
Lecture 6: Computational  
Cognitive Modeling
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course website: 
https://brendenlake.github.io/CCM-site/

Reinforcement Learning (pt. 3)



Bellman

Dynamic programming, 
TD methods, Monte

Carlo

Neural firing patterns,
prediction errors,

system level 
neuroscience



“Of several responses made to the same 
situation, those which are accompanied or closely 
followed by satisfaction to the animal will, 
other things being equal, be more firmly 
connected with the situation, so that, when it 
recurs, they will be more likely to recur; those 
which are accompanied or closely followed by 
discomfort to the animal will, other things being 
equal, have their connections with that situation 
weakened, so that, when it recurs, they will be 
less likely to occur”  (Thorndike, 1911)
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Edward Thorndike

Situation Response 

reward 

Law of Effect
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Edward Thorndike

Law of Effect



5

•  prediction 
•  … revealed by behavior 
•  … shaped by learning 

classical conditioning
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Maximizing Reward
The learning algorithm which approximates the full 

Bellman Solution (temporal difference):

Vt = E[rt+1] + Vt+1

Vt  Vt + �(rt+1 + Vt+1 � Vt)

Vt  (1� �)Vt + �(rt+1 + Vt+1)

Compare with Rescorla-Wagner

Vt  Vt + ⌘(rt+1 � Vt)
<latexit sha1_base64="4uj4rihP49VPq288eh39Vc58NgY=">AAACEnicbVDLSgNBEJz1GeMr6tHLYBAMwbCrgh6DXjwqmAdkwzI76Y2Dsw9mepWw5Bu8+CtePCji1ZM3/8bZuAc1FjTUVHUz3eUnUmi07U9rZnZufmGxtFReXlldW69sbLZ1nCoOLR7LWHV9pkGKCFooUEI3UcBCX0LHvznL/c4tKC3i6ApHCfRDNoxEIDhDI3mVWttD6koIkCkV39H8WacuIKN7ysuw7ozpfq7WvErVbtgT0GniFKRKClx4lQ93EPM0hAi5ZFr3HDvBfsYUCi5hXHZTDQnjN2wIPUMjFoLuZ5OTxnTXKAMaxMpUhHSi/pzIWKj1KPRNZ8jwWv/1cvE/r5dicNLPRJSkCBH//ihIJcWY5vnQgVDAUY4MYVwJsyvl10wxjibFsgnB+XvyNGkfNJzDhn15VG2eFnGUyDbZIXvEIcekSc7JBWkRTu7JI3kmL9aD9WS9Wm/frTNWMbNFfsF6/wLf15us</latexit>
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Temporal-difference learning 
and “backing up”
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Dopamine 
neurons do it 
too...
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�t

�t

�t

Also correlates with magnitude of reward, degree 
of intermittent reinforcement, etc...

Dopamine neurons do it too...
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The role of dopamine in 
reward learning
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Rhesus monkeys make eye fixations to 
one of two locations which get 
rewarded at different rates


Dynamic foraging task since the 
reward from each option “drifts” in 
time (Poisson arrival times, but one are 
baited are always available... like VI 
schedule, makes matching the optimal 
strategy)


Ever 200 or so trials, the reward 
magnitudes or rates change suddenly 
causing discontinuous shifts in the 
reward rates
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Optimal integration of the reward 
history would be incapable of this 
quick adaptation


Instead, suggest some “leaky 
integrator” which is pooling 
information in time (recency biased)


Distinct from traditional matching law 
which integrates “globally”

Learning
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How do the monkeys 
do?

Near optimal setting of 
tau

Near optimal setting of 

tauThe monkey’s match!
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The model

learning matching

choice
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Recording from target-
selective neuron is LIP

Region involved in planning and 
executing saccades

LIPFEF

MT

SC

oculomotor nuclei

Lateral 
intraparietal areaFrontal eye 

fields

Superior 
colliculus

visual area MT 
(“middle temporal”; 

dorsal visual stream)



16

Recording from target-
selective neuron is LIP

Selected on the basis of delayed 
saccade task to find RF selective cells 
(like a forced choice version of 
matching game)

Near optimal setting of 

tau
Spatially selective 
response
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Recording from target-
selective neuron in LIP

Cells modulated by trial-to-trial utility 
of target in the receptive field
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Recording from target-
selective neuron is LIP

Cells modulated by trial-to-trial utility 
of target in the receptive field
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Generalization and Function 
Approximation



(Niv, 2019)

https://doi.org/10.1038/s41593-019-0470-8



Generalization and Function 
Approximation

• Instead of directly looking up the states in a kind of addressable-
memory, we represent different features of the the states

Coarse coding/tiling



Generalization and Function 
Approximation

More neuron (finer tiling) =
higher fidelity, better 

discrimination



Generalization and Function 
Approximation

• Neural networks make a useful approximation scheme due to the 
universal approximation properties

Q(s, a = 1)

Q(s, a = 2)

• Train with backprop as in past stuff but the loss function is the Q-
learning update rule

L =
1

2
[r +maxa0Q(s0, a0)�Q(s, a)]2



Q-learning gradient updates
• Do a feedforward pass of the network for the current state s and 

get predicted Q values for all actions (output nodes)
• Choose an action using e.g., softmax of epilson greedy to 

encourage exploration
• Do a feedforward pass for the network for the next state (s’) and 

get the maximum possible Q-value
• Set Q-value target for the chose action to                                   for 

the chose action and zero for all others
• Backpropogate that error as for normal network

Q(s, a = 1)

Q(s, a = 2)

L =
1

2
[r +maxa0Q(s0, a0)�Q(s, a)]2

r +maxa0Q(s0, a0)
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Welcome to the N.A.S.A. Mars Farming Project
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The way the problem is represented to 
the network makes it easier to learn

the state representation matters! 



