Lecture 6: Computational
Cognitive Modeling

Reinforcement Learning (pt. 3)

course website:
https://brendenlake.github.io/CCM-site/

Three levels of description (David Marr, 1982)

Computational maximize:

Why do things work the way they do? Rt —p 4 et Bellman

What is the goal of the computation? t+1 t+2 r

What are the unifying principles?

Algorthmic | QL O Dynamic programming,
What representations can implement ©) D €2) €

such computations? \ \ \ D methOdS, Monte
How does the choice of representations DEROREORED Carlo

determine the algorithm? @ @ @ @

cue
Predicted

Implementational l

How can such a system be built in Neural fmng pattemS,

hard ? AR 8 S TSARR SR SR FAH RN TR dicti
ardware!
Small reward Predicted pre ICtlon errorS’
How can neurons carry out the small reward i | |
computations? N e — VE SyElE et
Flave EREINOSL N AR iy o

neuroscience

computation and cognition lab // new york university

Edward Thorndike

Law of Effect

Response

reward

/— j Al

| ﬂ/ﬁj ML
Vg {)

-

+/’>

“Of several responses made to the same
situation, those which are accompanied or closely
followed by satisfaction to the animal will,
other things being equal, be more firmly
connected with the situation, so that, when it
recurs, they will be more likely to recur; those
which are accompanied or closely followed by
discomfort to the animal will, other things being
equal, have their connections with that situation
weakened, so that, when it recurs, they will be
less likely to occur” (Thorndike, 1911)

computation and cognition lab // new york university

Edward Thorndike

Law of Effect

600

ape (sec)

= 400

S
-
S

..
=

Time required to esc
=
S

S

300 |

500 |

—

10

First tnal in
puzzle box

After many
trials in
puzzle box

s 4

mtirmall
puzzle | o
box —
T
¥
Stirmli }——"
mside of | =
puzzle -
box L
—— i

b

mcratch at bars

Push at ceiling
Dig at door

Howl
Etc.

Press Lewvel

mcratch at bars
Push at ceiling
Dig at door

Howl
Etc.

Press Lewvel

computation and cognition lab / w york university

classical conditioning

"TONGUE OUT

SALIVA BEGINS &‘
'ro FLOW

g

« prediction
* ... revealed by behavior
* ... shaped by learning

Maximizing Reward

The learning algorithm which approximates the full
Bellman Solution (temporal difference):

Vi=FElrii1] + Viga

Vi Vi +n(ree1 + Vigr — Vi)

Vi — (1 —n)Vi+n(reer + Vier)

Compare with Rescorla-Wagner

Vi~ Vi +n(rigs — Vi)

computation and cognition la

ork universi

Temporal-difference learning
and “backing up”

)
= 1
5 !
% 0.5
ke
b vV o0
= 0.5 ,
v
-1 . v 40
0 ™~ /30
\\\ y
20 // 20
N &
77”’6 40 \\\ // 10 A
~.
_/
60

computation and cognition lab // new york university

Do dopamine neurons report an erra
in the prediction of reward?

No prediction L“‘H
Reward occurs I . '
g e R

Dopamine
neurons do it
too...

Reward predicted
Reward occurs

Reward predicted
No reward occurs

computation and cognition lab // new york university

Dopamine neurons do it too...

Do dopamine neurons report an erra
in the prediction of reward?

No prediction
Reward occurs

Reward predicted
Reward occurs

Reward predicted
No reward occurs

Also correlates with magnitude of reward, degree
of intermittent reinforcement, eftc...

