Lecture 5: Computational
Cognitive Modeling

Reinforcement Learning (pt. 2)

course website:
https://brendenlake.github.io/CCM-site/



Reinforcement Learning

Three levels of description (David Marr, 1982)

Computational maximize:

Why do things work the way they do? Rt —p 4P At Bellman

What is the goal of the computation? t+1 t+2 r

What are the unifying principles?
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determine the algorithm? @ @ @ @
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Overview for Today

e Temporal difference methods
e The explore-exploit dilemma

e (Generalization and function approximation



Dynamic Programming/Value iteration Monte Carlo
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Va(s) = (2+1-5+4)/4=0.5

* Does not require “model”

Generally require “model” of environment (i.e.,
knowledge of state transitions, reward, and policy at at

point in environment) * May not even estimate some part of environment
* Curse of dimensionality * Convergence more sensitive to issues like sufficient
exploration

Proveably converges to optimal
* Solution does not benefit from “bootstrapping”

Solution benefits from “bootstrapping”



Blending the ideas....

* The first-visit MC algorithm has following steps

Let R be the return following first visit to state
s. Append R to list Returns[s]. V(s) =

average(Returns[s])
So 0—0—0—0—0—:1—0—0_2—0—00—0—:1—0—0_3—0—03l Ri(s) = +2
s, O——0——0——0—0—0—0—0——0—0—0——1
* Incremental implementation: S i i i —i— — @i —i—  Ry(s) = +1

s, O——@——0——0—0—0—0—0—0—0—0—0—0—1i R;(s) = -5

1 5y (O ) —0—@—0—@———o——o—I|  R,(s) = +4

V(S) — V(S) | TL(S) [R — V(S)] Ve(s) = (2+1-5+4)/4=0.5

where n(s) is number of first visits to s.




Blending the ideas....

Now consider a constant step size Monte-carlo update:

V(s) = V(s) +a[R — V(s) 3 “

Why might this be useful?

800 220 240 260 280 300
trial

(hint)



Temporal difference prediction

Policy evaluation is often referred to as a prediction problem: we
are trying to predict how much return we’ll get from being in state
s and following our policy.

Monte carlo incremental update
V(s) =V(s) +alR-V(s)
\ target: actual return from s_t to end of episode

Still have to wait until episode terminates...

Temporal Difference update TD(0):
Vi(st) =V(st) + alripr + 7V (se+1) — V(st)]

/

target: estimate of the return... using BOOTSTRAPPING!



Evaluating the world when you don't

know anything about it
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Evaluating the world when you don't
know anything about it
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Evaluating the world when you don't
know anything about it
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Evaluating the world when you don't
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Evaluating the world when you don't

know anything about it
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Evaluating the world when you don't
know anything about it

y=09 == | 2 | 66 | O
49 | 57 | 76

bellman solution!



Temporal difference prediction

Temporal Difference update TD(0):
V(st) =V(st) +alripr + 7V (se1) — V(st)]

Bellman recurrence relation

V7(s) = Ex{ris1 + YV (St41)|5¢ = s}

VT(s) =Y m(s,a) Y Pos[Rey +yV7(s)]



Simple Monte Carlo

V(s)< V(s)+a[R, -V(s,)]

where R, is the actual return following state s, .

Monte Carlo uses an estimate of the actual return.

Simplest TD Method

V(s)< V(s)+a[r, +7V(s,)-V(s,)]
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Dynamic Programming

V(st)<_ En’{rt+1 + yV(st)}
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The DP target is an estimate not because of the expected values, which are
assumed to be completely provided by a model of the environment, but because V=
is not known and the current estimate is used instead.

TD samples the expected value and uses the current estimate of the value.



Advantages of TD learning methods

 Don’t need a model of the environment

« Online and incremental so can be fast (don’t need to wait until
end of episode as in MC)

- Update based on actual experience (r_{t+1})

- Converges to the true values if you lower step size/learning rate
as learning continues

- TD bootstraps: it updates estimate based on other estimates
(like DP/value iteration).

- TD samples: updates are based on a single run/path through
the state space (like MC)



TD(0) is still kind of slow: Eligibility traces

« The benefits of bootstrapping only extend between adjacent
states (s to s’). As a result you have to cross that particular

state transition many times for the value to “propogate”
backwards

e New variable called eligibility trace. The eligibility trace for state at
time is denoted .
e, (s)EN

0t = Te1 + YVi(Se41) — Vi(se)
On each step, decay all traces by yA and increment the trace for
the current state by

AVi(s) = adies(s)

accumulating eligibility trace

yhe, () if s=s
€, (S) = .
vhe,_(s)+1 ifs=s,

[1]] | | times of visits to a state

Y  discount rate A trace-decay parameter

Figure 12.5: The backward or mechanistic view. Each update depends on the current TD error combined with
the current eligibility traces of past events.



