
Lecture 4: Computational
Cognitive Modeling

1

course website:
https://brendenlake.github.io/CCM-site/

Reinforcement Learning (pt. 1)

Types of learning (from a ML perspective)

• Supervised learning

• Works by instructing the learning system what output to give for
each input. Corrective feedback that is diagnostic (“this not
that”).

• Unsupervised learning

• No feedback. Works by detecting the correlational and
covariation structure of the input to find generalizable patterns.

• Reinforcement learning

• Evaluating feedback (good) but not corrective. Goal is to take
actions or make decisions in order to earn higher rewards.

Example applications: Dynamic control problems

• Autonomous helicopter flight

• Robot legged locomotion

• Cell-phone network routing

• Marketing strategy selection

• Factory control

• Efficient web-page indexing

• A/B testing

Example applications: Sequential decision making
problems, games

Reinforcement Learning

Bellman

Dynamic programming,
TD methods, Monte

Carlo

Neural firing patterns,
prediction errors,

system level
neuroscience

Canonical example

• Grid cells are rooms the robot can be
in (aka “states”)

• Actions are move up, move down,
move left, move right

• The orange cell is an obstacle

• The +1 is the reward for entering that
state

• The -1 is the penalty for entering that
cell

• What route should the agent take?

Canonical example

• Solution takes the form of values or
numbers assigned to each state (or
state-action pair) that determine how
good they are in the long run.

• A good/optimal decision strategy
(policy) can be determined by
choosing to move to the immediate
state with the highest value.

• Reinforcement learning is a family
of methods for solving these types
of problems that borrows from
research on human/animal learning
and from research in operations/
planning.

Key Components of RL Systems

• The environment

• Reward function

• Policy

• Value function

• Model of the environment

The environment

• Modeled as a Markov Decision Process

• At its essence means that the system is defined by the
one-step dynamics

• Simply put, the distribution of future states and rewards
depend only on where you are now and what action you
take

Embedding

EmbeddingEmbedding

AA

B

B

C

C

#1

#2

#3

#4
#5

#6

Pr{st+1 = s0, rt+1 = r|st, at}

What are the states?

• Robot navigation: different rooms that you could be in.
Transitions are like moving between doorways that
connect the rooms

• Pole balancing: the position of the cart on the x-axis,
the angle of the pole, possibly momentum or other terms

• Generally could be defined in terms of features (even
down the pixels) as they are in DeepMind Atari Deep RL.

• What are they for humans?

Reward Function

• Typically a single number which indicates how good or
bad the current state is.

• The overall goal of the agent is to maximize the
discounted reward it gets over the long term.

• The parameter (gamma) determines how much weight is
given to immediate version delayed rewards.

• Reward are the immediate, primary sensory feedback
from a particular state, in contrast to value functions

Rt = rt+1 + �rt+2 + �2rt+3 + ... =
1X

k=0

�krt+k+1

Policy

• The rules for how an agent should act. A full
set of stimulus-response rules or
associations.

• Represented as , where means
the probability of selecting action a in state s.

• Policies can be explicitly stochastic in nature
or deterministic.

• What we are trying to learn: a good policy
for the environment we face.

⇡ �(s, a)

Value Function

• The long run total that an agent can expect to make in
the future starting from that state. So unlike rewards
these are not immediate short-term values, but based
on a longer temporal window.

• Since the goal is to maximize reward over the long
term, in a sense you are tying to choose actions or
states associated with higher values.

• The value function is essentially a stand-in for what you
will get in the long run from a particular choice and is
important in learning

V � = E�{
1X

k=0

�krt+k+1|st = s}

Model of Environment
• Knowledge about the way the world works

• Essentially means a representation of the Markov process itself such as
the probabilities of moving from state a to state b given that you take
action c

• Not absolutely necessary (e.g., Monte Carlo methods or temporal
difference learning can operate with out an explicit model!!)

An example: Behaving optimally in a
known world

A

A‘

B

B‘+10

+5

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

Rewards & State Transitions

An example: Behaving optimally in a
known world

A

A‘

B

B‘+10

+5

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

Rewards & State Transitions Agent’s Policy (π)

Γ

Value Function (V)

?

An example: Behaving optimally in a
known world

A

A‘

B

B‘+10

+5

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

Rewards & State Transitions Agent’s Policy (π)

Γ

Value Function (V)

?

