sciences, Brown University, and *Department of Brain and Cognitive Sciences,

Massachusetts Institute of Technology

ABSTRACT—Human perception and memory are often ex-
plained as optimal statistical inferences that are informed
by accurate prior probabilities. In contrast, cognitive judg-
ments are usually viewed as following error-prone heuris-
tics that are insensitive to priors. We examined the optimality
of human cognition in a more realistic context than typical
laboratory studies, asking people to make predictions
about the duration or extent of everyday phenomena such
as human life spans and the box-office take of movies. Our
results suggest that everyday cognitive judgments follow
the same optimal statistical principles as perception and
memory, and reveal a close correspondence between peo-
ple’s implicit probabilistic models and the statistics of the
world.

If you were assessing the prospects of a 60-year-old man, how

a T

Perry, Super, & Gallogly, 2001; Huber, Shiffrin, Lyle, & Ruys,
2001; Knill & Richards, 1996; Koérding & Wolpert, 2004;
Shiffrin & Steyvers, 1997; Simoncelli & Olshausen, 2001;
Weiss, Simoncelli, & Adelson, 2002). In contrast—perhaps as a
result of the great attention garnered by the work of Kahneman,
Tversky, and their colleagues (e.g., Kahneman, Slovic, &
Tversky, 1982; Tversky & Kahneman, 1974)—cognitive judg-
ments under uncertainty are often characterized as the result of
error-prone heuristics that are insensitive to prior probabilities.
This view of cognition, based on laboratory studies, appears
starkly at odds with the near-optimality of other human capac-
ities, and with people’s ability to make smart predictions from
sparse data in the real world.

To evaluate how cognitive judgments compare with optimal
statistical inferences in real-world settings, we asked people to
predict the duration or extent of everyday phenomena such as
human life spans and the gross of movies. We varied the phe-



Let’s make some predictions

You stopped by a friend’s apartment, and she has been
watching a movie for 15 minutes. What would you predict for
the length of the movie in total?

You stopped by a friend’s apartment, and she has been
watching a movie for 75 minutes. What would you predict for
the length of the movie in total?



Let’s make some predictions

You stopped by a friend’s apartment, and she has been
watching a movie for 15 minutes. What would you predict for
the length of the movie in total?

You stopped by a friend’s apartment, and she has been
watching a movie for 75 minutes. What would you predict for
the length of the movie in total?

A movie has grossed 15 million dollars at the box office, but
you don’t know how long it’s been running. How much will it
gross in total?

A movie has grossed 75 million dollars at the box office, but
you don’t know how long it’s been running. How much will it
gross in total?



Let’s make some predictions

Movie runtimes

You stopped by a friend’s apartment, and she has been
watching a movie for 15 minutes. What would you predict for
the length of the movie in total?

You stopped by a friend’s apartment, and she has been li...
watching a movie for 75 minutes. What would you predict for g 100 200
the length of the movie in total?

Movie grosses

A movie has grossed 15 million dollars at the box office, but
you don’t know how long it’'s been running. How much will it
gross in total?

A movie has grossed 75 million dollars at the box office, but | N
you don’t know how long it's been running. How much willit ¢ =00 600
gross in total?



Simple Bayesian model of predicting the future

A movie has grossed 15 million dollars at the box office, but you
don’t know how long it’'s been running. How much will it gross total? Movie runtimes

tt()tal . the total quantity you are estimating

L . the current quantity you are given (current
runtime of movie, current gross, etc.)

3 )
llLd.l.m

Bayesian estimation problem 0 100 200

posterior Iik‘ellihood prior Ltotal
P(t \ ‘t) o P(t‘ttotal)P(ttotal)
total|) — P(t) Movie grosses
Likelihood
P(t‘ttotal) — 1/tt0tal
Assumption: you are equally likely to encounter a
quantity at any point across its lifespan (movie / person / Hi ]
etc.) 0 300 600
Prior Liotal

P(tiotar) is estimated from real world statistics
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Different priors have qualitatively different predictions

Movie runtimes Movie grosses

(Gaussian) (Power-law)
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ttOtCLl Utotal

Gaussian prior
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P(ttotal) X eXp(—T‘Q(ttotal o M)Q)

Power-law prior

P(tiotal) o t;)zal

Posterior

P(t\tiotal ) P(tiota
P(ttotal‘t): (‘tt l) (tt l)

P(t)




Movie runtimes  Movie grosses Different priors have

(Gaussian) (Power-law) qualitatively different

| predictions: Comparison
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Black dots are median prediction of human participants P(t‘tt ; l)P(tt . l)
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Patterns of prediction across a range of domains

Poem lengths: If your friend read you her favorite line of poetry,
and told you it was line 5 of a poem, what would you predict for the
total length of the poem?

