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input output:
“daisy”

layers of feature maps

Recurrent neural networks (RNNs)

Convolutional neural networks (ConvNets)

Two very important types of neural networks



Data often has important temporal structure

• Language/text

• Speech

• Video

• Financial

• Weather

• All of human behavior unfolds in time



output

input

t=0 t=1 …

How do we represent time in a neural network?
Naive approach: represent time spatially in a standard network

Problems with this 
approach:

• The network has a 
fixed buffer. How 
large do you make 
the buffer?

• Two identical patterns 
translated in time, 
such as [0 1 1 0 0 0], 
[0 0 0 1 1 0] have no 
natural overlap in the 
(untrained) 
architecture
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Finding Structure in Time 

JEFFREY L. ELMAN 
University of Calcfornia, San Riego 

Time underlies many interesting human behaviors. Thus, the question of how to 
represent time in connectionist models is very important. One approach is to rep- 
resent time implicitly by its effects on processing rather than explicitly (as in a 
spatial representation). The current report develops a proposal along these lines 
first described by Jordan (1986) which involves the use of recurrent links in order 
to provide networks with a dynamic memory. In this approach, hidden unit pat- 
terns are fed back to themselves: the internal representations which develop 
thus reflect task demands in the context of prior internal states. A set of simula- 
tions is reported which range from relatively simple problems (temporal version 
of XOR) to discovering syntactic/semantic features for words. The networks are 
able to learn interesting internal representations which incorporate task demands 
with memory demands: indeed, in this approach the notion of memory is inextri- 
cably bound up with task processing. These representations reveal a rich struc- 
ture, which allows them to be highly context-dependent, while also expressing 
generalizations across classes of items. These representations suggest a method 
for representing lexical categories and the type/token distinction. 

INTRODUCTION 

Time is clearly important in cognition. It is inextricably bound up with 
many behaviors (such as language) which express themselves as temporal 
sequences. Indeed, it is difficult to know how one might deal with such basic 
problems as goal-directed behavior, planning, or causation without some 
way of representing time. 

The question of how to represent time might seem to arise as a special 
problem unique to parallel-processing models, if only because the parallel 
nature of computation appears to be at odds with the serial nature of tem- 
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Simple recurrent network (SRN; or Elman network)

copy 
connections 
with fixed 
weight of 1



input data:
diibaguuubadiidiiguuuguuudiidiibadii….  
(random mix of “ba”, “dii”, and “guuu”)
task:
predict the next letter

188 ELMAN 

TABLE 1 
Vector Definitions of Alphabet 

Consonant Vowel Interrupted High Back Voiced 

b [ 1  0 1 0 0 1 1  
d 1 1  0 1 1 0 1 1  
g [ 1  0 1 0 1 1 1  
a [ O  1 0 0 1 1 1  
I [ O  1 0 1 0 1 1  
u [ O  1 0 1 1 1 1  

Thus, an initial sequence of the form dbgbddg . . . gave rise to the final se- 
quence diibaguuubadiidiiguuu. . . (each letter being represented by one of 
the above 6-bit vectors). The sequence was semi-random; consonants occurred 
randomly, but following a given consonant, the identity and number of 
following vowels was regular. 

The basic network used in the XOR simulation was expanded to provide 
for the 6-bit input vectors; there were 6 input units, 20 hidden units, 6 out- 
put units, and 20 context units. 

The training regimen involved presenting each 6-bit input vector, one at  a 
time, in sequence. The task for the network was to predict the next input. 
(The sequence wrapped around, that the first pattern was presented after 
the last.) The network was trained on 200 passes through the sequence. It 
was then tested on another sequence that obeyed the same regularities, but 
created from a different initial randomizaiton. 

The error signal for part of this testing phase is shown in Figure 4. Target 
outputs are shown in parenthesis, and the graph plots the corresponding 
error for each prediction. It is obvious that the error oscillates markedly; at 
some points in time, the prediction is correct (and error is low), while at 
other points in time, the ability to predict correctly is quite poor. More pre- 
cisely, error tends to be high when predicting consonants, and low when 
predicting vowels. 

Given the nature of the sequence, this behavior is sensible. The conso- 
nants were ordered randomly, but the vowels were not. Once the network 
has received a consonant as input, it can predict the identity of the following 
vowel. Indeed, it can do more; it knows how many tokens of the vowel to 
expect. At the end of the vowel sequence it has no way to predict the next 
consonant; at these points in time, the error is high. 

This global error pattern does not tell the whole story, however. Remem- 
ber that the input patterns (which are also the patterns the network is trying 
to predict) are bit vectors. The error shown in Figure 4 is the sum squared 
error over all 6 bits. Examine the error on a bit-by-bit basis; a graph of the 
error for bits [l] and [4] (over 20 time steps) is shown in Figure 5 .  There is a 

representation of input

A simple example task

letter t

letter t+1
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Figure 4. Graph of root mean squared error in letter prediction task. Labels indicate the 
correct output prediction at each point in time. Error is  computed over the entire output 
vector. 

striking difference in the error patterns. Error on predicting the first bit is 
consistently lower than error for the fourth bit, and at all points in time. . 
Why should this be so? 

The first bit corresponds to the features Consonant; the fourth bit cor- 
responds to the feature High. It happens that while all consonants have the 
same value for the feature Consonant, they differ for High. The network 
has learned which vowels follow which consonants; this is why error on 
vowels is low. It has also learned how many vowels follow each consonant. 
An interesting corollary is that the network also knows how soon to expect 
the next consonant. The network cannot know which consonant, but it can 
predict correctly that a consonant follows. This is why the bit patterns for 
Consonant show low error, and the bit patterns for High show high error. 
(It is this behavior which requires the use of context units; a simple feed- 
forward network could learn the transitional probabilities from one input to 
the next, but could not learn patterns that span more than two inputs.) 

words “ba”, “dii”, 
and “guuu”error (root 

mean 
squared 
error)

time

Performance of the trained network

Network shows higher 
error when predicting 
unpredictable 
characters (b, d, g)



What is a “word”?