9

computation and cognition lab // new york university

The role of dopamine In
reward learning

Dorsal Striatum (Caudate, Putamen)

Prefrontal Cortex

Amygdala

y | Tegmental Substantia Nigra

Area

10

computation and cognition lab // new york university

Matching Behavior and the

Representation of Value in the

C

Slope (degraes)

a0

Parietal Cortex

Leo P. Sugrue,* Greg S. Corrado, William T. Newsome

Instantaneous Income Ratio

Instantaneous Choice Ratio

0 100 200 300 400
Cumulative green choices

|

L

*

T

L)
Juu

Ll
quo

Choice number

Ll
2LO

Ffon -

4
o
o

300

"J
L)
L)
ative red choices

-é r

o

-

umu

Rhesus monkeys make eye fixations to
one of two locations which get
rewarded at different rates

Dynamic foraging task since the
reward from each option “drifts” in
time (Poisson arrival times, but one are
baited are always available... like VI
schedule, makes matching the optimal
strategy)

Ever 200 or so trials, the reward
magnitudes or rates change suddenly
causing discontinuous shifts in the
reward rates

computation and cognition lab // new york university

Matching Behavior and the
Representation of Value in the
Parietal Cortex

Leo P. Sugrue,* Greg S. Corrado, William T. Newsome

4
(=]
o
|

"J
L)
L)
ative red choices

umu

-

. - - . a
0 100 200 300 400
Cumulative green choices

C Instantaneous Income Ratio
Instantaneous Choice Ratio
a0 ¥
- [l A RIAn
: ‘ * 1
3
T‘I‘B' 4ah 4
=]
@ - ~ 11 1 1
L' e grisy
0 1 3 L\ 1‘ L) Ll T - T T = L)
U oo 200 Juu auo L0 SO J00 L0

Choice number

Ffon - -~ - -~ . - ay fom\ -~

Learning

- Optimal integration of the reward
history would be incapable of this
quick adaptation

‘® |nstead, suggest some “leaky
integrator” which is pooling
information in time (recency biased)

A Global Matching Law B Local Matching Law
]f’(’(l — Cn‘d l red — p (’.""1
I red i green Crr-‘d + C‘Ql't’(-‘n I red +1 green
Reward Perfect Integrator Global Reward Leaky Integrator Local
Stream p Income Stream Income
A
r(t) — JO — Iy (@) —%— 1()

> Distinct from traditional matching law
which integrates “globally”

computation and cognition lab // new york university

Matching Behavior and the
Representation of Value in the

Parietal Cortex HOW dO the mon keyS

Leo P. Sugrue,* Greg S. Corrado, William T. Newsome dO?
G .. D E
- Ideal Probabilistic Performance) 8
& £ 400 = ©
261 2 8 ®
> - 300 e
2 @ (&)
® é 200 <
£70 5 2
= =
3 £ 100 8
L Non-Adaptive Performance 8 '8

65 — - - - 0 .

1 < 16 64 256 0O 100 200 300 400 0 1
Integration constant T (choices) Cumulative green choices Fractional income (red)

Near optimal setting of The monkey’s match!

tau

computation and cognition lab // new york university

Matching Behavior and the

Representation of Value in the

Parietal Cortex

Leo P. Sugrue,* Greg S. Corrado, William T. Newsome

The model

Leaky integrators

Reward
histories

O[TO0[0TTT]0]0| —— I/L

}7 learning 4{ |

Loca Loca Probability
income fractional of choice choice
income
/ @ . N — 46"
.. ./ o.v

2/

Igreen J

matching |

computation and cognition lab // new york university

Matching Behavior and the
Representation of Value in the Recording from target-

Parietal Cortex selective neuron is LIP

Leo P. Sugrue,* Greg S. Corrado, William T. Newsome

¢ Region involved in planning and
executing saccades

Lateral

Frontal eye intraparietal area

fields

_ visual area MT
Superior SC (“middle temporal’;
colliculus l dorsal visual stream)

oculomotor nuclei

computation and cognition lab // new york university

Matching Behavior and the
Representation of Value in the

Parietal Cortex
Leo P. Sugrue,* Greg S. Corrado, William T. Newsome

Recording from target-
selective neuron is LIP

larget on Saccade

saccade into RF o
MRF -

0 0. -05 0
7\|e (seconds)
‘® Selected on the basis of delayed
saccade task to find RF selective cells Spatially selective
(like a forced choice version of response

matching game) 6

(o))
o

Response (spks/sec) w
3 &

:

o

computation and cognition lab // new york university

Matching Behavior and the
Representation of Value in the

Parietal Cortex
Leo P. Sugrue,* Greg S. Corrado, William T. Newsome

Recording from target-
selective neuron in LIP

Targets on Saccade

o
o

o
»

o
N

Both monkeys,
n =43 cells

Response (peak normalized)
o
N

o

0 0.5 -0.5 0
Time (seconds)

