Computational Cognitive Modeling

Neural networks and deep learning
(part 2)

Brenden Lake & Todd Gureckis



Two very important types of neural networks

Recurrent neural networks (RNNs)
output units

Input units context units

Convolutional neural networks (ConvNets)

layers of feature maps




Data often has important temporal structure

Language/text
Speech
Video
Financial
Weather

All of human behavior unfolds in time



How do we represent time in a neural network?
Naive approach: represent time spatially in a standard network

Problems with this
approach:

* The network has a
fixed buffer. How
large do you make

\\4 ‘// the buffer?

"""  Two identical patterns
ﬁ"“ﬁ translated in time,
) suchas[011000],
ORI [000110]have no
O NNN |
/4&4')\'»%\\ natural overlap in the
input . . . . (untrained)

t=0 t=1 ... architecture



COGNITIVE SCIENCE 14, 179-211 (1990)

Finding Structure in Time

- JEFFREY L. ELMAN
University of California, San Diego

Time underlies many interesting human behaviors. Thus, the question of how to
represent time in connectionist models is very important. One approach is to rep-
resent time implicitly by its effects on processing rather than explicitly {(as in a
spatial representation). The current report develops a proposal along these lines
first described by Jordan (1986) which involves the use of recurrent links in order
to provide networks with a dynamic memory. In this approach, hidden unit pat-
terns are fed back to themselves; the internal representations which develop
thus reflect task demands in the context of prior internal states. A set of simula-
tions is reported which range from relatively simple problems (temporal version
ot XOR) to discovering syntactic/semantic features for words. The networks are
able to learn interesting internal representations which incorporate task demands
with memory demands; indeed, in this approach the notion of memory is inextri-
cably bound up with task processing. These representations reveal a rich struc-
ture, which allows them to be highly context-dependent, while also expressing
generalizations across classes of items. These representations suggest a method
for representing lexical categories and the type/token distinction.

INTRODUCTION

Time is clearly important in cognition. It is inextricably bound up with
many behaviors (such as language) which express themselves as temporal
sequences. Indeed, it is difficult to know how one might deal with such basic
problems as goal-directed behavior, planning, or causation without some
way of representing time.

The question of how to represent time might seem to arise as a special
problem unique to parallel-processing models, if only because the parallel
nature of computation appears to be at odds with the serial nature of tem-



Simple recurrent network (SRN; or EIman network)

output units

copy
connections

with fixed
weight of 1

Input units context units



A simple example task

letter t+1

output units

input data:

diibaguuubadiidiiguuuguuudiidiibadii....
(random mix of “ba”, “dii”, and “guuu”®)

task:
predict the next letter

input units context units

letter t

representation of input

Consonant Vowel Interrupted High Back Voiced
b [ 1 0 ] 0 0 1]
d [ 1 0 1 1 0 1]
g [ 1 0 1 0 1 1]
a [ 0 1 0 0 | 1]
i [ 0 ] 0 ] 0 1]
u [ 0 1 0 1 1 1 ]




error (root
mean
squared
error)

Performance of the trained network

(d)

(a)

(9)

.y

(d)

0—=%x=20

words “ba”, “dil”,
and “guuu”

Network shows higher
error when predicting
unpredictable
characters (b, d, g)



error

“manyyearsagoaboyandgirllivedbythesea..”

What is a “word”?

A similar simulation with a sequence of artificial sentences such as

-

_.--—""’.’m

|

T

r

time

Much previous work in cognitive
science and linguistics assumed basic
linguistic units such as phonemes,
morphemes, words, etc.

But the definition of a “word” isn’t that
clear

How many words is each of these
phrases? (examples from PDP
Handbook)

e ‘line drive’, ‘flagpole’, ‘carport’,
‘gonna’, ‘wanna’, ‘hafta’, ‘isn’t’ and
‘didn’t’. Here’s a thought: maybe
“‘words” are just peaks in the error

prediction signal?

Elman’s paper and the SRN was
among the first to break away from
commitments to basic linguistic units
(phonemes, morphemes, words, etc.)



Training a recurrent neural network

old notation new notation

output units
(vector) ‘ Yt

output units A

QQQQ context units U
T | (vector)

W

N ‘ ht-1 |—>‘ ht
hidden units ' " V

\
——
ol
\\
e~
\

A
T Q @ 3 input units ‘
Q “ (vecton) Xt

Input units context units

weight matrices V, W, U

index t is represents the step in time



Unrolling a recurrent network in time

Global error [ — Z E,
)

Error terms Eo E1

Output units ‘ Yo ‘ ‘ Y1

E> Es

N
& v

h2 |—>| h3 -|—P

I e I o B
\'}

Input units ‘ Xo ‘ ‘

weight matrices V, W, U



Unrolling a recurrent network in time

Global error [ — Z E,
t p_ - )

Error terms Eo ?