• Much previous work in cognitive 
science and linguistics assumed basic 
linguistic units such as phonemes, 
morphemes, words, etc.

• But the definition of a “word” isn’t that 
clear

• How many words is each of these 
phrases? (examples from PDP 
Handbook)

• ‘line drive’, ‘flagpole’, ‘carport’, 
‘gonna’, ‘wanna’, ‘hafta’, ‘isn’t’ and 
‘didn’t’. Here’s a thought: maybe 
“words” are just peaks in the error 
prediction signal?

• Elman’s paper and the SRN was 
among the first to break away from 
commitments to basic linguistic units 
(phonemes, morphemes, words, etc.)

error 

time

A similar simulation with a sequence of artificial sentences such as 
“manyyearsagoaboyandgirllivedbythesea..”



Training a recurrent neural network

new notation

xt

ht

ŷt

ht-1

W
V

U

weight matrices V, W, U

index t is represents the step in time

input units 
(vector)

output units 
(vector)

context units 
(vector)

old notation



x0 x1 x2 x3

ŷ0 ŷ1 ŷ2 ŷ3

h0 h1 h2 h3h-1

Unrolling a recurrent network in time
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weight matrices V, W, U

E0 E1 E2 E3Error terms

E =
X

t

EtGlobal error

Input units

Output units



x0 x1 x2 x3

ŷ0 ŷ1 ŷ2 ŷ3

h0 h1 h2 h3h-1

Unrolling a recurrent network in time

W
V

U

W
V

U

W
V

U

W
V

U

V

weight matrices V, W, U

E0 E1 E2 E3Error terms

E =
X

t

EtGlobal error

Input sequence:
diibaguuu

d

i

i

i

i

b

b

a

Input units

Output units



Reminder: Backpropagation algorithm for 
computing gradient

w0

w1

x0

x1

ŷh w2
w3

w4

b1b0

@h

@w3

Multi-step strategy:

@E

@w3
=

@E

@h

@h

@w3

@E

@h

Step 1) Compute how error changes as a 
function of hidden unit activation

Step 2) Compute how hidden unit 
activation changes as a function of 
weight

E(w, b) = (ŷ � y)2

= (g(net)� y)2



Backpropagation through time

weight matrices V, W, U

E =
X

t

EtGlobal error @E
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P
t
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backprop step 1
Input units

Output units



Backpropagation through time
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Backpropagation through time
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backprop step 3

Now, we sum the gradients from the last three slides.

And compute gradients for other time steps, E0  , E1 again summing over shared weights…

Conceptually, still no different than wiggling W  and seeing how error changes!



Discovering lexical classes from simple sentences
(also Elman, 1990)

“man eat cookie” 
“woman see book” 
“dragon eat human” 
… 

Can the SRN discover 
lexical classes like nouns 
and verbs?
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TABLE 3 
Categories of Lexical Items Used in Sentence Simulation 

Category 

NOUN-HUM 
NOUN-ANIM 
NOUN-INANIM 
NOUN-AGRESS 
NOUN-FRAG 
NOUN-FOOD 
VERB-INTRAN 
VERB-TRAN 
VERB-AGPAT 
VERB-PERCEPT 
VERB-DESTROY 
VERB-EAT 

Examples 

man, woman 
cat, mouse 
book, rock 
dragon, monster 
glass, plate 
cookie, break 
think, sleep 
see, chase 
move, break 
smell, see 
break, smash 
eat 

TABLE 4 
Templates for Sentence Generator 

WORD 1 WORD 2 WORD 3 

NOUN-HUM VERB-EAT NOUN-FOOD 
NOUN-HUM VERB-PERCEPT NOUN-INANIM 
NOUN-HUM VERB-DESTROY NOUN-FRAG 
NOUN-HUM VERB-INTRAN 
NOUN-HUM VERB-TRAN NOUN-HUM 
NOUN-HUM VERB-AGPAT NOUN-INANIM 
NOUN-HUM VERB-AGPAT 
NOUN-ANIM VERB-EAT NOUN-FOOD 
NOUN-ANIM VERB-TRAN NOUN-ANIM 
NOUN-ANIM VERB-AGPAT NOUN-INANIM 
NOUN-ANIM VERB-AGPAT 
NOUN-INANIM VERB-AGPAT 
NOUN-AGRESS VERB-DESTROY NOUN-FRAG 
NOUN-AGRESS VERB-EAT NOUN-HUM 
NOUN-AGRESS VERB-EAT NOUN-ANIM 
NOUN-AGRESS VERB-EAT NOUN-FOOD 

but there were no breaks between successive sentences. A fragment of the 
input stream is shown in Column 1 of Table 5, with the English gloss for 
each vector in parentheses. The desired output is given in Column 2. 

For this simulation a network similar to that in the first simulation was 
used, except that the input layer and output layers contained 31 nodes each, 
and the hidden and context layers contained 150 nodes each. 

The task given to the network was to learn to predict the order of succes- 
sive words. The training strategy was as follows. The sequence of 27,354 
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Template for generating simple sentences

“man eat cookie” 
“woman see book” 
“dragon eat human” 
…

Discovering lexical classes from simple sentences
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TABLE 5 
Fragment of Training Sequences for Sentence Simulation 

Input output 

0000000000000000000010  (woman) 
00000000000000000000lW (smash) 
000000000000000000001- (plate) 
O O O O O I P  (cat) 
-1OOOOOOOOOOO (move) 
-1- (man) 
0001- (break) 
W l P  (car) 
01- (boy) 
OOOOOOOOOOOOOOOOOOOlOOOOOOOOOOO (move) 
-1- @id) 
-1- (eat) 
001- (bread) 
-1- (dog) 
OOOOOOOOOOOOOOOOOOOlOOOOOOOOOOO (move) 
-1- (mouse) 
-1- (mouse) 
OOOOOOOOOOOOOOOOOOOlOOOOOOOOOOO (move) 
1OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO (book) -1-0 (lion) 

31-bit vectors formed an input sequence. Each word in the sequence was 
input, one at a time, in order. The task on each input cycle was to predict 
the 31-bit vector corresponding to the next word in the sequence. At the end 
of the 27,534 word sequence, the process began again, without a break, 
starting with the first word. The training continued in this manner until the 
network had experienced six complete passes through the sequence. 