Life spans: Insurance agencies employ actuaries to make predic-
tions about people’s life spans—the age at which they will die—
based upon demographic information. If you were assessing an
insurance case for an 18-year-old man, what would you predict for
his life span?

Baking times for cakes: Imagine you are in somebody’s kitchen and
notice that a cake is in the oven. The timer shows that it has been
baking for 35 minutes. What would you predict for the total amount

of time the cake needs to bake?

Waiting times: If you were calling a telephone box office to book
tickets and had been on hold for 3 minutes, what would you predict

for the total time you would be on hold?

Reigns of pharaohs: 1f you opened a book about the history of
ancient Egypt to a page listing the reigns of the pharaohs, and
noticed that at 4000 BC a particular pharaoh had been ruling for
11 years, what would you predict for the total duration of his reign?

Terms of U.S. representatives: If you heard a member of the House
of Representatives had served for 15 years, what would you predict
his total term in the House would be?



Patterns of prediction across a range of domains
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Critique of “Optimal predictions in everyday cognition”

Marcus, G. and Davis, E. (2013) “How robust are probabilistic

models of higher-level cognition?”

White dots are mean prediction of participants

Solid lines are Bayesian predictions

Model Based on
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If Griffiths and Tenenbaum data is

replotted to only show “additional

length” on y-axis, the predictions

can be less impressive.

Model Based on Empirical

Distributions of Favorite Lines
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taken into account, the predictions

are way off.



Conclusions from optimal predictions in everyday cognition

* Critique for Marcus and Davis notwithstanding, there is a
surprisingly close fit between people’s predictions and optimal
Bayesian predictions.

 Implications

1. In many cases, people seem to accurately absorb the
statistics of their environment for everyday quantities.

2. In addition, people use these learned statistics in
accordance with Bayesian inference.

3. The simplifying assumptions of “equal likelihood of
encounter across timespan” could also be important, given
Marcus and Davis critique.



Typical use cases of Bayesian inference

Here is our posterior distribution:

P(h|D) = © (l;'?l))]; )

Usually, we want to compute the posterior expectation of some function gb()
(Bayesian hypothesis averaging)

= 3o PiD) WID] = [ 6(h)P(HID)

(for d|screte hypotheses) (for continuous hypotheses)

Examples of ¢() we have seen so far

@(h) = 1{y € C} innumber game (is new number y in the hypothesis?)

¢( h) — h for perceptual magnet model, we want the posterior mean

for optimal predictions, we want the posterior mean (or
Qb(h) = h posterior median, which is what is used in paper)



The computational challenges of Bayesian inference

P(h|D) = P(I;‘Z)) ()

E[6(h)|D] = 3" é(h)P(h D) h)\D] = / o(h) P(h|D)d

h

The case of discrete hypotheses h (e.g., the number game):
 In most cases, there are so many hypotheses h that it is intractable to
enumerate them all

The case of continuous hypotheses h (e.g., perceptual magnet, optimal

predictions in everyday cognition):

* In some cases, we can use a conjugate prior or analytically compute the
posterior

- Unfortunately, in most cases, the posterior does not have a simple form that
we can work with.

In practice, we usually need to resort to approximate Bayesian inference.
And we also want general purpose computational tools that don’t require
special-purpose derivations for each model.