¢ Cells modulated by trial-to-trial utility
of target in the receptive field

|7

computation and cognition lab // new york university

Matching Behavior and the
Representation of Value in the

Parietal Cortex
Leo P. Sugrue,* Greg S. Corrado, William T. Newsome

Recording from target-
selective neuron is LIP

O
o

I8
o

N
)

and
o

Response (spikes/second) @
w
o

o

Local fractional income

¢ Cells modulated by trial-to-trial utility

Frequency

10 |

c

10 |

Both monkeys,
n= 62 cells

- 20 - 10 0 10

Regression slope

of target in the receptive field

|18

20

computation and cognition lab // new york university

6,000 ms after
trial onset

Trial ends

Published in final edited form as:
Nature. 2006 June 15; 441(7095): 876—-879. doi:10.1038/nature04766.

Signal change (%) &

[P<0.01
B P <0.001

-5 0 5 10 15 20
Time since choice

k

Figure 3.
Exploration-related activity in frontopolar cortex. a, Regions of left and right frontopolar

cortex (IFP, rFP) showing significantly increased activation on exploratory compared with
exploitative trials. Activation maps (yellow, P <0.001; red, P < 0.01) are superimposed on a
subject-averaged structural scan. The coordinates of activated areas are [-27,48 4, peak z =
3.49] for IFP and [27,57,6, peak z = 4.13] for rFP. b, rFP BOLD time courses averaged over
1,515 exploratory (red line) and 2,646 exploitative (blue line) decisions. Black dots indicate
the sampling frequency (although, because sample alignment varied from trial to trial, time
courses were upsampled). Coloured fringes show error bars (representing s.e.m.).

Cortical substrates for exploratory decisions in humans

Nathaniel D. Daw, John P. O'Doherty, Peter Dayan, Ben Seymour, and Raymond J. Dolan

19

Generalization and Function
Approximation

e [abular value functions

action

state 01 03 07 0.2

0.4
0.2

Q(s,a)

What happens if the size of the state/action space is large?

e Large numbers of states/actions?
e Continuously-valued states/actions?
e Most states never experienced exactly before

Memory
Time
Data

GENERALISATION: how experience with small part of state space is used to
produce good behaviour over large part of state space

Learning task-state representations

Yael Niv
a
Outcome
500 ms
ISI
45-55s
Choice
< 1,500 ms

Eea

ITI

500 — 4000 ms
Outcome
500 ms

Choice

< 1,500 ms

(Niv, 2019)

https://doi.org/10.1038/s41593-019-0470-8

Choice

YOU WIN

Predictionerror & = 1
point

Learning

- V| ¢

Attention biases valuation

Attention biases learning

[‘C_}n.a.ﬁF

4.26

i~3.09

Generalization and Function
Approximation

* Instead of directly looking up the states in a kind of addressable-
memory, we represent different features of the the states

X

Co_ Y
bs = heading

A
batterypower ' |

e Position in x, y coordinates (real numbers)
e Heading in degrees w.r.t. north (real number or quantised)

e Battery power = some real number

Coarse coding/tiling

Narrow generalization Broad generalization Asymmetric generalization

Figure 9.7: Generalization in linear function approximation methods is determined by the sizes and shapes of
the features’ receptive fields. All three of these cases have roughly the same number and density of features.

Generalization and Function
Approximation

Figure 3.6 — CORTICAL PLASTICITY. The density of receptive
fields of somatosensory cortical neurons, mapped onto the monkey
palm surface, after prolonged exposure to local stimulation (right;
the arrow indicates the stimulated spot). The map for the unstim-
ulated hand is shown as a control (leff). Merely touching the skin
repeatedly at the designated location for the period of several days
caused that location to become over-represented in the brain.