Measuring the performance of the network in this simulation is not 
straightforward. RMS error after training dropped to 0.88. When output 
vectors are as sparse as those used in this simulation (only 1 out of 31 bits 
turned on), the network quickly learns to turn off all the output units, which 
drops error from the initial random value of - 15.5 to 1.0. In this light, a 
final error of 0.88 does not seem impressive. 

Recall that the prediction task is nondeterministic. Successors cannot be 
predicted with absolute certainty; there is a built-in error which is inevitable. 
Nevertheless, although the prediction cannot be error-free, it is also true 
that word order is not random. For any given sequence of words there are a 
limited number of possible successors. Under these circumstances, the net- 
work should learn the expected frequency of occurrence of each of the possi- 
ble successor words; it should then activate the output nodes proportional 
to these expected frequencies. 

This suggests that rather than testing network performance with the RMS 
error calculated on the actual successors, the output should be compared 

“one-hot” encoding for words

Discovering lexical classes from simple sentences



• Rich structure from just learning 
to predict the next word from 
the previous words

• This diagram shows results of 
clustering the average pattern 
over the hidden units for each 
word (across many 
presentations)

• From just the prediction task, the 
network “discovers” nouns vs. 
verbs, and also animate vs 
inanimate, etc. without building in 
these lexical classes in any way

Discovering lexical classes from simple sentences



Finding Structure in One Child’s Linguistic

Experience

Wentao Wang, Wai Keen Vong, Najoung Kim, and Brenden M. Lake
Center for Data Science, New York University

Abstract

Neural network models have recently made striking progress in natural language
processing, but they are typically trained on orders of magnitude more language
input than children receive. What can these neural networks, which are primarily
distributional learners, learn from a naturalistic subset of a single child’s experience?
We examine this question using a recent longitudinal dataset collected from a single
child, consisting of egocentric visual data paired with text transcripts. We train both
language-only and vision-and-language neural networks and analyze the linguistic
knowledge they acquire. In parallel with findings from Elman’s (1990) seminal work,
the neural networks form emergent clusters of words corresponding to syntactic
(nouns, transitive and intransitive verbs) and semantic categories (e.g., animals
and clothing), based solely on one child’s linguistic input. The networks also
acquire sensitivity to acceptability contrasts from linguistic phenomena such as
determiner-noun agreement and argument structure. We find that incorporating
visual information produces an incremental gain in predicting words in context,
especially for syntactic categories that are comparatively more easily grounded
such as nouns and verbs, but the underlying linguistic representations are not
fundamentally altered. Our findings demonstrate which kinds of linguistic knowledge
are learnable from a snapshot of a single child’s real developmental experience, and
which kinds may benefit from stronger inductive biases or richer sources of data.

1 Introduction
In the first three years of life, children’s linguistic development progresses rapidly. Young
children begin understanding words at around 6 months (Tincoff and Jusczyk, 1999, 2012;
Bergelson and Swingley, 2012, 2015). The vocabulary that they can comprehend and produce
increases gradually until around 12–14 months, at which a non-linear comprehension boost
occurs (Bergelson, 2020) and lexical-semantic networks begin to develop (Wojcik, 2018). Lan-
guage learning remains both a scientific and engineering puzzle; it is unclear what inductive
biases are necessary and how much can be learned through relatively generic learning mecha-
nisms, such as distributional learning from patterns of word co-occurrence (Firth, 1957; Harris,
1954; Landauer and Dumais, 1997).

To provide some insight into this learning challenge, we focus on accurately capturing a
subset of the linguistic and visual inputs received by a single child during their development.
We then train generic computational models without language-specific inductive biases on
this data and evaluate what these models learn (e.g., Orhan et al. 2020). Previously, a major
obstacle to this approach was the lack of high-quality and substantive developmental data.
However, thanks to large-scale developmental datasets containing linguistic input (MacWhinney,
2000; Roy et al., 2015; Sullivan et al., 2021) and recent advances in deep learning, it is now
possible to run large-scale simulations on real language input. Training neural networks on
these datasets, and then analyzing what kinds of knowledge are acquired, can help to answer
foundational questions about what is learnable from a child’s experience (Huebner and Willits,
2018; Warstadt and Bowman, 2022).

In this work, we follow this approach by using SAYCam, a recent longitudinal developmental
dataset consisting of an egocentric visual and linguistic input to a single child spanning 6 to 25

1



Finding structure in one child’s linguistic experience

Recurrent neural network

=

see the ballyou

see the ball <eos>

Dataset (SAYCam; 
Sullivan et al., 2021)
• Egocentric video from 

one child between 0.5 
and 2.5 years old

• 37,000 child-directed 
utterances 
transcribed

Figure 1: Example frames and their corresponding utterances. Each row is a different scene:
a meal at breakfast, a game with a ball, and reading a farm-themed picture book. Unlike common
image-text datasets in machine learning, the utterances only loosely align to the frames. For instance,
the foods mentioned in the utterance are not always in the corresponding video frames, and the ball
mentioned in the utterance is sometimes covered by the cup.

B: LSTMA: CBOW

you want blocks too

the

average

C: Captioning LSTM

<eos>

you want the blocks too

want the blocks too

<sos>

you

Image Encoder Decoder

you want the blocks too

<eos>want the blocks too

<sos>

you

Figure 2: The three neural network architectures. (a) The CBOW network predicts a missing
word given a surrounding context of fixed size. The LSTM (b) and Captioning LSTM (c) networks
both predict the next word given a sequence of previous words (additionally a corresponding image for
the Captioning LSTM). The light blue boxes indicate word embeddings, the dark blue boxes indicate
hidden embeddings, and the red box indicates the visual embedding. Figure adapted from Lake and
Murphy (2021).

