
Lecture 5: Computational
Cognitive Modeling

1

course website:
https://brendenlake.github.io/CCM-site/

Reinforcement Learning (pt. 2)

Reinforcement Learning

Bellman

Dynamic programming,
TD methods, Monte

Carlo

Neural firing patterns,
prediction errors,

system level
neuroscience

Overview for Today

• Temporal difference methods

• The explore-exploit dilemma

• Generalization and function approximation

A

A‘

B

B‘+10

+5

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

Rewards & State Transitions Agent’s Policy (π)

Γ

Value Function (V)

?

Dynamic Programming/Value iteration

s0
+1 -2 0 +1 -3 +5

R1(s) = +2

s0

s0

s0

s0

s0

R2(s) = +1

R3(s) = -5

R4(s) = +4

Vπ(s) ≈ (2 + 1 – 5 + 4)/4 = 0.5

Monte Carlo

• Generally require “model” of environment (i.e.,
knowledge of state transitions, reward, and policy at at
point in environment)

• Curse of dimensionality

• Proveably converges to optimal

• Solution benefits from “bootstrapping”

• Does not require “model”

• May not even estimate some part of environment

• Convergence more sensitive to issues like sufficient
exploration

• Solution does not benefit from “bootstrapping”

s0
+1 -2 0 +1 -3 +5

R1(s) = +2

s0

s0

s0

s0

s0

R2(s) = +1

R3(s) = -5

R4(s) = +4

Vπ(s) ≈ (2 + 1 – 5 + 4)/4 = 0.5

• The first-visit MC algorithm has following steps

Let R be the return following first visit to state
s. Append R to list Returns[s]. V(s) =
average(Returns[s])

• Incremental implementation:

Blending the ideas….

V (s) = V (s) +
1

n(s)
[R� V (s)]

where n(s) is number of first visits to s.

Now consider a constant step size Monte-carlo update:

Blending the ideas….

V (s) = V (s) + ↵[R� V (s)]

Why might this be useful?

(hint)

Policy evaluation is often referred to as a prediction problem: we
are trying to predict how much return we’ll get from being in state
s and following our policy.

Temporal difference prediction

V (s) = V (s) + ↵[R� V (s)]

Monte carlo incremental update

Temporal Difference update TD(0):

V (st) = V (st) + ↵[rt+1 + �V (st+1)� V (st)]

target: actual return from s_t to end of episode

Still have to wait until episode terminates…

target: estimate of the return… using BOOTSTRAPPING!

Evaluating the world when you don’t
know anything about it

Evaluating the world when you don’t
know anything about it

Evaluating the world when you don’t
know anything about it

Evaluating the world when you don’t
know anything about it

Evaluating the world when you don’t
know anything about it

bellman solution!

Evaluating the world when you don’t
know anything about it

Temporal difference prediction

Temporal Difference update TD(0):

V (st) = V (st) + ↵[rt+1 + �V (st+1)� V (st)]

V ⇡(s) =
X

a

⇡(s, a)
X

s0

Pa
ss0 [Ra

ss0 + �V ⇡(s0)]

V ⇡(s) = E⇡{rt+1 + �V ⇡(st+1)|st = s}
Bellman recurrence relation

• Don’t need a model of the environment

• Online and incremental so can be fast (don’t need to wait until
end of episode as in MC)

• Update based on actual experience (r_{t+1})

• Converges to the true values if you lower step size/learning rate
as learning continues

• TD bootstraps: it updates estimate based on other estimates
(like DP/value iteration).

• TD samples: updates are based on a single run/path through
the state space (like MC)

Advantages of TD learning methods

• The benefits of bootstrapping only extend between adjacent
states (s to s’). As a result you have to cross that particular
state transition many times for the value to “propogate”
backwards

TD(0) is still kind of slow: Eligibility traces

�t = rt+1 + �Vt(st+1)� Vt(st)

�Vt(s) = ↵�tet(s)

TD(0) is still kind of slow: Eligibility traces

intermediate values
empirically work

best!

• Learning the value of different states can be a little obtuse
because what you really want to do is learn how to act!

• Instead can make sense to learn

Learning for control: Learning Q-values

Q⇡(s, a)

SARSA update rule:

�Qt(st, at) = ↵[rt+1 + �Qt(st+1, at+1)�Qt(st, at)]

• Choose a policy and estimate the Q-values using SARSA rule.
Change policy toward greediness with respect to Q values.

• Converges with probability 1 to optimal policy and Q-value if
you visit all state-action pairs infinitely many times and the
policy converges to be a greedy policy.

• Easy to know what to do! Just choose the action with highest
Q value!

Learning for control: Learning Q-values

SARSA update rule:

�Qt(st, at) = ↵[rt+1 + �Qt(st+1, at+1)�Qt(st, at)]

sarsa is known as an
on-policy learning rule…

Learning for control: Learning Q-values

Q-learning update rule:

Q-learning is known as an
off-policy learning rule…

always update Q value with maximally
best action in next state, even if you

won’t necessarily take that step
yourself.