More neuron (finer tiling) =
higher fidelity, better
discrimination

Generalization and Function
Approximation

* Neural networks make a useful approximation scheme due to the
universal approximation properties

—_—

y 7 Q—’ Q(Saazl)

Y

heading - - Q(S 0 — 2)

batterypower

- Train with backprop as in past stuff but the loss function is the Q-
learning update rule

Reminder: Backpropagation algorithm for

1 / / 2 computing gradient —
L — 5 I:’r —I_ maaja// Q(S) a) o Q(S7 a)] Multi-step strategy: E(w’b)zg(;ei;_y)z
OE _ OF oh
Ows ~ Oh dws

Step 1) Compute how error changes as a
function of hidden unit activation

Step 2) Compute how hidden unit
activation changes as a function of
weight

Q-learning gradient updates

- Do a feedforward pass of the network for the current state s and
get predicted Q values for all actions (output nodes)

- Choose an action using e.g., softmax of epilson greedy to
encourage exploration

- Do a feedforward pass for the network for the next state (s’) and
get the maximum possible Q-value

- Set Q-value target for the chose action to r + maz, Q(s’,a’) for
the chose action and zero for all others

- Backpropogate that error as for normal network

x
Y

heading o - 0 (S ,
)

batterypower

MAX

o 0.2 0.4 0.6 0.8 1
Percentage of Maximizing Respones over Last 10 Trials

WELCOME TO THE N.AS.A. MARS FARMING PROJECT

SYSTEM] SYSTEM 2

SYSTEM] ‘ SYSTEM 2

Q(s,a=0) Qf(s,a=1)

O

Position Last Choice Bias Unit
of [0/1]

Light

[0-10]

Percent Maximizing Responses

04

The way the problem is represented to
the network makes it easier to learn

0.8

0.6 |

0.2 ¢

-—a Consistent State
.=« Shuffled State

-= No State Information

the state representation matters!

Convolution
v

LETTER

oooooo

\

ooooooo

ooooooo

Julalalolalele i

ooooooo

Convolution
v

0

Fully cgnnected

® ®© 0.0 00 0 00 00 0 00 90 0 0 0 0 0

Fully connected
v

+
BER

N
+
O

® ® 0.0 00 0 0000 000 00 0 0.0 0 0

AINMIR L€ IV
+f+0+0+0+01+
2LLELELE

doi:10.1038/nature14236

Human-level control through deep reinforcement

learning

Volodymyr Mnih'*, Koray Kavukcuoglu'*, David Silver'*, Andrei A. Rusu, Joel Veness', Marc G. Bellemare', Alex Graves',
Martin Riedmiller’, Andreas K. Fidjeland, Georg Ostrovski', Stig Petersen, Charles Beattie!, Amir Sadik’, Ioannis Antonoglou’,
Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis*

DQN!

Video Pinball]
Boxing |
Breakout |
Star Gunner |
Robotank |
Atlantis |
Crazy Climber |
Gopher |
Demon Attack |
Name This Game |
Krull |
Assault |
Road Runner |
Kangaroo :
James Bond |
Tennis
Pong |
Space Invaders |
Beam Rider |
Tutankham |
Kung-Fu Master |
Freeway |
Time Pilot |
Enduro |
Fishing Derby |
Up and Down |
Ice Hockey |
Q*bert |
H.E.R.O. |
Asterix |
Battle Zone |
Wizard of Wor |
Chopper Command |
Centipede |
Bank Heist |
River Raid |
Zaxxon |
Amidar |
Alien |
Venture |
Seaquest |
Double Dunk |
Bowling |
Ms. Pac-Man |
Asteroids |
Frostbite |
Gravitar |
Private Eye |

Montezuma's Revenge

0 100 200 300 400 500

,|

400%

Il;llq

2
®

i!llqi

§8:
Rl

il

T

At human-level or above

o |
°|

Below human-level

[T T T T T

Learning Policies Directly Using Policy
Gradient

- So far we have focused on learning values (v-values or Q-values)
with the policy treated separately on top (e.g., epsilon-greedy or
software)

* Instead what if we learn policies directly?