We measure these networks’ performance on token prediction by per-token perplexity.5
Our LSTM and CBOW models reached an average perplexity of 24.80 (SD = 0.21) and 22.20

5In natural language processing, perplexity is a measure of how well a predicted distribution
matches the ground-truth one-hot token distribution, defined as 1

p̃(y) , where p̃(y) is the predicted

4



(a) t-SNE (b) Dendrogram clustering

Figure 3: Clustering LSTM’s word embeddings for syntactic categories. For two embeddings
u, v, t-SNE uses 1� cos(u, v) as the distance metric, and dendrogram uses cos(u, v) as the similarity
measure. Nouns and verbs form two large clusters. Transitive and intransitive verbs form two smaller
subclusters.

nouns—12 transitive verbs, and 12 intransitive verbs that are unambiguous in their transitivity
(see Figure 8 in the Appendix for CBOW results). Both the t-SNE and dendrogram use
cosine-based metrics between word embeddings.8 Furthermore, Figures 10 and 11 demonstrate
that clusters for other syntactic categories like adjectives and adverbs also emerge from training.

Second, we find that the representations learned by the LSTM forms clusters corresponding
to semantic subcategories of nouns. We manually label the most frequent nouns that are
unambiguously in different semantic categories, using a reference set of semantic categories
derived from WordBank (Frank et al., 2016). We exclude categories having less than 6
unambiguous words from our analysis. As can be seen from Figure 4, there are several visually
identifiable clusters that correspond to different semantic categories.9 Note that while Elman
(1990) found a clear animate versus inanimate distinction among nouns, we did not find such a
salient distinction (see Figure 12 in Appendix). Interestingly, some thematically related words
(“milk”, “farm”, and “cow”) are close to each other. We find that this cluster can be directly
traced back to a particular scene in the training data; these words co-occur in a scene where
the parent is reading a farm-themed picture book, illustrated in the third row of Figure 1.

Third, as pointed out by Linzen and Baroni (2021), information in the representation may
not be used by the network to causally affect its behavior. We therefore apply additional
behavioral tests to provide further evidence for syntactic category structures in our networks.
We design a novel cloze test (Taylor, 1953) to evaluate the noun-verb distinction. We build
clozes such as “we are going to here”, where the cloze expects either a noun or a verb.10
Trials are generated by iterating over utterances in the validation set, identifying each token
that is a noun or verb, and replacing one of these tokens with an empty slot to create a cloze.
For each cloze, we fill the slot with every possible noun or verb in the vocabulary, scoring each

8While we used word embeddings to conduct these analyses, mean hidden vectors across the dataset
(approach used by Elman 1990) yield similar results.

9CBOW results are shown in Figure 8 in the Appendix; there are some identifiable clusters but
they are less clear than clusters from the LSTM.

10This approach is similar to the category distinction test for masked language models in Kim and
Smolensky (2021).

6

Finding syntactic structure in one child’s linguistic experience

visualization based on input embedding vectors and cosine similarity



Finding semantic structure in one child’s linguistic experience

(a) t-SNE (b) Dendrogram clustering

Figure 4: Clustering LSTM’s word embeddings for semantic categories. Again, both plots
use cosine measures in Figure 3. We present the most frequent 6 words from 8 different categories.
Most distinct clusters clearly correspond to semantic categories.

Model Top-5 predictions

we should turn on some lights, huh?
LSTM 91.2% put 5.2% turn 0.4% leave 0.4% keep 0.4% get
CBOW 48.2% put 31.4% lid 8.9% go 2.3% sit 1.9% come

we should turn on some lights, huh?
LSTM 14.0% lights 13.4% toys 9.5% water 7.6% music 5.4% books
CBOW 11.3% ducks 10.2% bread 8.0% breaky 5.8% books 5.1% grapes

are you done going potty?
LSTM 9.3% done 6.4% ’re 6.0% feeling 5.5% hiding 5.4% are
CBOW 69.1% ’re 26.4% re 4.2% are 0.1% keep 0.1% were

and there’s a kitty looking at a mouse.
LSTM 40.9% kitty 18.9% mouse 4.3% doggy 3.8% door 2.3% dog
CBOW 23.0% lot 4.9% bit 3.5% bottle 3.0% tower 3.0% banana

we might go to the beach today.
LSTM 61.2% library 10.1% playground 8.8% beach 2.9% park 2.9% farm
CBOW 37.0% library 22.3% beach 17.3% camera 12.7% garden 4.0% farm

now on our way we can get some food for us for breakfast
LSTM 56.2% bread 6.9% chicken 4.2% strawberries 4.0% water 3.9% salmon
CBOW 12.6% lunch 11.6% breaky 11.4% dinner 6.9% oil 6.0% clothes

Table 2: Examples of clozes and the networks’ predictions. We present a cloze by underlining
the ground-truth word at the slot. We list the top-5 predictions in this form: (predicted normalized
probability, word). The top predictions frequently align with expected categories. For instance, a
noun follows a determiner, and a word in the food-drink category occurs if breakfast is mentioned.
By comparing the predictions of the LSTM and the CBOW, we can also see the disadvantages of
CBOW’s small context window.

candidate with the whole-sequence probability. After normalizing these scores such that they
sum to 1, we can estimate the degree to which the network anticipates a noun or verb in a

7

visualization based on input embedding vectors and cosine similarity



State-of-the-art text processing with Transformers
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Critiques of recurrent / transformer networks
(Marcus, 1998, Rethinking eliminative connectionism)

• Sequence-based neural networks 
generalize very well WITHIN a specific set 
of words / symbols

• However, they generalize very poorly to 
new words OUTSIDE the training set

• Say the network is trained on sentences 
such as,  “a rose is a rose”, “a daisy is a 
daisy”, and “a violet is a violet”

• It will NOT generalize to a new word, “a 
blicket is a [blicket]”

• People can easily learn rules that apply to 
arbitrary new variables

rose daisy blicket is a 

rose daisy blicket is a 

Sentence input… “A rose is a”

input

output
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layers of feature maps

Recurrent neural networks (RNNs)

Convolutional neural networks (ConvNets)

Two very important types of neural networks



convolving an image with a filter

image filter output

We slide the filter across the image to produce an output image
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raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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From LeCun, Bengio, & Hinton (2015).



