
Lecture 6: Computational
Cognitive Modeling

1

course website:
https://brendenlake.github.io/CCM-site/

Reinforcement Learning (pt. 3)

Bellman

Dynamic programming,
TD methods, Monte

Carlo

Neural firing patterns,
prediction errors,

system level
neuroscience

“Of several responses made to the same
situation, those which are accompanied or closely
followed by satisfaction to the animal will,
other things being equal, be more firmly
connected with the situation, so that, when it
recurs, they will be more likely to recur; those
which are accompanied or closely followed by
discomfort to the animal will, other things being
equal, have their connections with that situation
weakened, so that, when it recurs, they will be
less likely to occur” (Thorndike, 1911)

3

Edward Thorndike

Situation Response

reward

Law of Effect

4

Edward Thorndike

Law of Effect

5

•  prediction
•  … revealed by behavior
•  … shaped by learning

classical conditioning

6

Maximizing Reward
The learning algorithm which approximates the full

Bellman Solution (temporal difference):

Vt = E[rt+1] + Vt+1

Vt Vt + �(rt+1 + Vt+1 � Vt)

Vt (1� �)Vt + �(rt+1 + Vt+1)

Compare with Rescorla-Wagner

Vt Vt + ⌘(rt+1 � Vt)
<latexit sha1_base64="4uj4rihP49VPq288eh39Vc58NgY=">AAACEnicbVDLSgNBEJz1GeMr6tHLYBAMwbCrgh6DXjwqmAdkwzI76Y2Dsw9mepWw5Bu8+CtePCji1ZM3/8bZuAc1FjTUVHUz3eUnUmi07U9rZnZufmGxtFReXlldW69sbLZ1nCoOLR7LWHV9pkGKCFooUEI3UcBCX0LHvznL/c4tKC3i6ApHCfRDNoxEIDhDI3mVWttD6koIkCkV39H8WacuIKN7ysuw7ozpfq7WvErVbtgT0GniFKRKClx4lQ93EPM0hAi5ZFr3HDvBfsYUCi5hXHZTDQnjN2wIPUMjFoLuZ5OTxnTXKAMaxMpUhHSi/pzIWKj1KPRNZ8jwWv/1cvE/r5dicNLPRJSkCBH//ihIJcWY5vnQgVDAUY4MYVwJsyvl10wxjibFsgnB+XvyNGkfNJzDhn15VG2eFnGUyDbZIXvEIcekSc7JBWkRTu7JI3kmL9aD9WS9Wm/frTNWMbNFfsF6/wLf15us</latexit>

7

Temporal-difference learning
and “backing up”

8

Dopamine
neurons do it
too...

9

�t

�t

�t

Also correlates with magnitude of reward, degree
of intermittent reinforcement, etc...

Dopamine neurons do it too...

10

The role of dopamine in
reward learning

Dorsal Striatum (Caudate, Putamen)

Ventral Tegmental
Area

Substantia Nigra
Amygdala

Nucleus Accumbens
(Ventral Striatum)

Prefrontal Cortex
Dorsal Striatum (Caudate, Putamen)

Ventral Tegmental
Area

Substantia Nigra
Amygdala

Nucleus Accumbens
(Ventral Striatum)

Prefrontal Cortex
Dorsal Striatum (Caudate, Putamen)

Ventral Tegmental
Area

Substantia Nigra
Amygdala

Nucleus Accumbens
(Ventral Striatum)

Prefrontal Cortex
Dorsal Striatum (Caudate, Putamen)

Ventral Tegmental
Area

Substantia Nigra
Amygdala

Nucleus Accumbens
(Ventral Striatum)

Prefrontal Cortex

11

Rhesus monkeys make eye fixations to
one of two locations which get
rewarded at different rates

Dynamic foraging task since the
reward from each option “drifts” in
time (Poisson arrival times, but one are
baited are always available... like VI
schedule, makes matching the optimal
strategy)

Ever 200 or so trials, the reward
magnitudes or rates change suddenly
causing discontinuous shifts in the
reward rates

12

Optimal integration of the reward
history would be incapable of this
quick adaptation

Instead, suggest some “leaky
integrator” which is pooling
information in time (recency biased)

Distinct from traditional matching law
which integrates “globally”

Learning

13

How do the monkeys
do?