DQN!



Learning Policies Directly Using Policy 
Gradient

• So far we have focused on learning values (v-values or Q-values) 
with the policy treated separately on top (e.g., epsilon-greedy or 
software)

• Instead what if we learn policies directly?
• Represent the policy as a continuous, differentiable function (e.g., 

an artificial neural network)



Learning Policies Directly Using Policy 
Gradient

• So far we have focused on learning values (v-values or Q-values) 
with the policy treated separately on top (e.g., epsilon-greedy or 
software)

• Instead what if we learn policies directly?
• Represent the policy as a continuous, differentiable function (e.g., 

an artificial neural network)

The return

The objective

Aka, the problem to optimize



Learning Policies Directly Using Policy 
Gradient

• So far we have focused on learning values (v-values or Q-values) 
with the policy treated separately on top (e.g., epsilon-greedy or 
software)

• Instead what if we learn policies directly?
• Represent the policy as a continuous, differentiable function (e.g., 

an artificial neural network)

Gradient ascent in parameter
Space to maximize the return

The policy gradient
** see several sources including Sutton and Barto book for proof of policy 

gradient theorem, Williams (1992) REINFORCE algorithm



Learning Policies Directly Using Policy 
Gradient

• So far we have focused on learning values (v-values or Q-values) 
with the policy treated separately on top (e.g., epsilon-greedy or 
software)

• Instead what if we learn policies directly?
• Represent the policy as a continuous, differentiable function (e.g., 

an artificial neural network)

• If the Return is greater than 
zero than probability of action is 
increased, if less than zero 
probability of action is 
decreased (Thorndike law of 
effect!)

• Can alter discrete action 
probabilities but also apply to 
continuous action parameters 
like the mean and standard 
deviation of a Gaussian!

• Combined neural networks with 
the problem of dynamic control!



Planning or Model-based Learning

Temporal-Difference/Monte-carlo methods we 
have considered so far are call “model-free” 
because they don’t maintain or learn 
information about the state transitions and 
rewards explicitly.


In contrast, Dynamic Programming needs a 
model of the environment in terms of the 
transition probabilities and rewards.


If you have a model you can distinguish 
planning from learning. 

Planning - predict what will happen in the 
future… what state will I end up in, what 
reward will I get?



The DYNA algorithm

Combines direct experience which helps learn 
direct RL value/policy updates with model 
learning. 


Simulated experience used to aid planning.



The DYNA algorithm

“experience replay” also used in Atari Solution



Online planning

From each state, if we have a good model 
of environment we can simulate forward 
many times to determine the value of the 
current state or action.


However, the branching factor of this tree 
can be a major problem.


One recent innovation is Monte Carlo 
Tree Search (MCTS)

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com


Monte Carlo Tree Search

• In a standard Monte Carlo process, a large 
number of random simulations are run, in this 
case, from the board position that you want to 
find the best move for. 


• The downside to this method, though, is that for 
any given turn in the simulation, there may be 
many possible moves, but only one or two that 
are good. 


• Instead of doing many purely random simulations, 
UCB works by doing many multi-phase playouts 
where each position is itself viewed as a multi-
armed bandit.

UCB1
jeffbradberry.com (Hacker Monthly)

• Pick option with highest confidence bound

http://jeffbradberry.com


Monte Carlo Tree Search

UCB1

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com


Monte Carlo Tree Search

UCB1

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com


Monte Carlo Tree Search

UCB1

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com


Monte Carlo Tree Search

UCB1

• As more and more playouts are run, the tree of 
statistics grows in memory and the move that 
will finally be chosen will converge towards the 
actual optimal play, though that may take a 
very long time, depending on the game.

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com


Monte Carlo Tree Search

UCB1

• As more and more playouts are run, the tree of 
statistics grows in memory and the move that 
will finally be chosen will converge towards the 
actual optimal play, though that may take a 
very long time, depending on the game.

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com


Human Tree Search?

https://www.cns.nyu.edu/malab/static/files/publications/2017%20Van%20Opheusden%20Galbiati%20Bnaya%20Li%20Ma.pdf

Van Opheusden B, Galbiati G, Bnaya Z, Li Y, Ma WJ (2017),

A computational model for decision tree search.

Proceedings of the 39th Annual Meeting of the Cognitive Science Society, 1254-1259.

http://www.cognitivesciencesociety.org/conference/cogsci2017/
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Do animals plan?
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A good test: Outcome devaluation
Holland (2004)  see also Dickinson article for examples
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A good test: Outcome devaluation

Suggests some measure of 
reward or outcome expectancy 
(shifts to habitual control with 
extensive training)

Holland (2004)  see also Dickinson article for examples
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Key idea

from Daw, Niv, Dayan, 2005 
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Key idea

from Daw, Niv, Dayan, 2005 

Near optimal setting of 

tau
Model-based system

Near optimal setting of 

tau
Model-free system



52
from Yael Niv 
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from Yael Niv 
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Working memory load interferes with online 
planning making human act more like model-
free learners.
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TD methods, Monte
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system level 
neuroscience



Playing around with RL…



Next time: Bayes



Slide Credits Nathaniel Daw (exploration/gittins)
Alex Rich
Gillian Hayes (TD methods/explore)
Rich Sutton (general approach)
Andy Barto (general approach)