(some filters learned from Krizhevsky et al., 2012)

Learned filters in a deep convnet

• Key assumption of “translation invariance”: If a filter (e.g., a horizontal edge detector) 
is useful in one part of the image, it is probably useful anywhere in the image



Let’s go through computing with 
convolutions to build a feature map…

raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 
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raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
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and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  
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work architectures (Fig. 1), which learn to map a fixed-size input 
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tle prior knowledge was infeasible. In particular, it was commonly 
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reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
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raw pixels could not possibly distinguish the latter two, while putting 
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require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
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large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 
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multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 
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Training data (ImageNet)
• 1.2 million images
• 1000 categories
• ~1200 images per category

AlexNet
8 layers
~60 million parameters

GoogLeNet
22 layers
~5 million parameters

Residual networks
hundreds of layers…

input output:
“daisy”

layers of feature maps

How do we train it? Backpropagation 



Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.
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Deep convnets for understanding 
psychological and neural representations

• Peterson, Abbott, and Griffiths (2016) explored convents 
for predicting similarity ratings between images.

• Lake, Zaremba, Fergus, and Gureckis (2015) showed 
that deep convnets can predict human typicality 
ratings for some classes of natural images

•  Yamins et al. (2014) showed that deep convnets can 
predict neural response in high-level visual areas



Figure 1: Samples from the set of 120 animal photographs.

Table 1: Correlations between human and deep similarities.

CaffeNet Google VGG HOG+SIFT
R2 .32 .35 .43 .008

layer in GoogleNet is a 1000-dimensional average pooling
layer. Lastly, we also extracted Histograms of Oriented
Gradients (HOG) and Scale-Invariant Feature Transform
(SIFT) representations for comparison since such features
represent the generic representations of choice for tasks in
computer vision prior to the popularity of deep learning.

Results

Table 1 gives performance (R2) for each model. Raw repre-
sentations from all three networks show medium to high cor-
relations with the human data. In general, deeper networks
with better ImageNet classification accuracy like GoogLeNet
and VGG16 did better than CaffeNet, which is considerbly
more shallow. The HOG+SIFT baseline did surprisingly
poorly, explaining very little variance as compared to the deep
representations, suggesting that while these features are use-
ful for many computer vision tasks, they differ in large part
from the representations humans employ when judging ani-
mal similarity.

Although the VGG representation explained a fair amount
of variance, further analyses revealed that the most crucial
structural aspects of the human representations were not pre-
served. The first and second panels of Figure 2 show multi-
dimensional scaling (MDS) solutions for the original human
data and the predictions from the unaltered deep representa-
tions. While the structure of the MDS solutions for the pre-
dicted judgments looks reasonable (e.g., zebras are next to
other zebras), major categorical divisions are not preserved.
Hierarchical clusterings of the actual and predicted human
judgments (the first and second panels of Figure 3) show a
similar pattern of results: human judgments exhibit several
major categorical divisions, whereas much of this structure is
lost in the predicted data.

Adapting Representations
After quantifying the discrepancy between deep and human
representations, we can attempt to bring them into closer
alignment. First, consider that the final hidden layer feature
representation in a neural network can be thought of as
the input to a final linear classification layer, such that
the problem solved by the final weight matrix is a linear
transformation (which is then often scaled by a softmax
function to covert to class probabilities). This can be thought
of as a rescaling of the final stimulus representation to solve
the categorization problem. This suggests that we should not
think about the features extracted by the network as a static
representation, but as the ingredients for a transformation
that solves a problem. Thinking in these terms, we show that
we can easily solve for a linear transformation that better
captures human similarity judgments.

Similarity Model. Any similarity matrix S can be decom-
posed into the matrix product of a feature-by-object matrix F,
its transpose, and a diagonal weight matrix W,

S = FWFT (1)

This formulation is similar to that employed by additive clus-
tering models (Shepard & Arabie, 1979), wherein F repre-
sents a binary feature identity matrix (and is similar to Tver-
sky’s (1977) model of similarity). When used with continu-
ous features, this approach is akin to factor analysis. Given
an existing feature-by-object matrix F, the diagonal of W can
be solved for using linear regression where the predictors for
each similarity si j are the product of the values of each fea-
ture for the objects i and j. When W is the identity matrix,
this reduces to the model evaluated in the previous section.

si j =
Nf

Â
i=1

wk fik f jk. (2)

The result is a convex optimization problem that can be
solved straightforwardly, allowing us to find a transformation
of the deep features with a closer correspondence to human
similarity judgments.

Predicting human similarity ratings with a neural network

Some images look more similar to us than others. Can a neural network trained for 
classification help to explain similarity judgments from humans?


example animal images (they collected 120 x 120 pairwise ratings)

Peterson, J., Abbott, J., & Griffiths, T. (2016). Adapting Deep Network 
Features to Capture Psychological Representations.



raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
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present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
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in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 
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thought that learning useful, multistage, feature extractors with lit-
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reduce the average error. 
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blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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summarizing images as high-level feature vector f

computing image-to-image similarity
sim(i, j) =

X

k

fikfjk similarity computed as dot product



Figure 2: Multidimensional scaling solutions for similarity matrices obtained from human judgements (left), non-transformed
deep representations (center), and transformed deep representations (right).

Figure 3: Hierarchical clustering of human judgements (top), deep representations (middle), and transformed representations
(bottom). Human judgments resulted in nine interpretable clusters, grouped by color and semantic category label in the top
panel. The leaves of the deep and transformed representation clusterings are color-coded relative to the human judgments.