* Represent the policy as a continuous, differentiable function (e.g.,
an artificial neural network)

o(
TR /‘\ i x v«::z..w
%07'//‘\“"0"1 o‘\\‘%?," 0“ '0‘" /‘\\‘\Q%Q
\\5? \' "0»/ \.‘:‘» ,,';0/.\\\“' “:'//

P(a,;)
P(az)
P(a3)
P(a4)
P(an)

%

X s A 9,
S3 0“;‘% "'/ \""‘* 4 '~ ‘:?. :.o. »’ y ‘w \0 0‘:';“0
~" V’A //‘". YATA ‘ “ "z vvvvv '." ' d‘ ~\\ / " & “'

\ “ 4\“ \\ :‘ " “ \ // "lb ‘\
o N s o o ‘v
ca\via \V

\ '

A\\ “‘

\\\V "‘V//’*

Learning Policies Directly Using Policy
Gradient

- So far we have focused on learning values (v-values or Q-values)
with the policy treated separately on top (e.g., epsilon-greedy or
software)

* Instead what if we learn policies directly?

* Represent the policy as a continuous, differentiable function (e.g.,
an artificial neural network)

R(r) =Y +""'ry The return
T
J(ﬂ-e) —]ETNﬂ'G [R(T)] — ET’V’”@ [; ’Yt,rt:| The ObjeCtive

max J(g) = Er~x,[R(T)] Aka, the problem to optimize

Learning Policies Directly Using Policy
Gradient

- So far we have focused on learning values (v-values or Q-values)
with the policy treated separately on top (e.g., epsilon-greedy or
software)

* Instead what if we learn policies directly?

* Represent the policy as a continuous, differentiable function (e.g.,
an artificial neural network)

Gradient ascent in parameter

0« 0+ aVeJ(my o
(o) Space to maximize the return

- T -
VoJ(mg) = Erny | ¥ Ri(T)Vologmg(as | s:)

- +=0 -

The policy gradient

** see several sources including Sutton and Barto book for proof of policy
gradient theorem,Williams (1992) REINFORCE algorithm

Learning Policies Directly Using Policy
Gradient

- So far we have focused on learning values (v-values or Q-values)
with the policy treated separately on top (e.g., epsilon-greedy or
software)

* Instead what if we learn policies directly?

* Represent the policy as a continuous, differentiable function (e.g.,
an artificial neural network)

: Algorithm 2.1 REINFORCE algorith
- If the Return is greater than 5 algorithm

zero than probability of action is
increased, if less than zero
probability of action is
decreased (Thorndike law of
effect!)

1: Initialize learning rate «
2: Initialize weights 6 of a policy network 7y

3: for episode = 0, ..., MAX_EPISODE do
4: Sample a trajectory 7 = 8¢, ag, o, ..., ST,aT, T

« Can alter discrete action > Set Vg J (1) = 0
probabilities but also apply to 6 for{ =0,... ’7;‘10 I
continuous action parameters 7 Ry(T) =D p—7" ~'Tt
like the mean and standard 8 VoJ(mg) = VoJ(mg) + Ri(T)Vglogmy(as | st)
deviation of a Gaussian! 9 end for
- Combined neural networks with 10 0 =0+ aVeJ(m)
the problem of dynamic control! 11: end for

Planning or Model-based Learning

Temporal-Difference/Monte-carlo methods we
have considered so far are call “model-free”
because they don’t maintain or learn
iInformation about the state transitions and
rewards explicitly.

In contrast, Dynamic Programming needs a value/policy
model of the environment in terms of the acting
transition probabilities and rewards. planning direct
RL
If you have a model you can distinguish _
model experience

planning from learning. \/

model

Planning - predict what will happen in the learning
future... what state will | end up in, what
reward will | get?