'\
|
1
: i s |
i 1
1 1 TU
1 0
[ =l he  f2f 2 m Jof f R o ! ks
VvV \'/ . \'} . \'/ . Vv
| | 1 TW
Input units ‘ Xo ‘ I_: X1 ‘ I_‘I X2 ‘ I_: X3 ‘

b

Output units ‘ Yo

>
&y
‘ L
’ﬂ
m = ) -
‘5>
&y

.|_.

|nput sequence: weight matrices V, W, U

diibaguuu



Reminder: Backpropagation algorithm for

computing gradient
E(w,b) = (§ - y)°
Multi-step strategy:

OE _ OF Oh
6’w3 N Oh 8@03

Step 1) Compute how error changes as a
function of hidden unit activation

Step 2) Compute how hidden unit
activation changes as a function of
weight




Global error [ — Z E,
/

Error terms

Backpropagation through time

Eo

Output units ‘

_ OL
ow t OW
[Mlustration for co t1 OFs
ustration for computing ——
= E- Es
TR N TN I
Oh
T I e o BN

[
Vv

Input units ‘

backprop step 1

weight matrices V, W, U



Backpropagation through time

Globalerror Ep—-N ‘g OFE __ OE,
Et: LW t OW
OFo
[l1lustration for computing —=
Error terms Eo E- Eo Es
| jo || 2 | ] y2 | ] Js

o oo oo fo
ohq

Oh
A N = IR - I

S R I C

W W

L x| [ x | L | %
backprop step 2

weight matrices V, W, U



Backpropagation through time

_ oF __ OF
Global error E_Z:Et S =3, (‘N/Vt'
. . 0FEs
[llustration for computing W
Error terms Eo E+ E> Es
% | [ % || ¥ |
fooom Jooom Uk T
Ohg oh, oh
T S I = TS N

oW
[ x| ]

e LA i »

backprop step 3
weight matrices V, W, U

Now, we sum the gradients from the last three slides.

And compute gradients for other time steps, Eo , E1 again summing over shared weights...

Conceptually, still no different than wiggling W and seeing how error changes!



Discovering lexical classes from simple sentences

output units

hidden units ‘ “

@@dbg‘

input units

(also EIman, 1990)

Ry

context units

“man eat cookie”
“woman see book”
“dragon eat human”

Can the SRN discover
lexical classes like nouns
and verbs?



Discovering lexical classes from simple sentences
Template for generating simple sentences

Categories of Lexical ltems Used in Sentence Simulation

Category Examples
NOUN-HUM man, woman
NOUN-ANIM cat, mouse
NOUN-INANIM book, rock
NOUN-AGRESS dragon, monster
NOUN-FRAG glass, plate
NOUN-FOOD cookie, break
VERB-INTRAN think, sleep
VERB-TRAN see, chase
VERB-AGPAT move, break
VERB-PERCEPT smell, see

VERB-DESTROY
VERB-EAT

break, smash

“man eat cookie”

eat “woman see book”
“dragon eat human”

Templates for Sentence Generator

WORD 1 WORD 2 WORD 3
NOUN-HUM VERB-EAT NOUN-FOOD
NOUN-HUM VERB-PERCEPT NOUN-INANIM
NOUN-HUM VERB-DESTROY NOUN-FRAG
NOUN-HUM VERB-INTRAN

NOUN-HUM VERB-TRAN NOUN-HUM
NOUN-HUM VERB-AGPAT NOUN-INANIM
NOUN-HUM VERB-AGPAT

NOUN-ANIM VERB-EAT NOUN-FOOD
NOUN-ANIM VERB-TRAN NOUN-ANIM
NOUN-ANIM VERB-AGPAT NOUN-INANIM
NOUN-ANIM VERB-AGPAT

NOUN-INANIM VERB-AGPAT

NOUN-AGRESS VERB-DESTROY NOUN-FRAG
NOUN-AGRESS VERB-EAT NOUN-HUM
NOUN-AGRESS VERB-EAT NOUN-ANIM
NOUN-AGRESS VERB-EAT NOUN-FOOD




Discovering lexical classes from simple sentences

“one-hot” encoding for words

TABLE 5
Fragment of Training Sequences for Sentence Simulation

Input

Output

0000000000000000000000000000010 {woman)
0000000000000000000000000010000 (smash)
0000000000000000000001000000000 (plate)
0000010000000000000000000000000 (cat)
0000000000000000000100000000000 (move)
0000000000000000100000000000000 (man)
0001000000000000000000000000000 (break)
00001006000000000000000000000000 (car)
0100000000000000000000000000000 (boy)
0000000000000000000 100000000000 (move)
0000000000001000000000000000000 (girl)
0000000000100000000000000000000 (eat)
0010000000000000000000000000000 (bread)
0000000010000000000000000000000 (dog)
0000000000000000000100000000000 (move)
000000000000000000 1000000000000 (Mmouse)
0000000000000000001 000000000000 (Mmouse)
00000000000000000001 00000000000 (move)
1000000000000000000000000000000 (book)