Hierarchical clustering reveals substantial differences in representation 
(best network explains about 40% of the variance in human judgments)



Figure 2: Multidimensional scaling solutions for similarity matrices obtained from human judgements (left), non-transformed
deep representations (center), and transformed deep representations (right).

Figure 3: Hierarchical clustering of human judgements (top), deep representations (middle), and transformed representations
(bottom). Human judgments resulted in nine interpretable clusters, grouped by color and semantic category label in the top
panel. The leaves of the deep and transformed representation clusterings are color-coded relative to the human judgments.

Figure 2: Multidimensional scaling solutions for similarity matrices obtained from human judgements (left), non-transformed
deep representations (center), and transformed deep representations (right).

Figure 3: Hierarchical clustering of human judgements (top), deep representations (middle), and transformed representations
(bottom). Human judgments resulted in nine interpretable clusters, grouped by color and semantic category label in the top
panel. The leaves of the deep and transformed representation clusterings are color-coded relative to the human judgments.

When fitting weights that allow the network features to be re-scaled, the network fits much better 
(best network explains about 84% of the variance in human judgments using out-of-sample 
predictions)

sim(i, j) =
X

k

wkfikfjk wk : weight for feature k



Predicting neural recordings with a deep convnet

classifiers on the IT neural population (Fig. 2B, green bars) and
the V4 neural population (n= 128, hatched green bars). To ex-
pose a key axis of recognition difficulty, we computed perfor-
mance results at three levels of object view variation, from low
(fixed orientation, size, and position) to high (180° rotations on
all axes, 2.5× dilation, and full-frame translations; Fig. S1A). As
a behavioral reference point, we also measured human perfor-
mance on these tasks using web-based crowdsourcing methods
(black bars). A crucial observation is that at all levels of variation,
the IT population tracks human performance levels, consistent with
known results about IT’s high category decoding abilities (11, 12).
The V4 population matches IT and human performance at low
levels of variation, but performance drops quickly at higher varia-
tion levels. (This V4-to-IT performance gap remains nearly as large
even for images with no object translation variation, showing that
the performance gap is not due just to IT’s larger receptive fields.)
As a computational reference, we used the same procedure to

evaluate a variety of published ventral stream models targeting
several levels of the ventral hierarchy. To control for low-level
confounds, we tested the (trivial) pixel model, as well as SIFT,
a simple baseline computer vision model (30). We also evaluated
a V1-like Gabor-based model (25), a V2-like conjunction-of-
Gabors model (31), and HMAX (17, 28), a model targeted at
explaining higher ventral cortex and that has receptive field sizes

similar to those observed in IT. The HMAX model can be trained
in a domain-specific fashion, and to give it the best chance of
success, we performed this training using the benchmark images
themselves (see SI Text for more information on the comparison
models). Like V4, the control models that we tested approach IT
and human performance levels in the low-variation condition, but
in the high-variation condition, all of them fail to match the per-
formance of IT units by a large margin. It is not surprising that V1
and V2 models are not nearly as effective as IT, but it is instructive
to note that the task is sufficiently difficult that the HMAX model
performs less well than the V4 population sample, even when
pretrained directly on the test dataset.

Constructing a High-Performing Model. Although simple three-
layer hierarchical CNNs can be effective at low-variation object
recognition tasks, recent work has shown that they may be lim-
ited in their performance capacity for higher-variation tasks (9).
For this reason, we extended our model class to contain com-
binations (e.g., mixtures) of deeper CNN networks (Fig. S2B),
which correspond intuitively to architecturally specialized sub-
regions like those observed in the ventral visual stream (13, 32).
To address the significant computational challenge of finding es-
pecially high-performing architectures within this large space of
possible networks, we used hierarchical modular optimization
(HMO). The HMO procedure embodies a conceptually simple
hypothesis for how high-performing combinations of functionally
specialized hierarchical architectures can be efficiently discov-
ered and hierarchically combined, without needing to prespecify
the subtasks ahead of time. Algorithmically, HMO is analogous
to an adaptive boosting procedure (33) interleaved with hyper-
parameter optimization (see SI Text and Fig. S2C).
As a pretraining step, we applied the HMO selection pro-

cedure on a screening task (Fig. S1B). Like the testing set, the
screening set contained images of objects placed on randomly
selected backgrounds, but used entirely different objects in to-
tally nonoverlapping semantic categories, with none of the same
backgrounds and widely divergent lighting conditions and noise
levels. Like any two samples of naturalistic images, the screening
and testing images have high-level commonalities but quite dif-
ferent semantic content. For this reason, performance increases
that transfer between them are likely to also transfer to other
naturalistic image sets. Via this pretraining, the HMO procedure
identified a four-layer CNN with 1,250 top-level outputs (Figs.
S2B and S5), which we will refer to as the HMO model.
Using the same classifier training protocol as with the neural

data and control models, we then tested the HMO model to
determine whether its performance transferred from the screening
to the testing image set. In fact, the HMO model matched the
object recognition performance of the IT neural sample (Fig. 2B,
red bars), even when faced with large amounts of variation—
a hallmark of human object recognition ability (1). These per-
formance results are robust to the number of training examples
and number of sampled model neurons, across a variety of distinct
recognition tasks (Figs. S6 and S7).