Monte Carlo methods for approximate Bayesian inference

1
— z‘ ~ Z (m)
El¢p(h)| D] 4 @O(h)P(h|D) Y 4 P(h'™)

where samples h(1)7 e h(M)  are generated from P (h|D)

As M approaches infinity, the sample mean converges to its expected value
(law of large numbers)

[Note: there are other popular approaches for approximate Bayesian inference,
but we will focus on Monte Carlo methods since they are the most general]

We’re going to discuss three Monte Carlo algorithms for Bayesian inference:
 Rejection sampling (for discrete data D only)

* Importance sampling

+ Metropolis-Hastings algorithm (example of Markov Chain Monte Carlo)



Rejection sampling

- Sample hypotheses h(m from the prior P(h) and data D(™ from the
likelihood P(DIh)

» |If your sample data DM exactly matches your target data D, store h(™ as
an independent sample from posterior P(hID)



Rejection sampling
(note, this is different than the “rejection sampler” covered in MacKay reading)

Goal of approximate inference:
1
~ (m)
El¢(h)|D] ~ + Zm:<b<h )
where samples h(l)’ L h(M)  are generated from P(h|D)

Simple algorithm for a rejection sampler:

m < 1
while m < M do
sample h(™) ~ P(h)
sample D™ ~ P(D|r(™)
if DU and D match exactly then (if sampled and real
accept h{™) as a sample data match)
m < m+1
end if

end while

Pros and cons:

pros: very simple to implement
cons: extremely inefficient; only works for discrete data D



Example: rejection sampling for the number game
“filtered” samples that produced D exactly from one sample
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Example: rejection sampling for the number game

ml =) 16 Exact Bayesian inference

X=[16]
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Rejection sampling (100 included samples)
X=[16]
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Efficiency is only about 2% for the set [16]
(meaning we throw away 98% of samples, or we need about 4900 samples
to get the desired 100)



Example: rejection sampling for the number game

This algorithm scales very badly as we get more data.

=p 16, 19 Exact Bayesian inference
X=[16,19]
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Rejection sampling (100 included samples)
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Efficiency is REALLY BAD, accepting only 0.04% for the set [16,19]
(we need about 265,000 samples to get 100 we can use)



Important aside: Probabilistic inference is very flexible!

Elo()|D] ~ — 3 6(h™)

If we can compute the posterior, or draw samples
from the posterior, we can automatically reason
about a huge range of questions ¢(-) given a
single set of generated samples

Examples of reusing the sample for new
queries
* Is 64 a member of the set? (probability is
0.73)

« Are both 36 and 64 members of the set?
(0.36)

- Is there a member of the set greater than or
equal to 807 (0.27)

- If we sample a new number from the
hypothesis, what is the chance it will be 647?
(0.16)

- If we sample a new number from the
hypothesis, what is the chance it will be 807?
(0.02)
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Important aside: Probabilistic inference is very flexible!

Reusing samples is an example of the flexibility of probabilistic
inference.

Flexible reasoning is natural in Bayesian models, but it is difficult to
capture in neural networks trained with supervised learning, or
model-free reinforcement learning.

Inference flexibility is not specific to rejection sampling, but to
Bayesian models in general.



Importance sampling

- Sample hypotheses hm from a surrogate distribution Q(h)
- Re-weight the samples to approximate your target posterior P(h/D).



Importance sampling

We want to approximate posterior expectation:

introduce a distribution Q we
Z ¢ h ‘ D can easily sample from
(and which is non-zero
o Z gb h\D) ( ) everywhere the posterior is
non-zero)

(m)
il Z o h(’m) }éh(m‘)l))) draw samples from Q

Importance sampling

m m my _ P(RU™|D)
:MZw( )¢(h( )) for w(™ = R}

where samples h(1)7 . HL(M)  are generated from Q(h(m))

More commonly, we don’t know normalizing constant for either P or Q, so we use:

E[¢(h)|D] ~ Zm1w<m> ;w<m>¢(h<m>)




Importance sampling

E[¢(h)|D] ~ Zmluf(m) ;w<m>¢(h<m>)

where samples h(1)7 e h(M) are generated from Q(h(m))

Strategy:

We replace average over all hypotheses with a set of weighted samples,
which correct for discrepancy between posterior and Q

P(h™|D)
P(h|D) (™M) —

-- (h) - Q™)

from David MacKay

We can set Q to be the prior, in order to get “Likelihood weighted sampling”
Pros and cons:

pros: far more efficient than rejection sampling, and works for continuous data
cons: its effectiveness strongly depends on how close Q is to the posterior



Example: likelihood weighted sampling

non-zero weights (and more specific have larger weight)
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Example: likelihood weighted sampling
Exact Bayesian inference

X=[16]

=
§ 10
a2
5
g 05
‘s
8
5 00

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 8 92 96 100

X=[16,19]
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Importance sampling (with only 2000 samples)
X=[16] (importance sampler)
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Example: Importance sampling for “Optimal Predictions”