0000000000000000000000000010000 (smash)
0000000000000000000001000000000 (plate)
0000010000000000000000000000000 (cat)
0000000000000000000100000000000 (move)
0000000000000000100000000000000 (man)
0001000000000000000000000000000 (break)
0000100000000000000000000000000 (car)
0100000000000000000000000000000 (boy)
0000000000000000000100000000000 (move)
0000000000001 000000000000000000 (girf)
00000000001 00000000000000000000 (eat)
0010000000000000000000000000000 (bread)
0000000010000000000000000000000 (dog)
0000000000000000000100000000000 (move)
0000000000000000001000000000000 (mouse)
0000000000000000001 000000000000 (mouse)
0000000000000000000100000000000 (move)
1000000000000000000000000000000 (book)
0000000000000001000000000000000 (lion)




Discovering lexical classes from simple sentences

e STIC]

| SPUNS 1) ¢} { 4

— hink
‘:::xia D.0.-ABS

ey

[ sleep

break VERBS

_____smash DO-OPT

ike

ot

L——w_chase DO-OBLIG

at

dog ANIMALS

_E]monstcr
lon ANIMATES

__dragon
woman

I
Iman

____boy

T o
___rock

NOUNS

andwich

cookie FOOD

S eid INANIMATES

P BREAKABLES

L_glass

| {

20

1.5

1.0

0.0 0.5

Rich structure from just learning
to predict the next word from
the previous words

This diagram shows results of
clustering the average pattern
over the hidden units for each
word (across many
presentations)

From just the prediction task, the
network “discovers” nouns vs.
verbs, and also animate vs
iInanimate, etc. without building in
these lexical classes in any way



Finding Structure in One Child’s Linguistic
Experience

Wentao Wang, Wai Keen Vong, Najoung Kim, and Brenden M. Lake

Center for Data Science, New York University

Abstract

Neural network models have recently made striking progress in natural language
processing, but they are typically trained on orders of magnitude more language
input than children receive. What can these neural networks, which are primarily
distributional learners, learn from a naturalistic subset of a single child’s experience?
We examine this question using a recent longitudinal dataset collected from a single
child, consisting of egocentric visual data paired with text transcripts. We train both
language-only and vision-and-language neural networks and analyze the linguistic
knowledge they acquire. In parallel with findings from Elman’s (1990) seminal work,
the neural networks form emergent clusters of words corresponding to syntactic
(nouns, transitive and intransitive verbs) and semantic categories (e.g., animals
and clothing), based solely on one child’s linguistic input. The networks also
acquire sensitivity to acceptability contrasts from linguistic phenomena such as
determiner-noun agreement and argument structure. We find that incorporating
visual information produces an incremental gain in predicting words in context,
especially for syntactic categories that are comparatively more easily grounded
such as nouns and verbs, but the underlying linguistic representations are not
fundamentally altered. Our findings demonstrate which kinds of linguistic knowledge
are learnable from a snapshot of a single child’s real developmental experience, and
which kinds may benefit from stronger inductive biases or richer sources of data.

1 Introduction

In the first three years of life, children’s linguistic development progresses rapidly. Young
children begin understanding words at around 6 months (Tincoff and Jusczyk, 1999, 2012;
Bergelson and Swingley, 2012, 2015). The vocabulary that they can comprehend and produce

;ﬂnv‘nnor\o Nv'ﬂf]11f\]]'\’7' 11'Y\+':] f\'Y‘f\'I'I'Y\f] 1‘)71 /I W\I\Y\“'L\C‘ f\+ TTYL\;ﬂL\ 'aY EavVathal ]';'Y\I\"\'V’ nI\W\T\V'f\L\I\V\O;f\Y\ l\f\f\o“'



hild’s linguistic experience

and here is a farm with a  and the cow has an udder, with out hands yeah. do you want to go back to yeah we might go this and then we have to pour
cow on it. and then milk comes out the farm sometime? weekend sometime to the the milk, you pour the
of the udder. farm again. milk that is in buckets
into a big milk truck.