Predicting Neural Responses in Individual IT Neural Sites. Given that
the HMO model had plausible performance characteristics, we
then measured its IT predictivity, both for the top layer and each
of the three intermediate layers (Fig. 3, red lines/bars). We found
that each successive layer predicted IT units increasingly well,
demonstrating that the trend identified in Fig. 1A continues to
hold in higher performance regimes and across a wide range of
model complexities (Fig. 1B). Qualitatively examining the spe-
cific predictions for individual images, the model layers show
that category selectivity and tolerance to more drastic image
transformations emerges gradually along the hierarchy (Fig. 3A,
top four rows). At lower layers, model units predict IT responses
only at a limited range of object poses and positions. At higher
layers, variation tolerance grows while category selectivity develops,
suggesting that as more explicit “untangled” object recognition
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Fig. 2. Neural-like models via performance optimization. (A) We (1) used
high-throughput computational methods to optimize the parameters of
a hierarchical CNN with linear-nonlinear (LN) layers for performance on a
challenging invariant object recognition task. Using new test images distinct
from those used to optimize the model, we then (2) compared output of each
of the model’s layers to IT neural responses and the output of intermediate
layers to V4 neural responses. To obtain neural data for comparison, we used
chronically implanted multielectrode arrays to record the responses of mul-
tiunit sites in IT and V4, obtaining the mean visually evoked response of each
of 296 neural sites to ∼6,000 complex images. (B) Object categorization
performance results on the test images for eight-way object categorization at
three increasing levels of object view variation (y axis units are 8-way cate-
gorization percent-correct, chance is 12.5%). IT (green bars) and V4 (hatched
green bars) neural responses, and computational models (gray and red bars)
were collected on the same image set and used to train support vector ma-
chine (SVM) linear classifiers from which population performance accuracy
was evaluated. Error bars are computed over train/test image splits. Human
subject responses on the same tasks were collected via psychophysics experi-
ments (black bars); error bars are due to intersubject variation.
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than that of IT (12). Comparing a performance-optimized model
to these data would provide a strong test both of its ability to
predict the internal structure of the ventral stream, as well as to
go beyond the direct consequences of category selectivity. We
thus measured the HMO model’s neural predictivity for the V4
neural population (Fig. 5). We found that the HMO model’s
penultimate layer is highly predictive of V4 neural responses
(51:7± 2:3% explained V4 variance), providing a significantly
better match to V4 than either the model’s top or bottom layers.
These results are strong evidence for the hypothesis that V4
corresponds to an intermediate layer in a hierarchical model
whose top layer is an effective model of IT. Of the control
models that we tested, the V2-like model predicts the most V4
variation ð34:1± 2:4%Þ. Unlike the case of IT, semantic models
explain effectively no variance in V4, consistent with V4’s lack of
category selectivity. Together these results suggest that perfor-
mance optimization not only drives top-level output model layers
to resemble IT, but also imposes biologically consistent con-
straints on the intermediate feature representations that can
support downstream performance.

Discussion
Here, we demonstrate a principled method for achieving greatly
improved predictive models of neural responses in higher
ventral cortex. Our approach operationalizes a hypothesis for
how two biological constraints together shaped visual cortex:
(i) the functional constraint of recognition performance and
(ii) the structural constraint imposed by the hierarchical net-
work architecture.

Generative Basis for Higher Visual Cortical Areas. Our modeling
approach has common ground with existing work on neural re-
sponse prediction (27), e.g., the HLN hypothesis. However, in
a departure from that line of work, we do not tune model
parameters (the nonlinearities or the model filters) separately
for each neural unit to be predicted. In fact, with the exception
of the final linear weighting, we do not tune parameters using
neural data at all. Instead, the parameters of our model were
independently selected to optimize functional performance at
the top level, and these choices create fixed bases from which any
individual IT or V4 unit can be composed. This yields a genera-
tive model that allows the sampling of an arbitrary number of

neurally consistent units. As a result, the size of the model does
not scale with the number of neural sites to be predicted—and
because the prediction results were assessed for a random
sample of IT and V4 units, they are likely to generalize with
similar levels of predictivity to any new sites that are measured.

What Features Do Good Models Share? Although the highest-per-
forming models had certain commonalities (e.g., more hierar-
chical layers), many poor models also exhibited these features,
and no one architectural parameter dominated performance
variability (Fig. S3). To gain further insight, we performed an
exploratory analysis of the parameters of the learned HMO
model, evaluating each parameter both for how sensitively it was
tuned and how diverse it was between model mixture components.
Two classes of model parameters were especially sensitive and
diverse (SI Text and Figs. S10 and S11): (i) filter statistics, in-
cluding filter mean and spread, and (ii) the exponent trading off
between max-pooling and average-pooling (16). This observation
hints at a computationally rigorous explanation for experimentally
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Fig. 4. Population-level similarity. (A) Object-level representation dissimi-
larity matrices (RDMs) visualized via rank-normalized color plots (blue = 0th
distance percentile, red = 100th percentile). (B) IT population and the HMO-
based IT model population, for image, object, and category generalizations
(SI Text). (C) Quantification of model population representation similarity to
IT. Bar height indicates the spearman correlation value of a given model’s
RDM to the RDM for the IT neural population. The IT bar represents the
Spearman-Brown corrected consistency of the IT RDM for split-halves over
the IT units, establishing a noise-limited upper bound. Error bars are taken
over cross-validated regression splits in the case of models and over image
and unit splits in the case of neural data.
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Fig. 5. V4 neural predictions. (A) Actual vs. predicted response magnitudes
for a typical V4 site. V4 sites are highly visually driven, but unlike IT sites
show very little categorical preference, manifesting in more abrupt changes
in the image-by-image plots shown here. Red highlight indicates the best-
matching model (viz., HMO layer 3). (B) Distributions of explained variances
percentage for each model, over the population of all measured V4 sites
ðn= 128Þ. (C) Comparison of V4 neural explained variance percentage for
various models. Conventions follow those used in Fig. 3.
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deep convnet
similarity matrices for images(Yamins, D. L., Hong, H., Cadieu, C. F., 

Solomon, E. A., Seibert, D., & DiCarlo, J. J. 
(2014). Performance-optimized 
hierarchical models predict neural 
responses in higher visual cortex. 
Proceedings of the National Academy of 
Sciences, 111(23), 8619-8624.)



• For people, typicality influences performance in practically 
any category-related task

• speed of categorization
• ease of production
• ease of learning
• usefulness for inductive inference

• No known model successfully predicts typicality ratings 
from raw images -- How do convnets perform?

Understanding category typicality with deep convnets

typical dog atypical dog

Lake, B. M., Zaremba, W., Fergus, R., & Gureckis, T. M. (2015). Deep Neural Networks Predict Category 
Typicality Ratings for Images.