TD(0) is still kind of slow: Eligibility traces
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Learning for control: Learning Q-values

- Learning the value of different states can be a little obtuse
because what you really want to do is learn how to act!

 |Instead can make sense to learn QW(S, a)

Trials

Figure 1: Left: An illustration of Thorndike’s puzzle box experiments. Right: The time recorded to escape
the box is reduced over repeated trials as the cat becomes more efficient at selecting the actions which lead
0 escape.

SARSA update rule:

AQ¢(s¢,at) = afrig1 + YQe(St41, ar41) — Qe(5t, ar))

« Choose a policy and estimate the Q-values using SARSA rule.
Change policy toward greediness with respect to Q values.

- Converges with probability 1 to optimal policy and Q-value if
you visit all state-action pairs infinitely many times and the
policy converges to be a greedy policy.

« Easy to know what to do! Just choose the action with highest
Q value!



Learning for control: Learning Q-values

SARSA update rule:
AQt(St,at) = afrepr + YQe(St+1, ary1) — Qr(St, at)]

e Initialise Q(s,a)

e Repeat many times
. sarsa is known as an
— Pick s, a . :
— Repeat each step to goal on-policy learning rule...
* Do a, observe r, s’
* Choose a’ based on Q(s’,a’) e-greedy

*x Q(s,a) = Q(s,a) + ofr +7Q(s',a’) — Q(s, a)]
x s=8, a=a
— Until s terminal (where Q(s’,a’) = 0)
Use with policy iteration, i.e. change policy each time to be greedy wrt current
estimate of ()



Learning for control: Learning Q-values

Q-learning update rule:

AQt(Sta at) = Oé[Tt+1 =+ VW@ZC‘aQt(StH, CL) — Qt(sta at)]

e Initialise Q(s,a)

e Repeat many times _ _
- cart stat Q-learning is known as an
- Star sState . .
* Choose a based on Q(s,a) e-greedy always update Q value with maximally
x Do a, observe r, s’ b : : :
' ' est action in next state, even if you
¥ Q(s,a) = Q(s,a) + afr + ymax, Q(s’,a’) — Q(s,a : _ ’
% SQ(: 3/) Al a)talrty il i won’t necessarily take that step

— Until s terminal yOUI’SG|f.



Q-learning versus SARSA (Cliffwalking)

r=-1]) | | safepath Reward is on all
transitions -1 except

= | optimalpath  those into the the region
S The Cliff marked "The CIiff."

rmw Q-learning learns quickly values

for the optimal policy, that which
travels right along the edge of the
Sarsa cliff. Unfortunately, this results in its
occasionally falling off the cliff
) /  because of the e-greedy action
Reward -sod -/ S\ VA A ST selection,

@

=25

per Q-learning Sarsa takes the action selection
epsiode into account and learns the longer
=757 but safer path through the upper
g-greedy, € =0.1 part of the grid.
00 00 200 300 400  soo If € were gradually reduced, then
Episodes both methods would asymptotically

converge to the optimal policy.



SARSA(lambda)

Action values increased Action values increased
Path taken by one-step Sarsa by Sarsa(.) with .=0.9
- -~ -~ '
’
[ 1 - el |
' i * NEEE " ¥
) A [

e With one trial, the agent has much more
information about how to get to the goal
— not necessarily the best way

e Can considerably accelerate learning



The Explore-Exploit Dilemma

TD methods require a bit of randomness in order to properly search
the state space (we call this search process exploration).

Reward maximization requires choosing what seems like the best
action (exploitation). Effective learning in unknown environment
requires proper balance of these tensions.

Classic dilemma in learned decision making

For unfamiliar outcomes, how to
trade of learning about their quality/
value against exploiting knowledge
already gained.




Exploration vs. exploitation

1.5}
Utility 11 ® e
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— Choose action expected to be best

— May never discover something better



Exploration vs. exploitation

1.5
Utility 11 ®ee

0.5

e EXxploitation
— Choose action expected to be best

— May never discover something better

e Exploration:

— Choose action expected to be worse



Exploration vs. exploitation

1.5

Utility 11 ® e @

0.5
0O S
e EXxploitation Time

— Choose action expected to be best
— May never discover something better
e EXxploration:

— Choose action expected to be worse

— Balanced by the long-term gain if it turns out better



the N-armed bandit

another name for a popular psychology/neuroscience task:
— repeated choice between lotteries...
— ...whose properties are learned experientially
— (assume each bandit is just a weighted coin: no weird time-based
lotteries)

overall approach: 1.Greedy methods (e.g., epsilon greed
1. learn Q-values for options ' y (e.9., epsilon g y)

2. choose the best ?7?
2.Softmax

3.0ptimal exploration



Action Selection
Greedy: select the action a* for which () is highest:

Q:(a*) = max, Q:(a)

So a* = argmax, Q:(a) —and * means “best”