Dataset (SAYCam;
Sullivan et al., 2021)

Recurrent neural network

_ i see the ball <e0s>
- Egocentric video from | w 0 0
one child between 0.5 ? ? ? ?
and 2.5 years old | ] ol o]
. 37,000 child-directed 4 4 4 4
utterances | ] | 1 1 | |
you see the ball

transcribed




Finding syntactic structure in one child’s linguistic experience

I on
h going
syntactic category let make PUS | ggr;léng

let
o noun watch — time
trans. verb

take use ;(())me
® intrans. verb throw find
pick

went
stand
sit
walk
work

show _

goes
says
say
show
find
make
pick
take
use
throw
push
watch

—
do
book @ Vverqi ‘9() come %Hﬁgy
010 a
® doggy ® bunny

lele way say

train stand
yam ® Says walk. sit?

Juy .baby bin Joes

bear
baby
poo
train
way
book
bin

.bunny gon .coming

o .
going

car

one | truck ]
something

shoes €9JdS water things
L ® ) ) — socks
.thmgs

shoes

eggs
) . bread
something water

banana

I guy

Sam

(a) t-SNE (b) Dendrogram clustering

socks‘ bread.

banana
)

visualization based on input embedding vectors and cosine similarity



Finding semantic structure in one child’s linguistic experience

cow .puzzle
milk .farm
chuck
Jrucks playground ot
@) oat
store J)ark.beach o balloon.
Dlocks s o %rain
%ibrary baly
%alls bag Kitty
0X
water bucket doggy
bread duck
egg eggs cup o bear
banana
) .dolly bunny
shoes
sockg | Spoon semantic category
;nts .shlrt animals
p ‘sock ® Dbody parts
.JaCket .head ® clothing
bottle Jnouﬂ food drink
household
hand. hands @ DPlaces
foot t
® feet ¢ Oys.
o ® vehicles
(a) t-SNE

visualization based on input embedding vectors and cosine similarity

L

=

_[

spoon
dolly
bucket
cup
box
bag
park
store
playground
beach
library
balloon
ball
bottle
trucks
truck
milk
farm
COW
puzzle
boat
car
train
cars
doggy
kitty
duck
bunny
bear
bread
water
banana
€gg
eggs
blocks
balls
head
mouth
hands
hand
foot
feet
pants
shoes
socks
shirt
jacket
sock

(b) Dendrogram clustering



State-of-the-art text processing with Transformers

swims towards the bank <eos>

she
B N ] Legend
T / ] hidden

(vector) embedding

0 input embedding
... more layers here ...

.JV/I'/ /I/i/

<sos> : start of sequence

<eos> : end of sequence

(+position embeddings)

<S0S> she swims towards the bank

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I.
(2017). Attention is all you need. Advances in neural information processing systems, 30.



Transformer layer, step 1: self-attention

she swims towards the bank <eos>

T AAA A

... more layers here ...

Let’s compute this vector: ‘V/IZ/ P i’

ZJ. for token k

Given these vectors

A; fortokensj <k
(+position embeddings)

<sos> she swims towards the bank

High-level intuition: embedding (index k) at next layer is soft-

combination of all previous layer’s embeddings (index <= k)

Legend

[ hidden
(vector) embedding

OO0 input embedding

<sos> : start of sequence

<eos> : end of sequence

B < H 4+ Z A O a : attention weight

ko ko




Transformer layer, step 1: self-attention

she swims towards the bank <eos>

]

hidden
(vector) embedding

... more layers here ...

g od

Let’s compute this vector: O input embedding

ZJ. for token k ‘V/E//

Given these vectors

<sos> : start of sequence

<eos> : end of sequence

Xj for tokens j < k

<sos> she swims towards the bank

High-level intuition Details

Computing the attention weights (assuming just one attention head)
-SIm;;

B < B+ a,; i - T
Z j sim;; = (W, x,)' (Wex,) i .
k k . J O'k K Y .

Self-attention output

7 < LayerNorm(x, + )’ a;(W,x)
j<k




Transformer layer, step 2: feedfoward sub-layer

she swims towards the bank <eos>

T AAA A

... more layers here ...

8 % @ §p o

Let’s compute this vector:

ZJ. for token k
Given these vectors

Xj for tokens j < k

<sos> she swims towards the bank

Step 1: Mixing between tokens with self-attention
7, < LayerNorm(x, + Z a (W, x;))
j<k
Step 2: Tokenwise processing with feedforward net

z, < LayerNorm(x, + FeedForward(z,))

Legend

hidden
(vector) embedding

0 input embedding
<sos> : start of sequence

<eos> : end of sequence

LayerNorm( -)

z-score each embedding and
transform with learned mean
and SD parameter

FeedForward( - )

| | output layer

?

| | RelL,U

?

| | input layer




Critiques of recurrent / transformer networks

(Marcus, 1998, Rethinking eliminative connectionism)

output ‘ rose ‘ daisy

is‘a‘

blicket

A
i

blicket is‘ a ‘

input ‘ rose ‘ daisy

Sentence input... “Aroseis a”