The DYNA algorithm

VAN

/ \
P/olicy/value functjons

Combines direct experience which helps learn
direct RL value/policy updates with model
learning.

planning update

Simulated experience used to aid planning.

direct RL simulated
P { real X
experience
model searchI
learning contro
Model

[Environment]

Tabular Dyna-Q

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Loop forever:

a) S < current (nonterminal) state
b) A « e-greedy(S, Q)

) Take action A; observe resultant reward, R, and state, S’

) Q(S,A) + Q(S A) + a[R + ymax, Q(S’ a) — Q(S, A)]
Model(S, A) < R, S’ (assuming deterministic environment)
Loop repeat n times:

S < random previously observed state

A < random action previously taken in S

R,S" < Model(S, A)

Q(S, A) + Q(S,A) + a[R + ymax, Q(S’,a) — Q(S, A)]

a
c
0

/\/\/\/\/\/\

Steps
per
episode

ooooooooooo
v

The DYNA algorithm

WITHOUT PLANNING (72=0)

o G
G }
800 S
S
600 . actions
0 planning steps
400~ (direct RL only)
5 planning steps
_ WITH PLANNING (n=50)
50 planning steps
2007 ——~ 4= |G
AsaB AR R
S — + — + *
14- — — | | | [— *
| | | | |
10 20 30 40 50 - oy S
Episodes R

<

N S
alrcfjelevn]> z S
TIEEEEEEE » ele]v > 1B Q
© (@ (¢ [(¢) [©) (¢) (¢] ES I}

“experience replay” also used in Atari Solution

Online planning

/\.\ /’\. f‘\.

4

f
L

/'.

jeffbradberry.com (Hacker Monthly)

RO l,-;‘i: b ;':z_‘ o * Ry

J/ 'u
KR

From each state, if we have a good model
of environment we can simulate forward
many times to determine the value of the
current state or action.

However, the branching factor of this tree
can be a major problem.

One recent innovation is Monte Carlo
Tree Search (MCTS)

http://jeffbradberry.com

Monte Carlo Tree Search

ST AAD

A
;o\
/ \
f
f

¢

i f’ T rI " f 11 . [I nm i - In a standard Monte Carlo process, a large
AT TAT L a ShEbE dh number of random simulations are run, in this

| | TN case, from the board position that you want to
find the best move for.

- The downside to this method, though, is that for
any given turn in the simulation, there may be

5 oL 21lnn many possible moves, but only one or two that
- n; are good.
* X;:the mean payout for maChin"ji | - Instead of doing many purely random simulations,
e n;:the number of plays of machine i UCB works by doing many multi-phase playouts
e n:the total number of plays where each position is itself viewed as a multi-

armed bandit.
 Pick option with highest confidence bound

UCBH1

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com

Monte Carlo Tree Search

2Inn

n;

X; +

e X;:the mean payout for machine i
e 7;:the number of plays of machine i
e n:the total number of plays

Selection

UCBH1

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com

Monte Carlo Tree Search

2Inn
() ()

e X;:the mean payout for machine i
e 7;:the number of plays of machine i

e n:the total number of plays @
Expansion
UCB1

X; +

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com

Monte Carlo Tree Search

~ 2Inn
X;
n;

e X;:the mean payout for machine i

e 7;:the number of plays of machine i @
e n:the total number of plays

v

U C B 1 Simulation

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com

Monte Carlo Tree Search

- As more and more playouts are run, the tree of
statistics grows in memory and the move that
will finally be chosen will converge towards the
actual optimal play, though that may take a
very long time, depending on the game.

2Inn

n;

X; +

e X;:the mean payout for machine i
e 7;:the number of plays of machine i
e n:the total number of plays

Back-Propagation

UCBH1

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com

Monte Carlo Tree Search

- As more and more playouts are run, the tree of
statistics grows in memory and the move that
will finally be chosen will converge towards the
actual optimal play, though that may take a
very long time, depending on the game.

2Inn

n;

X; +

e X;:the mean payout for machine i
e 7;:the number of plays of machine i
e n:the total number of plays

Back-Propagation

UCBH1

jeffbradberry.com (Hacker Monthly)

http://jeffbradberry.com

Human Tree Search?