Bellman Equation

• If we know the function and (i.e. have perfect
knowledge of the environment), we can easily solve for
by simply solving the systems of equations under our policy

A

A‘

B

B‘+10

+5

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

Rewards & State Transitions

Agent’s Policy (π)

Γ

Value Function (V)

-0.5

-0.25

10

0

-0.25

0

5

0

-0.5

-0.25

-0.25 0 0 0 -0.25

-0.25 0 0 0 -0.25

-0.25 -0.25 -0.25 -0.5-0.5

A

A‘

B

B‘+10

+5

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

Rewards & State Transitions

Agent’s Policy (π)

Value Function (V)

Γ

3.3

1.5

0.1

-1.0

-1.9

8.8

3.0

0.7

-0.4

-1.3

4.4

2.3

0.7

-0.4

-1.2

5.3

1.9

0.4

-0.6

-1.4

1.5

0.5

-0.4

-1.2

-2.0

A

A‘

B

B‘+10

+5

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

Rewards & State Transitions

Agent’s Policy (π)

Value Function (V)

Γ

-7.2

-7.7

1.8

-6.8

-1.9

-6.0

-0.5

-5.4

-2.4

-4.9

-8.3 -7.4 -6.7 -6.1 -5.6

-9.0 -8.1 -7.4 -6.8 -6.3

-9.9 -9.1 -8.4 -7.7 -7.2

Iterative methods for policy evaluation
• Generally this can be solved in one step as a system

of linear equations with |S| unknowns (the value of
each state is defined in terms of all the other variables
and so you have S variables and S equations)

• More practically for large problems (think about scale
of a game like Go) there is an iterative solution where
you initialize the values all to zero and then update
each one in light of of the Bellman recurrence relation.

• Each pass brings you closer and closer to the true
values and will converge to the actual stationary
Bellman values.

iterations

Policy Improvement

iterations

• Move the current policy (which might be suboptimal)
to be greedy with respect to the current value
function.

• There is a policy improvement theorem that can prove
that moving the policy in this way always makes the
policy as good as or better than the original policy
(see http://www.incompleteideas.net/book/first/
ebook/node42.html)

http://www.incompleteideas.net/book/first/ebook/node42.html
http://www.incompleteideas.net/book/first/ebook/node42.html
http://www.incompleteideas.net/book/first/ebook/node42.html

Finding the optimal policy via Policy Iteration

• Sort of like the Expectation-
Maximization algorithm iterate
between evaluation and policy
improvement cycles!

• This is known as policy iteration

You need to know a model of the world which is not
always available to agents or can’t be clearly specified in
advance!

Need to track and represent all the states which can be
memory intensive. Unlikely to be solved by people.

Problems

Advantages

Bootstrapping!

Monte Carlo Methods
• don’t need full knowledge of environment: just

experience, or simulated experience

• but similar to DP: policy evaluation, policy improvement

s0
+1 -2 0 +1 -3 +5

R1(s) = +2

s0

s0

s0

s0

s0

R2(s) = +1

R3(s) = -5

R4(s) = +4

Vπ(s) ≈ (2 + 1 – 5 + 4)/4 = 0.5

• want to estimate V(s): expected return starting from s and
following. estimate as average of observed returns in state s

• first-visit MC: average returns following the first visit to state
s

Monte Carlo Methods
• downside: no bootstrapping as in

dynamic programming

• upside: no bootstrapping as in
dynamic programming… expense of
updating doesn’t depend on the total
number of states in the problem.

• V(s) not enough for policy improvement: need exact
model of environment

• Instead estimate Q(s,a):

• Update after each episode

• a problem: greedy policy won’t explore all actions! Need
to balance explore-exploit

Monte Carlo Methods Summary
• Don’t need model of environment!

• averaging of sample returns from actual experience
or even simulated play (e.g., self-play in two player
games, etc…)

• can concentrate on “important” states: don’t need a full
sweep of all states because no bootstrapping

• need to maintain exploration (EXPLORE-EXPLOIT
DILEMMA — next week!)

Summary

• The goal of the RL agent is to maximize reward over the long term.

• The way this is implemented is through a function which determines
the value of various “states” or “situations” under a certain policy

• Once you know how to evaluate a policy, there are a number of ways
to actually arrive at optimal policies

• Value iteration: move back and forth from evaluating policy to
changing policy to optimize estimated values

• Monte Carlo: Run direct simulations (or experience) forward
and tally returns following each state

• CRITICALLY, there is more than one way to solve the RL problem
depending on if you represent the world model or not.

Next time: Evaluating the world when you
don’t know anything about it

Bellman

Dynamic programming,
TD methods, Monte

Carlo

Neural firing patterns,
prediction errors,

system level
neuroscience

• The Explore/Exploit Dilemma

• Function approximation/generalization

• Model-based versus Model-free RL

Next time