Sequence-based neural networks
generalize very well WITHIN a specific set
of words / symbols

However, they generalize very poorly to
new words OUTSIDE the training set

Say the network is trained on sentences

such as, “arose is arose”, “a daisy is a
daisy”, and “a violet is a violet”

It will NOT generalize to a new word, “a
blicket is a [blicket]”

People can easily learn rules that apply to
arbitrary new variables



Two very important types of neural networks

Recurrent neural networks (RNNs)
output units

Input units context units

Convolutional neural networks (ConvNets)

layers of feature maps




convolving an image with a filter

We slide the filter across the image to produce an output image

image filter output

22 15 113 60

42| 5|38(39 7 00 1 1] 3 60
28/ 9 4[66 79 X olo /0 ofc = | |38/39 7
0 824512 17 0 0 O 4 166 79

99 14 72/51 3



Deep convolutional neural network (convnet) for vision

enet

z chet.

output classes (c) g(net;) =

/'7‘\

f .5-4 4

Filter bank + non-linearity

T T T AT

Max pooling

Layer 2: 12 feature maps
Filter bank + non-linearity

Max pooling

Layer 1: 4 feature maps
Filter bank + non-linearity

example convolution

Slide courtesy of Yann LeCun



Deep convolutional neural network

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0);

AT M T i W A E LV Y T M A L i LT L iV L Y L A A L e A SR A A L A v i S s L S A Y L & L A L A & L& & LT MY L M & iF LT T Ay A T A L & A =T S &

Convolutions and RelLU
B S L& LB L L LY S5 ZF v L 7 IV e o o o EO& s FF gz LS s N =

Max pooling

T E D i L B D S~ T - - - - i LA LA A ¥

Convolutions and RelLU
V- AR Ry - - o

Max pooling

From LeCun, Bengio, & Hinton (2015).



Learned filters in a deep convnet

e Key assumption of “translation invariance”: If a filter (e.g., a horizontal edge detector)
Is useful in one part of the image, it is probably useful anywhere in the image

(some filters learned from Krizhevsky et al., 2012)



Let’s go through computing with
convolutions to build a feature map...

feature maps

e TR - - channels



Filter 0 Filter 1 Next layer of network

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
wO[:,:,0] wl[z:,:,0] o[:,:,0]
dot product Ot o] i I °1° °  Feature
Channel 0 | (element-wise 1
| multiply then
(e.g., red) o[z,:,1]
sum) Bl E
—rv Feature
0 0 21 2 map1
—1— 5 [-1 |2
dot product
1
> T 0 -1 -1 0 Credit for demo:
Channel 1 http://cs231n.github.io/
1 0 . . )
(e.g. Bias bo'(1xIx1 Bias bl (IxIx1) convolutional-networks/
? 1 2 0 b0{:,:,0] bl[:,:,0]
1 0
feature maps
Channel 2
(e.g., blue)

channels



Channel 0 l
(e.g., red)

Channel 1
(e.g., )

Channel 2
(e.g., blue)

O O O O O o o o 0o 0o 0o oo o0 o oo o o o

Input Volume (+pad 1) (7x7x3)
| X[2,2,

0
0

~

~
.

© -~ N ©O O = O © O N ~ N N O

© © N ~ O ~ OF,

Filter O

Filter WO (3x3x3)
wO[:,:,0]

©C O N =
©c N O O

Bias bOA1x1x1)
b0[s,:,0]

©c O © O O

Filter 1

Filter W1 (3x3x3)
wl[z:,:,0]
o -1 -1

0 0 1
1 1 -1

wl[:,:,1]
o -1 -1

-1 1 1
1 1 -1

wl[:,:,2]
0O -1 0

-1 1 0
-1 -1 0

Bias bl (Ix1Ix1)
bl[:,:,0]
0

feature maps

Next layer of network

Output Volume (3x3x2)
o[:,:,0]

81915  Feature
-1 7 3

o[:,:,1]

2 3 7 Feature
S5 -1 -2

channels



Filter 0 Filter 1 Next layer of network

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
X[:,:,0] wl[:,:,0] o[:,:,0]
2 0 O 0O 0 1 O [ 2 map 0
Channel 0 P
O 28 2 1 1 -1 -1 7 3
(e-g-, red) 0 1 0 2 wl[z:,:,1] o[:,:,1]
0 2 0 2 I S B E Feature
0 0 0 2 SN E 21 2 mapt
0 0 0 0 1 1 -1 S -1 -2
X[:,2,1] wl[:,:,2]
00 0 0 e
01 0 2 HEE
-1 -1 0
Channel1 2 ? 0 ©
(e_g_ ) S A O [ b 1as b0 (Ix1x1) Bias bl (Ix1Ix1)
’ 0 2 1 1 2 bO[:,2,0] bl[:,:,0]
0 1 1 2 1 0
0O 0 0 O
X[:,:,2] feat
00 0 0O ﬂ oA eature maps
0 1 0 o fojio] - ' -
Channel2 o o 1 1 E 0
(e.g., blue) ek
0O 2 2 1 0 0 O
0O 0 0 1 1 2 O :
— > £ . ’ : '
0 000 0 0O N —— - channels
B R~~~