Near optimal setting of
tau

Near optimal setting of

tauThe monkey’s match!

14

The model

learning matching

choice

15

Recording from target-
selective neuron is LIP

Region involved in planning and
executing saccades

LIPFEF

MT

SC

oculomotor nuclei

Lateral
intraparietal areaFrontal eye

fields

Superior
colliculus

visual area MT
(“middle temporal”;

dorsal visual stream)

16

Recording from target-
selective neuron is LIP

Selected on the basis of delayed
saccade task to find RF selective cells
(like a forced choice version of
matching game)

Near optimal setting of

tau
Spatially selective
response

17

Recording from target-
selective neuron in LIP

Cells modulated by trial-to-trial utility
of target in the receptive field

18

Recording from target-
selective neuron is LIP

Cells modulated by trial-to-trial utility
of target in the receptive field

19

Generalization and Function
Approximation

(Niv, 2019)

https://doi.org/10.1038/s41593-019-0470-8

Generalization and Function
Approximation

• Instead of directly looking up the states in a kind of addressable-
memory, we represent different features of the the states

Coarse coding/tiling

Generalization and Function
Approximation

More neuron (finer tiling) =
higher fidelity, better

discrimination

Generalization and Function
Approximation

• Neural networks make a useful approximation scheme due to the
universal approximation properties

Q(s, a = 1)

Q(s, a = 2)

• Train with backprop as in past stuff but the loss function is the Q-
learning update rule

L =
1

2
[r +maxa0Q(s0, a0)�Q(s, a)]2

Q-learning gradient updates
• Do a feedforward pass of the network for the current state s and

get predicted Q values for all actions (output nodes)
• Choose an action using e.g., softmax of epilson greedy to

encourage exploration
• Do a feedforward pass for the network for the next state (s’) and

get the maximum possible Q-value
• Set Q-value target for the chose action to for

the chose action and zero for all others
• Backpropogate that error as for normal network

Q(s, a = 1)

Q(s, a = 2)

L =
1

2
[r +maxa0Q(s0, a0)�Q(s, a)]2

r +maxa0Q(s0, a0)

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

MEL

MAX

Percentage of Maximizing Respones over Last 10 Trials

Re
w

ar
d

Welcome to the N.A.S.A. Mars Farming Project

Bias UnitLast Choice
[0/1]

Position
of
Light
[0-10]

Q(s,a=0) Q(s,a=1)

L =
1

2
[r +maxa0Q(s0, a0)�Q(s, a)]2

0.2

0.4

0.6

0.8

1

Consistent State
Shuffled State
No State Information

500400300200100

Trials
Pe

rc
en

t M
ax

im
iz

in
g

Re
sp

on
se

s

The way the problem is represented to
the network makes it easier to learn

the state representation matters!

DQN!

Learning Policies Directly Using Policy
Gradient

• So far we have focused on learning values (v-values or Q-values)
with the policy treated separately on top (e.g., epsilon-greedy or
software)

• Instead what if we learn policies directly?
• Represent the policy as a continuous, differentiable function (e.g.,

an artificial neural network)

Learning Policies Directly Using Policy
Gradient

• So far we have focused on learning values (v-values or Q-values)
with the policy treated separately on top (e.g., epsilon-greedy or
software)

• Instead what if we learn policies directly?
• Represent the policy as a continuous, differentiable function (e.g.,

an artificial neural network)

The return

The objective

Aka, the problem to optimize

Learning Policies Directly Using Policy
Gradient

• So far we have focused on learning values (v-values or Q-values)
with the policy treated separately on top (e.g., epsilon-greedy or
software)

• Instead what if we learn policies directly?
• Represent the policy as a continuous, differentiable function (e.g.,

an artificial neural network)

Gradient ascent in parameter
Space to maximize the return

The policy gradient
** see several sources including Sutton and Barto book for proof of policy

gradient theorem, Williams (1992) REINFORCE algorithm

Learning Policies Directly Using Policy
Gradient

• So far we have focused on learning values (v-values or Q-values)
with the policy treated separately on top (e.g., epsilon-greedy or
software)

• Instead what if we learn policies directly?
• Represent the policy as a continuous, differentiable function (e.g.,

an artificial neural network)

• If the Return is greater than
zero than probability of action is
increased, if less than zero
probability of action is
decreased (Thorndike law of
effect!)