Van Opheusden B, Galbiati G, Bnaya Z, Li Y, Ma WJ (2017),
A computational model for decision tree search.
Proceedings of the 39th Annual Meeting of the Cognitive Science Society, 1254-1259.

-2.4 -2.3 -2.2 -2.1 -1.99
Log-likelihood per move

Main

No value noise

No feature dropping

No pruning

No tree

No active scaling

No 3-in-a-row

NO 2'in'a'r°Wconnec{ed

No center

No 2-in-a-rowynconnected
No 4-in-a-row

Fixed depth

Optimal weights

Tile dropping

Fixed branching

Monte Carlo Tree Search
Fixed #iterations
Type-dependent dropping
Direction-dependent dropping
Triangle
Direction-dependent weights
Opponent scaling
Random-playout MCTS
Opt-rand

Soft-max

Chance

4 4
V(s) = cself Z wifi(s,self) — copp Z w; fi(s,opponent)
i—=0 i=0

A B You are playing WHITE C You are playing WHITE

o O
Winning

Figure 1: Task. A. Two players take turns placing black or
white pieces on a 4-by-9 board, and the first to achieve 4-in-
a-row (horizontal, diagonal or vertical), wins the game. B.
In the 2AFC task, participants see a board and two candidate
moves, and indicate their preferences. C. In the evaluation
task, participants see a board position and report their esti-
mated winning chances on a 7-point scale.

https://www.cns.nyu.edu/malab/static/files/publications/2017%20Van%200pheusden%20Galbiati%20Bnaya%20Li%20Ma.pdf

http://www.cognitivesciencesociety.org/conference/cogsci2017/

computation and cognition lab // new york university

Do animals plan?

Phase 1 - Training: o —
1>;

Phase 2 - Pairing with illness:

(4]
L0 e -

pan|eAsp-uoN
payIysun

i v

Phase 3 - Test: ',(:, ? .f:’
(extinction) ~ -

47

go",;

Phase 2 - Motivational shift:

Sated

THENDS in Cognitive Sciences

computation and cognition lab // new york university

A good test: Outcome devaluation

Holland (2004) see also Dickinson article for examples

outcome-
sensitive
“goal directed”

presses per minute

10 -

like R-O

1 Non-devalued

—1 Devalued
T T
T 1
.
T
outcome-
insensitive
moderate extensive “habitual®
.. .. like S-R
training training

48

A good test: Outcome devaluation

Holland (2004) see also Dickinson article for examples

10 -

k= I
£
L+ 5 '|-
Q
o t

outcome- §

sensitive o

“goal directed” | & O :
like R-O moderate extensive
training training

—1 Non-devalued
—1 Devalued

outcome-
insensitive
“habitual”

like S-R

Suggests some measure of
reward or outcome

(shifts to habitual control with
extensive training)

computation and cognition lab // new york university

Key idea

a Tree System b Cache system
7~ '\‘
S S,
Initial state Initial state
Press ‘ Enter . Press Enter
lever . magazine . lever magazine

' Q=1 Q=0

S,
Food delivered
s’ Y ra \I
S S? Press Enter
Fooed delivered No reward lever magazine
‘ Q=0 Q=1
Press Enter
lever magazine R=0
4 I\._ _/" SE
No reward
Q=0
1/. -\' ./- ~\‘
S? Sa S3
No reward Food cblained Food obtained
R=0 A=1 O=1

from Daw, Niv, Dayan, 2005
50

computation and cognition lab // new york university

Key idea

a Tree System b Cache system
4 N
Sg Sy
Initial state Initial state
Press Enter Press Enter
lever magazine lever magazine
4 \ Y, Q=1 Q=0

Model-based system

Model-free system

\
Food delivered No reward lever magazine
O = 0 o = 1
Press Enter
lever magazine R=0 '
7 \ — _ J S,
No reward
Q=0
(" N g A |
s, s, s,
No reward Food obtained Food oblained
R=0 A=1 O=1
- J . /

from Daw, Niv, Dayan, 2005
51

computation and cognition lab // new york university

two big questions

e Why should the brain use two different strategies/

controllers in parallel?

e |f it uses two:how can it arbitrate between the two when
they disagree (new decision making problem...)