Filter 0 Filter 1 Next layer of network

Input Volume (+pad 1) (7x7x3) Filter W0 (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
" X[:,:,0] wO[:,:,0] wl[:,:,0] o[:,:,0]
0O O 0 -1 -1 8 6 5 Feature
2 0 0 1 719 2
map 0
Channel 0| = ——1 —— P
(e.g., red) | 1 wl[:,:,1] o[:,:,1]
0O -1 -1 0 S B
Feature
-1 1 1 2 1 -2 map1
1 1 -1 S -1 -2
wl[:,:,2]
0O -1 0
-1 1 0
-1 -1 0
Channel 1
(e Bias bOA1x1x1) Bias bl (Ix1x1)
‘9. bO[+,:,0] bl[:,:,0]
0

feature maps

channels



Let’s skip to compute the next feature
map...

feature maps

g P e channels



Filter 0 Filter 1 Next layer of network

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
X[:,:,0] wO[:,:,0] wl[:,:,0] o[:,:,0]
offoffloJo o o o 0 1 0 0 [[-1]-1 8 6 5 Feature
Channel 0 mmo 2 11 0 i 5l B map 0
o||2||2|1210 0 1 1 1
(e.g., red) 1 02100 of:,:,1]
o Bl B
2 0 2 01 0 Feature
0020 2 0 21 2 mapt
0 0 0 0 S -1 -2
Channel 1
(e.g., )
1
Channel 2 1 0 0
i i G B
(e.g., blue)
0 2 21 0 0 0
0 001 1 2 0 7
00 000 0 0 LS A /. " channels
Bt R e



Filter 0 Filter 1 Next layer of network

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
X[:,:,0] wO[:,:,0] wl[:,:,0] o[:,:,0]
o ofoflofflolo o 0 1 0 |o=||-1||-1 8 6 5 Feature
Channel 0 0 2 mmz 0 11 0 0 0_||1_ i 5 map 0
022||1||2|10 0 1 1 11||-1 17 3
(e.g.,red) 0O 1 0 2 1 0 O wO[:,:,1] wl[:,:,1)] o[:,:,1]
0202010 e 21317 Feature
000 2020 21 2 mapi
000 0 0 0 S -2
X[z,:,1
0 0o
o 1 [7]
0o o [o
Channel 1
0 0 O
(e'g'5 ) 0 2 l
0 1 1
0 0 O
X[:,:,
o o [o 0
0 1@ 1 0
Channel2 0 0 |1 0100
5l i D G B
(e.g., blue)
0 2 2 1 0 0 0
0 001 1 2 0 | ;
0000 O 0 O > LS A n " channels
Bt R e



After convolutions, apply a non-linear
activation function (e.g., ReLUs)

Rectified linear unit (ReLU)

net net >0 A
g(net) = g(net) |
0 net < 0 81
8 6 5 slels !
Feature ., , , o1 S
map 0 17 3 g(net) 0l 713
- ' _l M M M M T ll
2 13 1|7 ol 3|7 net
Feature , | , o T7 o
map 1 S5 -1 -2 0(0]|o0




Next step: Pooling

e Downsamples a feature map to a coarser resolution
* Provides additional translation invariance

Max pooling

Single depth slice

% 1112 4
max pool with 2x2 filters
oSGl 7 | 8 and stride 2 6 | 8
3 | 2 3 | 4
1 | 2 [




Connection to biological architecture of primary visual cortex
(Hubel & Wiesel)

stimulus simple cell simuus - complex cell

JHHH-HH L

spikes

Stimulus: on Stimulus: on off

localized edge detector invariance through pooling

L - - - - LW - -

Max pooling

volutions and RelLU

_)/
A - o A—— - S M— -
T RN RN g
RaAd Craon Rliia



Deep convolutional neural network

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0);

AT M T i W A E LV Y T M A L i LT L iV L Y L A A L e A SR A A L A v i S s L S A Y L & L A L A & L& & LT MY L M & iF LT T Ay A T A L & A =T S &

Convolutions and RelLU
B S L& LB L L LY S5 ZF v L 7 IV e o o o EO& s FF gz LS s N =

Max pooling

T E D i L B D S~ T - - - - i LA LA A ¥

Convolutions and RelLU
V- AR Ry - - o

Max pooling

From LeCun, Bengio, & Hinton (2015).



