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Types of learning (from a ML perspective)

• Supervised learning

• Works by instructing the learning system what output to give for 
each input.  Corrective feedback that is diagnostic (“this not 
that”).

• Unsupervised learning

• No feedback.  Works by detecting the correlational and 
covariation structure of the input to find generalizable patterns.

• Reinforcement learning

• Evaluating feedback (good) but not corrective.  Goal is to take 
actions or make decisions in order to earn higher rewards.



Example applications: Dynamic control problems

• Autonomous helicopter flight

• Robot legged locomotion

• Cell-phone network routing

• Marketing strategy selection

• Factory control

• Efficient web-page indexing

• A/B testing



Example applications: Sequential decision making 
problems, games



Reinforcement Learning

Bellman

Dynamic programming, 
TD methods, Monte

Carlo

Neural firing patterns,
prediction errors,

system level 
neuroscience



Canonical example

• Grid cells are rooms the robot can be 
in (aka “states”)

• Actions are move up, move down, 
move left, move right

• The orange cell is an obstacle

• The +1 is the reward for entering that 
state

• The -1 is the penalty for entering that 
cell

• What route should the agent take?



Canonical example

• Solution takes the form of values or 
numbers assigned to each state (or 
state-action pair) that determine how 
good they are in the long run.

• A good/optimal decision strategy 
(policy) can be determined by 
choosing to move to the immediate 
state with the highest value.

• Reinforcement learning is a family 
of methods for solving these types 
of problems that borrows from 
research on human/animal learning 
and from research in operations/
planning.



Key Components of RL Systems

• The environment

• Reward function

• Policy

• Value function

• Model of the environment



The environment

• Modeled as a Markov Decision Process

• At its essence means that the system is defined by the 
one-step dynamics

• Simply put, the distribution of future states and rewards 
depend only on where you are now and what action you 
take
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What are the states?

• Robot navigation: different rooms that you could be in.  
Transitions are like moving between doorways that 
connect the rooms

• Pole balancing: the position of the cart on the x-axis, 
the angle of the pole, possibly momentum or other terms

• Generally could be defined in terms of features (even 
down the pixels) as they are in DeepMind Atari Deep RL.

• What are they for humans?



Reward Function

• Typically a single number which indicates how good or 
bad the current state is.  

• The overall goal of the agent is to maximize the 
discounted reward it gets over the long term.

• The parameter (gamma) determines how much weight is 
given to immediate version delayed rewards.  

• Reward are the immediate, primary sensory feedback 
from a particular state, in contrast to value functions

Rt = rt+1 + �rt+2 + �2rt+3 + ... =
1X

k=0
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Policy

• The rules for how an agent should act.  A full 
set of stimulus-response rules or 
associations. 


• Represented as     , where                  means 
the probability of selecting action a in state s.


• Policies can be explicitly stochastic in nature 
or deterministic.


• What we are trying to learn: a good policy 
for the environment we face. 

⇡ �(s, a)



Value Function

• The long run total that an agent can expect to make in 
the future starting from that state.  So unlike rewards 
these  are not immediate short-term values, but based 
on a longer temporal window.  


• Since the goal is to maximize reward over the long 
term, in a sense you are tying to choose actions or 
states associated with higher values.


• The value function is essentially a stand-in for what you 
will get in the long run from a particular choice and is 
important in learning

V � = E�{
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Model of Environment
• Knowledge about the way the world works


• Essentially means a representation of the Markov process itself such as 
the probabilities of moving from state a to state b given that you take 
action c


• Not absolutely necessary (e.g., Monte Carlo methods or temporal 
difference learning can operate with out an explicit model!!)



An example: Behaving optimally in a 
known world
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Bellman Equation

• If we know the function             and             (i.e. have perfect 
knowledge of the environment), we can easily solve for               
by simply solving the systems of equations under our policy 
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Iterative methods for policy evaluation
• Generally this can be solved in one step as a system 

of linear equations with |S| unknowns (the value of 
each state is defined in terms of all the other variables 
and so you have S variables and S equations) 

• More practically for large problems (think about scale 
of a game like Go) there is an iterative solution where 
you initialize the values all to zero and then update 
each one in light of of the Bellman recurrence relation.   

• Each pass brings you closer and closer to the true 
values and will converge to the actual stationary 
Bellman values.

iterations



Policy Improvement

iterations

• Move the current policy (which might be suboptimal) 
to be greedy with respect to the current value 
function. 

• There is a policy improvement theorem that can prove 
that moving the policy in this way always makes the 
policy as good as or better than the original policy 
(see http://www.incompleteideas.net/book/first/
ebook/node42.html) 

http://www.incompleteideas.net/book/first/ebook/node42.html
http://www.incompleteideas.net/book/first/ebook/node42.html
http://www.incompleteideas.net/book/first/ebook/node42.html


Finding the optimal policy via Policy Iteration

• Sort of like the Expectation-
Maximization algorithm iterate 
between evaluation and policy 
improvement cycles! 

• This is known as policy iteration



You need to know a model of the world which is not 
always available to agents or can’t be clearly specified in 
advance!


Need to track and represent all the states which can be 
memory intensive.   Unlikely to be solved by people.

Problems

Advantages 

Bootstrapping!



Monte Carlo Methods
• don’t need full knowledge of environment: just 

experience, or simulated experience 

• but similar to DP: policy evaluation, policy improvement 

s0 
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R2(s) = +1 

R3(s) = -5 

R4(s) = +4 

Vπ(s) ≈ (2 + 1 – 5 + 4)/4 = 0.5 

• want to estimate V(s): expected return starting from s and 
following.  estimate as average of observed returns in state s 

• first-visit MC: average returns following the first visit to state 
s 



Monte Carlo Methods
• downside: no bootstrapping as in 

dynamic programming 

• upside: no bootstrapping as in 
dynamic programming… expense of 
updating doesn’t depend on the total 
number of states in the problem. 

• V(s) not enough for policy improvement: need exact 
model of environment 

• Instead estimate Q(s,a):  

• Update after each episode 

• a problem: greedy policy won’t explore all actions!  Need 
to balance explore-exploit



Monte Carlo Methods Summary
• Don’t need model of environment! 

• averaging of sample returns from actual experience 
or even simulated play (e.g., self-play in two player 
games, etc…) 

• can concentrate on “important” states: don’t need a full 
sweep of all states because no bootstrapping 

• need to maintain exploration (EXPLORE-EXPLOIT 
DILEMMA — next week!)



Summary

• The goal of the RL agent is to maximize reward over the long term.  

• The way this is implemented is through a function which determines 
the value of various “states” or “situations” under a certain policy

• Once you know how to evaluate a policy, there are a number of ways 
to actually arrive at optimal policies

• Value iteration: move back and forth from evaluating policy to 
changing policy to optimize estimated values

• Monte Carlo: Run direct simulations (or experience) forward 
and tally returns following each state

• CRITICALLY, there is more than one way to solve the RL problem 
depending on if you represent the world model or not.  



Next time: Evaluating the world when you 
don’t know anything about it

Bellman

Dynamic programming, 
TD methods, Monte

Carlo

Neural firing patterns,
prediction errors,

system level 
neuroscience



• The Explore/Exploit Dilemma


• Function approximation/generalization


• Model-based versus Model-free RL

Next time