�Qt(st, at) = ↵[rt+1 + �maxaQt(st+1, a)�Qt(st, at)]

Q-learning versus SARSA (Cliffwalking)

SARSA(lambda)

The Explore-Exploit Dilemma
TD methods require a bit of randomness in order to properly search
the state space (we call this search process exploration).
Reward maximization requires choosing what seems like the best
action (exploitation). Effective learning in unknown environment
requires proper balance of these tensions.

Classic dilemma in learned decision making
For unfamiliar outcomes, how to
trade of learning about their quality/
value against exploiting knowledge
already gained.

Exploration vs. exploitation

• Exploitation

–Choose action expected to be best

–May never discover something better

Time

Utility

Exploration vs. exploitation

• Exploitation

–Choose action expected to be best

–May never discover something better

• Exploration:

–Choose action expected to be worse

Time

Utility

Exploration vs. exploitation

• Exploitation

–Choose action expected to be best

–May never discover something better

• Exploration:

–Choose action expected to be worse

–Balanced by the long-term gain if it turns out better

Time

Utility

the N-armed bandit

another name for a popular psychology/neuroscience task:
– repeated choice between lotteries…
– ...whose properties are learned experientially
– (assume each bandit is just a weighted coin: no weird time-based

lotteries)

overall approach:
1. learn Q-values for options
2. choose the best ??

1.Greedy methods (e.g., epsilon greedy)

2.Softmax

3.Optimal exploration

wwBd?

assign belief according to posterior probability
of different chances of heads

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

payoff (%)

po
st

er
io

r b
el

ie
f

left bandit: 4/8 spins rewarded

right bandit: 1/2 spins rewarded

mean of both distributions: 50%

wwBd?

assign belief according to posterior probability
of different chances of heads

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

payoff (%)

po
st

er
io

r b
el

ie
f

left bandit: 4/8 spins rewarded

right bandit: 1/2 spins rewarded

green bandit more uncertain
(distribution has larger variance)

Gittins index

“Gittins index”:
– choose on the basis of expected payoff (50%) plus “uncertainty bonus”
– quantifies “value of information” : chance of finding something better & improving my future

prospects
– (very difficult to work out exactly, he solves for simple problems)

 note that Rescorla/Wagner model doesn’t track uncertainty, only mean

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

payoff (%)

po
st

er
io

r b
el

ie
f

… it also has a larger
chance of being better

…which would be
useful to find out, if
true

although green
bandit has a larger
chance of being
worse…

horizon

suppose I have so far been rewarded:
– 4 out of 7 spins on the left bandit (57%)
– 1 out of 2 spins on the right bandit (50%)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

payoff (%)

po
st

er
io

r b
el

ie
f

horizon

suppose I have so far been rewarded:
– 4 out of 7 spins on the left bandit (57%)
– 1 out of 2 spins on the right bandit (50%)

… and I am allowed only one more spin
now which should I choose?

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

payoff (%)

po
st

er
io

r b
el

ie
f

horizon

suppose I have so far been rewarded:
– 4 out of 7 spins on the left bandit (57%)
– 1 out of 2 spins on the right bandit (50%)

… and I am allowed only one more spin
now which should I choose?

 value of exploration depends on temporal
horizon 0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

payoff (%)

po
st

er
io

r b
el

ie
f

38

experiment 1

2"

1" 4"

8"

16"

32"
N"="143"

are people more likely to approach (i.e., explore) a
uncertain prospect when they expect to encounter
it a greater number of time in the future?

39

experiment 1

40

experiment 1

41

experiment 1

42

experiment 1

43

experiment 1

44

experiment 1 - results

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32
Trial in patch (log scale)

p(
ap

pr
oa

ch
)

Patch length
1
2
4
8
16
32

Trial−by−trial approach behavior for negative species,
participant data

45

experiment 1 - results

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32
Trial in patch (log scale)

p(
ap

pr
oa

ch
)

Patch length
1
2
4
8
16
32

Trial−by−trial approach behavior for negative species,
participant data

46

experiment 1 - results

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32
Trial in patch (log scale)

p(
ap

pr
oa

ch
)

Patch length
1
2
4
8
16
32

Trial−by−trial approach behavior for negative species,
participant data

47

experiment 1 - results

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32
Trial in patch (log scale)

p(
ap

pr
oa

ch
)

Patch length
1
2
4
8
16
32

Trial−by−trial approach behavior for negative species,
participant data

48

experiment 1 - results

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32
Trial in patch (log scale)

p(
ap

pr
oa

ch
)

Patch length
1
2
4
8
16
32

Trial−by−trial approach behavior for negative species,
participant data

***"

Next time

Bellman

Dynamic programming,
TD methods, Monte

Carlo

Neural firing patterns,
prediction errors,

system level
neuroscience

• Model-based RL/Planning

Slide Credits Nathaniel Daw (exploration/gittins)
Alex Rich
Gillian Hayes (TD methods/explore)
Rich Sutton (general approach)
Andy Barto (general approach)