OUR NEW STRATEGY
HAS NEVER WORKED

FOR ANYONE BEFORE.

paygay

THAT WILL GIVE
US THE ELEMENT
OF SURPRISE.

www.dilbert.com scottadams@aol.com

from Yael Niv
52

computation and cognition lab // new york university

dNSWErS

e each system is best in different situations (use each one when it is

most suitable/most accurate)

e goal-directed (forward search) - good with limited training,
close to the reward (don’t have to search ahead too far)

e habitual (cache) - good after much experience, distance from

reward not so important

e arbitration: trust the system that is more confident in its

recommendation

e different sources of uncertainty in the
two systems

® don’t always choose the highest value
® uncertainty is different from risk

53

estimated
action
value

cache tree

from Yael Niv

computation and cognition lab // new york university

d
First-Stage
Choice
70% 30% 70%
(Common) (Rare)s, (Common)
: . Second-Stage —_
2 ¥ « Choice Reward Probabilities
08 — action 1 action 3 | |
action 2 action 4

l l l l . 7. : f .'l' W “ N ‘. I..‘ ..’ “.‘ .

o P o= 0 Mo

43% 67% 32% 45% 03

b C o
1.00 "mmm Common 1.00
Il Rare

= =
= 5
[3] [s+]
o L0
o [= 2
a a
> >
g S
w w

Rewarded Unrewarded Rewarded Unrewarded

The Curse of Planning: Dissecting
Multiple Reinforcement-Learning
Systems by Taxing the Central Executive

A. Ross Otto', Samuel J. Gershman®, Arthur B. Markman',
and Nathaniel D. Daw’

'Department of Psychology, University of Texas at Austin; ')Dcpartmcnt of Psychology and Princeton
Neuroscience Institute, Princeton University; and *Department of Psychology and Center for
Neural Science, New York University 5 4

ey

gy

1.0

[Bl Common
Il Rare

Rewarded

Lag 2 WM Load

Stay Probability

b Lag 1 WM Load
107 mmm Common
Il Rare

Stay Probability

Unrewarded Rewarded Unrewarded

1.0

) Lag 0 WM Load
I Common

Il Rare

Rewarded Unrewarded

Working memory load interferes with online
planning making human act more like model-
free learners.

Three levels of description (David Marr, 1982)

Computational maximize:

Why do things work the way they do? Rt —p 4 et Bellman

What is the goal of the computation? t+1 t+2 r

What are the unifying principles?

Algorthmic | QL O Dynamic programming,
What representations can implement ©) D €2) €

such computations? \ \ \ D methOdS, Monte
How does the choice of representations DEROREORED Carlo

determine the algorithm? @ @ @ @

cue
Predicted

Implementational l

How can such a system be built in Neural fmng pattemS,

hard ? AR 8 S TSARR SR SR FAH RN TR dicti
ardware!
Small reward Predicted pre ICtlon errorS’
How can neurons carry out the small reward i | |
computations? N e — VE SyElE et
Flave EREINOSL N AR iy o

neuroscience

Playing around with RL...

P Classic control
Control theory problems from the classic RL literature.
Atari
Box2D :
\ Gym is a toolkit for
MuJoCo ‘ ; — ™pisode7 pisode 1 .]
—— developing and paring
Robotics (Epi“de‘ CartPole-v1 MountainCar-v0 eve O I n a n C O m a r I n
— Balance a pole on a Drive up a big hill.

reinforcement learning

Third party environmen ts robot.
€

algorithms. It supports
— teaching agents everything
from walking to playing
games like Pong or Pinball.

MountainCarContinuous-

vO0 ——
Drive up a big hill with

View documentation »
View on GitHub »

Bayes

Next time

: : Nathaniel Daw (exploration/qgittins)
Slide Credits Alex Rich P |

Gillian Hayes (TD methods/explore)
Rich Sutton (general approach)
Andy Barto (general approach)