Examples of non-standard posterior distributions

Lifespan posterior Movie gross posterior
P(ttotal’t — 50) P(ttotal‘t — 50)
relative
probability
50 100 150 200 o 00 150 200
ttotal ttatal

Posterior mean F|t;otq;|t = 50

Exact inference: 74.3 82.6

Importance sampler
(with 400 samples)

Q(tiotar) = Uniform(1, 200)

74.0 82.8



Example: Importance sampling for “Optimal Predictions”

Lifespan posterior
P(ttotal’t — 50)

relative
probability

50 100 150 200

ttotal

Q(t,,,,) = Uniform(1,200) = —

1 2
_N(ttotal | H, 62)

total
for I < tl‘

0 otherwise

P(ttotal | t) X

otal

(in more detail...)

P(t|tiotar) P(tiotal)

P(1)

(t|ttotal) — 1/ttotal for t < thtCll
O otherwise

Posterior: P(ttotal ‘t)

Likelihood:

Prior: ( total) = N(ttotal | Hs 0-2)

Importance sampling

Elp(h)| D] ~ Zw<m>¢<h<m>>

zw()

Algorithm...

) )
total’ """’ “total

sample from uniform Q

ton | 1, 63) compute weights
Wi = = 1 for Lorar > S0
200 0 otherwise

1
Eltipr |t = 50] = Y ) Z "t t(oan)ll
m m



Markov Chain Monte Carlo (MCMC)

* You have a single hypothesis h® in mind at any one time, and you make a
small stochastic adjustment to h®to produce h(+7)

* The series of hypotheses h(),...,h(T) (the Markov chain) converges in
distribution to your target posterior P(hID)



Metropolis-Hastings algorithm
(example of Markov Chain Monte Carlo (MCMC))

Goal of approximate inference:

Blo()|D] ~ 7 3 6(h")

where the sequence of samples h(l)’ e h(T) converges to the posteriorP(h\D)
Proposal distribution: QU 1Y)
QN h(t)) P(h|D) unlike importance sampling
proposal h’ depends
proposed sample on the current sample /(*)
h/

~
~
~
~
e
-
-
- .
-
-~
------

2 h
Acceptance ratio:

P(K'|D)Q(R®:; 1) If a = 1thenthe new state is accepted.
‘T P(R®|D)YQ(K;h®) Otherwise, the new state is accepted with probability

t+1 /
If the state is accepted, we set RUHD < h
If the state is rejected, we set  h(t1t1)  p(t) (warning! common mistake)



Metropolis-Hastings algorithm
(example of Markov Chain Monte Carlo (MCMC))

Goal of approximate inference: .
Elg(h)|D] ~ — >  ¢(h™")
t
where the sequence of samples h(l)’ e h(T) converges to the posteriorP(h\D)

Full Metropolis-Hastings algorithm:
(important note: in computing

acceptance probabillity ‘a’

pick initial p) we can safely ignore the normalizing
fort<1...(T'—1) do constant P(D) in the posterior — it cancels
/ 111, (t out— which we often don’t know for
sample h'~ Q(h ‘h( )) complex models!)
_ P |D)Q(rM|n)
— P(hRO|DYQ(W (D) P(h| D) = P(D|H)P(H)
if a > 1 then P(D)
RUHD) 1
else

R « B with probability a
otherwise, h(t+1) « p®)
end if
end for



Metropolis-Hastings algorithm and MCMC

Tricks of the trade:

- If we use a symmetric distribution for Q, like a Gaussian, we can simplify
the acceptance ratio to:

~ P(W'|D)
“ = Pho|D)

- Samples are correlated with one another, so you typically throw out the
samples at the beginning of your chain (called burn in)

- It is good practice to run multiple chains with different starting points, to
examine convergence.