Least typical

Most typical

Category: Banana  (𝛒=0.82)

rating key: [machine (0-100), human (1-7)]

Human typicality ratings Convnet typicality ratings
How well does this picture fit your idea or image of the category? (rated on 1-7 scale)



Human typicality ratings Convnet typicality ratings

Least typical

Most typical

Category: Bathtub (𝛒=0.68)

rating key: [machine (0-100), human (1-7)]



Human typicality ratings Convnet typicality ratings

Least typical

Most typical

Category: Envelope (𝛒=0.79)

rating key: [machine (0-100), human (1-7)]



Human typicality ratings Convnet typicality ratings

Least typical

Most typical

rating key: [machine (0-100), human (1-7)]

Category: Teapots (𝛒=0.38)



Rank Correlation
Banana 0.82
Bathtub 0.68

Coffee Mug 0.62
Envelope 0.79

Pillow 0.67
Soap dispenser 0.74

Table lamp 0.69
Teapot 0.38

Average 0.67

convolutional standard

Summary of 
typicality predictions

Prediction quality varies as a function 
of network depth.



Critiques of deep convolutional networks

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. Average distortion based on 64 examples is 0.006508.

examples represent low-probability (high-dimensional) “pockets” in the manifold, which are hard to
efficiently find by simply randomly sampling the input around a given example. Already, a variety
of recent state of the art computer vision models employ input deformations during training for
increasing the robustness and convergence speed of the models [9, 13]. These deformations are,
however, statistically inefficient, for a given example: they are highly correlated and are drawn from
the same distribution throughout the entire training of the model. We propose a scheme to make this
process adaptive in a way that exploits the model and its deficiencies in modeling the local space
around the training data.

We make the connection with hard-negative mining explicitly, as it is close in spirit: hard-negative
mining, in computer vision, consists of identifying training set examples (or portions thereof) which
are given low probabilities by the model, but which should be high probability instead, cf. [5]. The
training set distribution is then changed to emphasize such hard negatives and a further round of
model training is performed. As shall be described, the optimization problem proposed in this work
can also be used in a constructive way, similar to the hard-negative mining principle.

4.1 Formal description

We denote by f : Rm �! {1 . . . k} a classifier mapping image pixel value vectors to a discrete
label set. We also assume that f has an associated continuous loss function denoted by lossf :
Rm ⇥ {1 . . . k} �! R+. For a given x 2 Rm image and target label l 2 {1 . . . k}, we aim to solve
the following box-constrained optimization problem:

• Minimize krk2 subject to:
1. f(x+ r) = l
2. x+ r 2 [0, 1]m

The minimizer r might not be unique, but we denote one such x + r for an arbitrarily chosen
minimizer by D(x, l). Informally, x + r is the closest image to x classified as l by f . Obviously,
D(x, f(x)) = f(x), so this task is non-trivial only if f(x) 6= l. In general, the exact computation
of D(x, l) is a hard problem, so we approximate it by using a box-constrained L-BFGS. Concretely,
we find an approximation of D(x, l) by performing line-search to find the minimum c > 0 for which
the minimizer r of the following problem satisfies f(x+ r) = l.

• Minimize c|r|+ lossf (x+ r, l) subject to x+ r 2 [0, 1]m

4.2 Experimental results

Our “minimimum distortion” function D has the following intriguing properties, which we will
demonstrate with qualitative and quantitative experiments in this section:

5

(Szegedy et al.,  2013)
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Abstract

Deep neural networks (DNNs) have recently been
achieving state-of-the-art performance on a variety of
pattern-recognition tasks, most notably visual classification
problems. Given that DNNs are now able to classify objects
in images with near-human-level performance, questions
naturally arise as to what differences remain between com-
puter and human vision. A recent study [30] revealed that
changing an image (e.g. of a lion) in a way imperceptible to
humans can cause a DNN to label the image as something
else entirely (e.g. mislabeling a lion a library). Here we
show a related result: it is easy to produce images that are
completely unrecognizable to humans, but that state-of-the-
art DNNs believe to be recognizable objects with 99.99%
confidence (e.g. labeling with certainty that white noise
static is a lion). Specifically, we take convolutional neu-
ral networks trained to perform well on either the ImageNet
or MNIST datasets and then find images with evolutionary
algorithms or gradient ascent that DNNs label with high
confidence as belonging to each dataset class. It is possi-
ble to produce images totally unrecognizable to human eyes
that DNNs believe with near certainty are familiar objects,
which we call “fooling images” (more generally, fooling ex-
amples). Our results shed light on interesting differences
between human vision and current DNNs, and raise ques-
tions about the generality of DNN computer vision.

1. Introduction

Deep neural networks (DNNs) learn hierarchical lay-
ers of representation from sensory input in order to per-
form pattern recognition [2, 14]. Recently, these deep ar-
chitectures have demonstrated impressive, state-of-the-art,
and sometimes human-competitive results on many pattern
recognition tasks, especially vision classification problems
[16, 7, 31, 17]. Given the near-human ability of DNNs to
classify visual objects, questions arise as to what differences
remain between computer and human vision.

Figure 1. Evolved images that are unrecognizable to humans,
but that state-of-the-art DNNs trained on ImageNet believe with
� 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
Images are either directly (top) or indirectly (bottom) encoded.

A recent study revealed a major difference between DNN
and human vision [30]. Changing an image, originally cor-
rectly classified (e.g. as a lion), in a way imperceptible to
human eyes, can cause a DNN to label the image as some-
thing else entirely (e.g. mislabeling a lion a library).

In this paper, we show another way that DNN and human
vision differ: It is easy to produce images that are com-
pletely unrecognizable to humans (Fig. 1), but that state-of-
the-art DNNs believe to be recognizable objects with over
99% confidence (e.g. labeling with certainty that TV static

1
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Critiques of deep convolutional networks

where are the others?

generating 
new examples

generating 
new concepts

parsing

People learn from less data People learn richer concepts

“one-shot 
learning”

 Compare to deep convnets, people can learn much richer concepts from less data.