• Can alter discrete action
probabilities but also apply to
continuous action parameters
like the mean and standard
deviation of a Gaussian!

• Combined neural networks with
the problem of dynamic control!

Planning or Model-based Learning

Temporal-Difference/Monte-carlo methods we
have considered so far are call “model-free”
because they don’t maintain or learn
information about the state transitions and
rewards explicitly.

In contrast, Dynamic Programming needs a
model of the environment in terms of the
transition probabilities and rewards.

If you have a model you can distinguish
planning from learning.

Planning - predict what will happen in the
future… what state will I end up in, what
reward will I get?

The DYNA algorithm

Combines direct experience which helps learn
direct RL value/policy updates with model
learning.

Simulated experience used to aid planning.

The DYNA algorithm

“experience replay” also used in Atari Solution

Online planning

From each state, if we have a good model
of environment we can simulate forward
many times to determine the value of the
current state or action.

However, the branching factor of this tree
can be a major problem.

One recent innovation is Monte Carlo
Tree Search (MCTS)

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com

Monte Carlo Tree Search

• In a standard Monte Carlo process, a large
number of random simulations are run, in this
case, from the board position that you want to
find the best move for.

• The downside to this method, though, is that for
any given turn in the simulation, there may be
many possible moves, but only one or two that
are good.

• Instead of doing many purely random simulations,
UCB works by doing many multi-phase playouts
where each position is itself viewed as a multi-
armed bandit.

UCB1
jeffbradberry.com (Hacker Monthly)

• Pick option with highest confidence bound

http://jeffbradberry.com

Monte Carlo Tree Search

UCB1

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com

Monte Carlo Tree Search

UCB1

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com

Monte Carlo Tree Search

UCB1

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com

Monte Carlo Tree Search

UCB1

• As more and more playouts are run, the tree of
statistics grows in memory and the move that
will finally be chosen will converge towards the
actual optimal play, though that may take a
very long time, depending on the game.

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com

Monte Carlo Tree Search

UCB1

• As more and more playouts are run, the tree of
statistics grows in memory and the move that
will finally be chosen will converge towards the
actual optimal play, though that may take a
very long time, depending on the game.

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com

Human Tree Search?

https://www.cns.nyu.edu/malab/static/files/publications/2017%20Van%20Opheusden%20Galbiati%20Bnaya%20Li%20Ma.pdf

Van Opheusden B, Galbiati G, Bnaya Z, Li Y, Ma WJ (2017),

A computational model for decision tree search.

Proceedings of the 39th Annual Meeting of the Cognitive Science Society, 1254-1259.

http://www.cognitivesciencesociety.org/conference/cogsci2017/

47

Do animals plan?

48

A good test: Outcome devaluation
Holland (2004) see also Dickinson article for examples

49

A good test: Outcome devaluation

Suggests some measure of
reward or outcome expectancy
(shifts to habitual control with
extensive training)

Holland (2004) see also Dickinson article for examples

50

Key idea

from Daw, Niv, Dayan, 2005

51

Key idea

from Daw, Niv, Dayan, 2005

Near optimal setting of

tau
Model-based system

Near optimal setting of

tau
Model-free system

52
from Yael Niv

53
from Yael Niv

54

Working memory load interferes with online
planning making human act more like model-
free learners.

Bellman

Dynamic programming,
TD methods, Monte

Carlo

Neural firing patterns,
prediction errors,

system level
neuroscience

Playing around with RL…

Next time: Bayes

Slide Credits Nathaniel Daw (exploration/gittins)
Alex Rich
Gillian Hayes (TD methods/explore)
Rich Sutton (general approach)
Andy Barto (general approach)