« MCMC can be used as a stochastic search algorithm as well, when
searching for the “best hypothesis” by choosing highest-scoring sample

h* = argmax, P(h|D)

Pros and cons:

* pros: very general; choosing Q is important, but it does not need to be as
carefully constructed as an importance sampler does

 cons: samples are correlated with each other; it can take a very long
time to converge



Example of Metropolis-Hastings for “Optimal Predictions”

t=1 t=2 t=3 t=4

Lif -
l (ttotal‘t — 50) T

current
proposed |

relative
probability |

< 1 ® . L
100 150 200 50 100 150 200 160 1%0 200

MY =50 — h? =50 KB =707 KA®H =79
Wo—497 W =707- K =79 " h=67-""

00 150 200

a=0 a =23 a = 0.89 a = 1.09
REJECT ACCEPT ACCEPT ACCEPT
Acceptance ratio:
0 — P(h/‘D) If a > 1then the new state is accepted.
P(h()|D) Otherwise, the new state is accepted with probability a

Proposal function:

Q(W;h\V) = N(hV,15)



Example of Metropolis-
Hastings for “Optimal
Predictions”

Posterior mean Eltiotar|t = 50]

Lifespan Movie
Exact Inference: 74.3 82.6

Metropolos-Hastings 744 83.0
(MCMC; 1000 samples)

[Samples track region of high
probability!]

relative

probability

samples

chain
over
time

Lifespan

ttotal |t

_ 50

ovie gross

200

200

200

200



Probabilistic programming

Probabilistic programming is a powerful approach for writing Bayesian models

The probabilistic model is defined in a structured description language (much
like a programming language) using random elements

Due to random elements, every time the program executes it returns a
different output

Convenient when the prior is too complex to write down as a set of
hypotheses, or the model is awkward to write as a probabilistic graphical
model (see upcoming lecture on graphical models)

This is a very general way to think about Bayesian modeling — most
Bayesian models can be written as simple probabilistic programs



Probabilistic programming: A simple example

Preliminary definitions

def flip(theta=0.5):
return random.random() < theta

Simple probabilistic program

A =flip(QO)
B = flip()
C = flip(Q)
D=A+B+C
Bayesian inference (again, notice productivity of reasoning abilities!)
P(D) P(A|ID=3) P(A|D > 2)
N\ 040+ ANRE "\ o8-
0.9 4
0.35 0.7 1
0.8
0.30 0.7 0.6 -
> 0.25 E 0.6 > 0.5
g 0.20 - 3 0.5 g 0.4 -
ERere. £ 04+ £ s Example from Noah
010 ol Goodman and Josh
. . 0.2 - 0.2 4
Tenenbaum
0.050 0.1 0.1
- o . https://probmods.org/

> true

- false
" true



Probabilistic programming: Another example

Simple probabilistic program (yet more complex than before)

A = flip()
B = flip()
C = flip()
1f C:
D=A+B+C
else:
E = flip()
F = (2+f1lip()) **2
D=A+B+C+E + F

Bayesian inference P( D)

\ 035-

frequency

Key idea: A probabilistic program is a
generative process for producing data

Hypotheses are then all possible
ways the data could have been
generated
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Key resource on probabilistic programming perspective
to cognitive modeling (probmods.org)

Probabilistic Models of Cognition

2nd Edition
by Noah D. Goodman & Joshua B. Tenenbaum

This book explores the probabilistic approach to cognitive science, which models learning and reasoning
as inference in complex probabilistic models. We examine how a broad range of empirical phenomena,
including intuitive physics, concept learning, causal reasoning, social cognition, and language
understanding, can be modeled using a functional probabilistic programming language called WebPPL.

Citation Chapters

N. D. Goodman and J. B. Tenenbaum (2016).
Probabilistic Models of Cognition (2nd ed.).
Retrieved 2018-4-2 from https://probmods.org/
[bibtex]

Open source

e Book content
Markdown code for the book chapters

e WebPPL
A probabilistic programming language for the
web

Previous edition

The first edition of this book used the probabilistic
programming language Church and can be found
here.

1. Introduction
A brief introduction to the philosophy.

2. Generative models
Representing working models with
probabilistic programs.

3. Conditioning
Asking questions of models by conditional
inference.

4. Patterns of inference
Causal and statistical dependence. Conditional
dependence.

5. Models for sequences of observations
Generative models of the relations between
data points

6. Inference about inference
Models on models on models
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http://probmods.org

Key principles of Bayesian models
of cognition

e Start with analyzing the computational problem that has to be
solved, and describe it as a problem of Bayesian inference

* A successful computational level model provides strong
constraints when developing an algorithmic and implementational
level model

* Bayesian inference provides a flexible framework for testing
different hypotheses about representation, without having to worry
about how to define special algorithms for inference and learning