How do we train it? Backpropagation

layers of feature maps

output:

Training data (ImageNet)
e 1.2 million images
e 1000 categories
e ~1200 images per category

AlexNet
8 layers
~60 million parameters

GooglLeNet
22 layers

~5 million parameters

Residual networks
hundreds of layers...




Example results on test images

object recognition finding similar images

probe similar images...

mite __ container ship motor scooter leopard

mite container ship motor scooter legpard

black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard

starfish drilling platform golfcart Egyptian cat

s

"

T

2
o

7
7T
4

¥

= a . . W 2 . 1
grille mushroom cherry Madagascar cat
__convertible | agaric dalmatiah squirrel monkey

grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

(some filters learned by Krizhevsky et al., 2012)



Deep convnets for understanding
psychological and neural representations

e Peterson, Abbott, and Griffiths (2016) explored convents
for predicting similarity ratings between images.

e |ake, Zaremba, Fergus, and Gureckis (2015) showed
that deep convnets can predict human typicality
ratings for some classes of natural images

e Yamins et al. (2014) showed that deep convnets can
predict neural response In high-level visual areas



Predicting human similarity ratings with a neural network

Peterson, J., Abbott, J., & Griffiths, T. (2016). Adapting Deep Network
Features to Capture Psychological Representations.

Some images look more similar to us than others. Can a neural network trained for
classification help to explain similarity judgments from humans?

example animal images (they collected 120 x 120 pairwise ratings)




computing image-to-image similarity

sim(t,]) = E Jik[ik  similarity computed as dot product
k
summarizing images as high-level feature vector f

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0);

onvolutions and ReLU
Ao S L B L S & & T S L (AT £ o o o o L& B N e S s &

Max pooling

Wnf J o oy f S H o o Y - J S/ S A

Convolutions and RelLU
A - - - - L& P - -

Max pooling




Hierarchical clustering reveals substantial differences in representation
(best network explains about 40% of the variance in human judgments)

Human Judgments
3.5 -
3.0} .
2.5} .

| || I | | | || |
Primate Rodent Bear Dog Grazer Megafauna Bird Herp

Deep Representations

1.5} -
I —
L = |
1.0} . r L T |5y —g
=2
0.5}
0.0




When fitting weights that allow the network features to be re-scaled, the network fits much better
(best network explains about 84% of the variance in human judgments using out-of-sample
predictions)

sim(t,]) = Z wg fix fik wy, : weight for feature k
k
Human Judgments
3.5} i
3.0 i
2.5} i

T T | TR |
Primate Rodent Bear Dog Grazer Megafauna Bird Herp

Transformed Representations
3.0F =
I
2.5} : .

X i Rl il




Predicting neural recordings with a deep convnet

(Yamins, D. L., Hong, H., Cadieu, C. F, similarity matrices for images

Solomon, E. A, Seibert, D., & DiCarlo, J. J. dee convnet
(2014). Performance-optimized IT neuronal UnItS . p —

hierarchical models predict neural
responses in higher visual cortex.
Proceedings of the National Academy of
Sciences, 111(23), 8619-8624.)

| Fruits (8)
Planes (8)
2= Tables (8)

M
Q
(@)
(O]
wn
C
Image
generalization

Operations in Linear-Nonlinear Layer Behavioral Tasks
e.g. Trees vs non-Trees
®9. "

i
/ =

R o, ,
- Threshold Pool Normalize
Filter

Spatial Convolution
over Image Input

) . Wiﬁ”)/ayeM
| §_® layer 3 N
i layer 2 \

2. Test Per-Site Neural Predictions

\

—_ ~ -

— IT
-

A\ . ) ] \
100ms ’
Visual
e Ny, e B

Neural Recordings from IT and V4



Understanding category typicality with deep convnets

Lake, B. M., Zaremba, W., Fergus, R., & Gureckis, T. M. (2015). Deep Neural Networks Predict Category
Typicality Ratings for Images.

“typical dog "~ atypical o -

* For people, typicality influences performance in practically
any category-related task

* speed of categorization

e ease of production

e ease of learning

e usefulness for inductive inference

* No known model successfully predicts typicality ratings
from raw images -- How do convnets perform?