Example: 10-armed bandit
Snapshot at time ¢ for actions 1 to 10

Qia)—[0]03][01[01][04[005]|0

0.05

Q:(a*) =04 and a* =7

Maximises reward




e-greedy: Select random action € of the time, else select greedy action

Sample all actions infinitely many times

So as k, — o0, s converge to Q*

Can reduce € over time



Softmax Action Selection

e-greedy: even if worst action is very bad, it will still be chosen with same
probability as second-best — we may not want this. So:

Vary selection probability as a function of estimated goodness

Choose a at time ¢ from among the n actions with probability

exp(Q¢(a)/T)
> b1 exp(Q¢(b)/T)

Gibbs/Boltzmann distribution, 7 is temperature (from physics)

Effect of | 7 |
As T — o0, probability — 1/n
As 7 — 0, probability — greedy



wwBd?

assign belief according to posterior probability
of different chances of heads

2.5

____left bandit: 4/8 spins rewarded

right bandit: 1/2 spins rewarded

—

posterior belief

| _____mean of both distributions: 50%

0 02 04 06 08 1
payoff (%)



wwBd?

assign belief according to posterior probability
of different chances of heads

2.5
left bandit: 4/8 spins rewarded
ol 1

o
S8 1.5 - right bandit: 1/2 spins rewarded
5 —
IRl -
S green bandit more uncertain

0.5 I (distribution has larger variance)

0 02 04 06 08 1
payoff (%)



Gittins Index

although green
bandit has a larger
chance of being
WOrse...

... It also has a larger
chance of being better

...which would be
useful to find out, if
true

0 0.2 0.4 0.6 0.8 1
payoff (%)

“Gittins index”:
— choose on the basis of expected payoff (50%) plus “uncertainty bonus”
— quantifies “value of information” : chance of finding something better & improving my future

prospects
— (very difficult to work out exactly, he solves for simple problems)

- note that Rescorla/\Wagner model doesn’t track uncertainty, only mean



horizon

suppose | have so far been rewarded:
— 4 out of 7 spins on the left bandit (57%)
— 1 out of 2 spins on the right bandit (50%)

posterior belief

0 02 04 06 08 1
payoff (%)



horizon

suppose | have so far been rewarded:
— 4 out of 7 spins on the left bandit (57%)
— 1 out of 2 spins on the right bandit (50%)

—_k
o1

... and | am allowed only one more spin
now which should | choose?

posterior belief

0.5

0 02 04 06 08 1
payoff (%)



horizon

suppose | have so far been rewarded:
— 4 out of 7 spins on the left bandit (57%)
— 1 out of 2 spins on the right bandit (50%)

... and | am allowed only one more spin
now which should | choose?

posterior belief

- value of exploration depends on temporal

horizon % 02 04 06 08 1
payoff (%)




computation and cognition lab // new york university

i\x’l {/{? experiment 1
ﬁ are people more likely to approach (i.e., explore) a

& uncertain prospect when they expect to encounter
“ it a greater number of time in the future?
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computation and cognition lab // new york university

experiment 1

® 00 Experiment
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computation and cognition lab // new york university

experiment 1
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computation and cognition lab // new york university

experiment 1

® 00 Experiment
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VR
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computation and cognition lab // new york university

experiment 1

® 00 Experiment
[ 0.0.0.0:5001/exp?hitid=debugDIAWOP&assignmentld=debug8TAMRO&workerld=debug... Q

29 mushrooms remaining in this patch
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computation and cognition lab // new york university

experiment 1

® 00 Experiment "
[ 0.0.0.0:5001/exp?hitid=debugDIAW0OP&assignmentld=debug8TAMRO&workerld=debug... Q

8 mushrooms remaining in this patch

Potential Bonus:

$0.13

eat avoid

Click either 'eat' or 'avoid'.




computation and cognition lab // new york university

experiment 1 - results

Trial-by-trial approach behavior for negative species,
participant data
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computation and cognition lab // new york university

experiment 1 - results

Trial-by-trial approach behavior for negative species,
participant data
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computation and cognition lab // new york university

experiment 1 - results

Trial-by-trial approach behavior for negative species,
participant data
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Next time

* Model-based RL/Planning

Three levels of description (David Marr, 1982)

Computational maximize: -
Why do things work the way they do? _ eliman
. ; it R =1, +T,t+h

What is the goal of the computation?
What are the unifying principles?

Algorthmic | O QL € Dynamic programming,
What representations can implement O > o)

such computations? \ \ \ D methOdS’ Monte
How does the choice of representations @ @ @ @ Carlo

determine the algorithm? @ @ @ @

Predicted
big reward

plementational

How can such a system be built in
hardware?

How can neurons carry out the
omputations?

Neural firing patterns,
prediction errors,
system level
neuroscience
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Predicted
small reward

v ' s, N O N T S
" LA LA & hOLKH YU I I



: : Nathaniel Daw (exploration/qgittins)
Slide Credits Alex Rich P |

Gillian Hayes (TD methods/explore)
Rich Sutton (general approach)
Andy Barto (general approach)