Category: Banana (p=0.82)

How well does this picture fit your idea or image of the category? (rated on 1-7 scale)
Human typicality ratings

Most typical =———]p

[97.8,6.8]  [98.0,6.8]  [96.6,6.8]  [99.7, 6.6]
. '\) )
h I. S R
[96.9,6.6]  [99.3,6.0]  [78.6,5.8]  [99.5, 5.5]
2 ;«&“}_ Q\ :
I § id b, """“--u.,_____. \ :
[12.1,5.3]1  [59.7,4.4]  [2.9,4.3] [46.1, 4.1]
L
[14.0, 4.1] [0.2, 3.6] [2.3, 2.5] [1.3, 2.4]

Least typical

rating key: [machine (0-100), human (1-7)]



Category: Bathtub (p=0.68)

Human typicality ratings
Most typical =——

[60.6, 6.6] [58.5, 6.6] [57.3, 6.6] [66.5, 6.2]
L'_l X 1 k-

i --
JII Ic 75- Jll‘
i ‘x
! . .,-"-""-;L e -;.'n"-'.
[72.0, 6.1] [80.7, 6.0] [9.5, 5.9] [35.4, 5.7]

Y

[67.6, 5.6] [63.0, 5.2] [9.8, 3.2] [16.4, 3.1]

[1.0, 3.0]

Least typical

rating key: [machine (0-100), human (1-7)]

Convnet typicality ratings

-
%

[80.7, 6.0] [72.0, 6.1] [67.6, 5.6] [66.5, 6.2]

. N 7

[63 0,521  [60.6,66] _[585,6.6] 573 6.6]
L'_l X 1 k-

&

i

[35.4, 5. 7 [16.4, 3.1]

[9.1, 2.4] [1.5, 2.9] [1.0, 2.8] | [1.0, 3.0]
! | |




Category: Envelope (p=0.79)

Human typicality ratings Convnet typicality ratings
Most typical =—————
[91.5, 6.7] [75.2, 6.6] [96.4, 6.6] [98.5, 6.6] [98.5, 6.6] [97.7, 6.6] [96.4, 6.6] [91.5, 6.7]
/// \ | . —‘ R /// \
[97.7, 6.6] [82.8, 6.2] [69.5, 5.3] [59.7, 5.2] [82.8, 6.2] [75.2, 6.6] [69.5, 5.3] [59.7, 5.2]

e

[31.2, 5.1] [32.5, 5.1] [10.8, 4.8] [5.8, 4.2] [50.6, 3.8] [41.9, 3.4]

5|
-

[10.8, 4.8]

Least typical

rating key: [machine (0-100), human (1-7)]



Category: Teapots (p=0.38)

Human typicality ratings
Most typical =—————

[95.8, 6.6] [98.8, 6.6]

\ o @D
.. N
— O

[46.0, 6.0]

[93.5, 6.4] [98.1, 6.2]

[63.6, 5.8]

[95.0, 5.8] [52.8, 5.8]

—

5
X

—

[97.2, 5.6]

[34.9, 4.9]

[8.9, 4.3]

e

N

[78.8, 4.8]

[98.5, 4.6]

¢ A
SR

rating key: [machine (0-100), human (1-7)]

[83.9, 3.4]

Least typical

Convnet typicality ratings

[98.8, 6.6]

[98.5, 4.6]

[98.1, 6.2]

D,
.
h il

[93.5, 6.4]

[97.2, 5.6]

[95.8, 6.6] [95.0, 5.8]

[93.4, 5.2]

-
g

i 3
§ i-. g,
- 2 a%
e

[78.8, 4.8]

)

[83.9, 3.4]

l - AT
B
|

[8.9, 4.3]

9=
y

e

[46.0, 6.0] [34.9, 4.9]



Summary of
typicality predictions

Rank Correlation

Banana 0.82
Bathtub 0.68
Coffee Mug 0.62
Envelope 0.79
Pillow 0.67
Soap dispenser 0.74
Table lamp 0.69
Teapot 0.38
Average 0.67

Rank correlation (p)

Prediction quality varies as a function
of network depth.

convolutional standard
0.8 I , l ]
0.6/ w7
K o
0.4¢ )/ X
< )
0.2 ¥
0.0 ' ' ' '
1 2 3 4 5 o6 7



Critiques of deep convolutional networks

original

Szegedy et al., 2013

change unrecognizable

centipede

jackfruit

A 1
F ¥ 3 F
Z : B, A
£ 5 3 3
Z F
¢ 3 ;
- F
; i ]
/ $ :
3 T 7
{ 7
~ 3 l 3 1
172 %7
L 7 X ¥
$ z s %
3 Z X . 2
king penguin baseball

SRR NRREN
Lipopoooosend

1000

[—])
=

o}
=}
=
-

freight car

remote control

peacock

African grey

Nguyen et al., 2015




Critiques of deep convolutional networks

Compare to deep convnets, people can learn much richer concepts from less data.

People learn from less data People learn richer concepts

parsing

“one-shot
learning”

[

generating
new concepts

where are the others?

generating
new examples




