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3 levels of analysis for information processing systems 

•  Computational level 
• What is the goal of the computation, why is it appropriate, and what 

is the logic of the strategy by which it can be carried out? 

•  Algorithmic level 
• How can this computational theory be implemented? 
• In particular, what is the representation of the input and output, and 

what is the algorithm for the transformation? 

•  Implementational level 
• How can the representation and algorithm be realized physically? 
• e.g., neural mechanisms that implement the algorithm. 

Marr’s levels of analysis

Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. MIT Press. Cambridge, Massachusetts.



Example: tic-tac-toe 

3 levels of analysis for information processing systems 

•  Computational level 
• What is the goal of the computation, why is it appropriate, and what 

is the logic of the strategy by which it can be carried out? 
• Goal: Achieve three in a row, while preventing your opponent from 

reaching three in a row. 

•  Algorithmic level 
• How can this computational theory be implemented? 
• In particular, what is the representation of the input and output, and 

what is the algorithm for the transformation? 

•  Implementational level 
• How can the representation and algorithm be realized physically? 
• e.g., neural mechanisms that implement the algorithm. 



Example: tic-tac-toe 

3 different types of analysis of an information-processing system  

•  Algorithmic level 
• How can this computational theory be implemented? 
• In particular, what is the representation of the input and output, and 

what is the algorithm for the transformation? 
• See rules below, or any other computer program

Simon’s 1973 tic-tac-toe program for playing a perfect game
1. Win: If the player has two in a row, they can place a third to get three in a row.
2. Block: If the opponent has two in a row, the player must play the third themselves to block the opponent.
3. Fork: Create an opportunity where the player has two threats to win (two non-blocked lines of 2).
4. Blocking an opponent's fork: If there is only one possible fork for the opponent, the player should block it. Otherwise, the player should block any forks in any 

way that simultaneously allows them to create two in a row. Otherwise, the player should create a two in a row to force the opponent into defending, as long as it 
doesn't result in them creating a fork. For example, if "X" has two opposite corners and "O" has the center, "O" must not play a corner in order to win. (Playing a 
corner in this scenario creates a fork for "X" to win.)

5. Center: A player marks the center. (If it is the first move of the game, playing on a corner gives the second player more opportunities to make a mistake and may 
therefore be the better choice; however, it makes no difference between perfect players.)

6. Opposite corner: If the opponent is in the corner, the player plays the opposite corner.
7. Empty corner: The player plays in a corner square.
8. Empty side: The player plays in a middle square on any of the 4 sides.

An example of one algorithm (but there are an infinite number of others)…



Example: tic-tac-toe 

• Implementational level 
• How can the representation and algorithm be realized physically? 
• e.g., neural mechanisms that implement the algorithm. 

• neurons, circuits, tinker toys, etc. are all possibilities

(Thanks Josh Tenenbaum for the example) 



Parallel distributed processing (PDP): 
Neural network models of cognition

David Rumelhart, James McClelland, and the PDP 
Research Group (1986)



What kind of computer is the mind?



Key principles of neural network models 
of cognition

• Neurally-inspired computation. Taking inspiration from the low-level  (how neurons 
compute) is key to understanding the high-level (intelligence and cognition)

• Intelligence is an emergent phenomenon. Complex behavior can emerge from a 
very large number of simple, interactive computations.

• Simulation is central. It’s hard to predict how complexity will emerge. 
Computational modeling and simulation are essential for understanding 
intelligence.



Image from OpenStax Biology

A biological neuron



A simple artificial neuron
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yw1 y = g(
X
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xiwi + b)

g : activation function

b : bias

x : input vector

w : weight vector

y : output

(
1 net � 0

0 net < 0
g(net) =

activation function:

A simple artificial neuron (or “unit”)
(“perceptron”; Rosenblatt, 1958)



x0 x1 y

0 0 0

0 1 1

1 0 1

1 1 1

Computing the logical OR function

x0
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(
1 net � 0

0 net < 0
g(net) =

logical OR function

x0w0 x1w1 b net y
0×1 0×1 -0.1 -0.1 0
0×1 1×1 -0.1 0.9 1
1×1 0×1 -0.1 0.9 1
1×1 1×1 -0.1 1.9 1

x0

y

x1

w1 = 1.0

w0 = 1.0

b = �0.1



x0 x1 y

0 0 0

0 1 0

1 0 0

1 1 1

Computing the logical AND function

x0
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y
w1

x1

b
y = g(
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xiwi + b)

(
1 net � 0

0 net < 0
g(net) =

logical AND function

x0w0 x1w1 b net y
0×0.9 0×0.9 -1.0 -1.0 0
0×0.9 1×0.9 -1.0 -0.1 0
1×0.9 0×0.9 -1.0 -0.1 0
1×0.9 1×0.9 -1.0 0.8 1

x0

y

x1

b = �1.0

w0 = 0.9

w1 = 0.9



Artificial neural networks



Example: Retrieving information from memory
A key property of memory is that it’s content addressable: 
• “I met one of your friends the other day. He has short black hair, 

glasses, he goes to school with you…”

Gender Hair color Hair length Glasses School

Susan F black long N Princeton

Sally F blonde long Y NYU

Bo Nonbinary brown short N Columbia

Pablo M black short Y NYU

…

…

What are some weaknesses of structuring memory this way for 
content addressable retrieval?

• You might have to search through each row in sequence
• You could use an indexing scheme, but it may not recover well from 

errors and noise

Memory could be structured like a database table…



Interactive activation model

name age

occupation

marital status

gang

education

hidden / instance

(McClelland, 1981)

• Each item is a unit with mutually excitatory connections to its properties
• Properties are organized into pools of mutually inhibitory units (e.g., since a 

person can’t be both in their 20’s and in their 30’s)



Interactive activation model - Jets and Sharks 
(software for Homework 1)



Network structure: connecting an instance unit 
with its properties

excitatory connection
inhibitory connection



Retrieving Ike’s properties from his name

external input



Interactive activation model - details
x0

x1

x2

w0

w2

yw1
y(t+1) = g(y(t),

X

i

x(t)
i wi + b)

(
u(t) + (max� u(t))net� decay(u(t) � rest) net > 0

u(t) + (u(t) �min)net� decay(u(t) � rest) net  0
g(u(t),net) =

x(t+1)
i = g(x(t)

i , y(t)wi + b)

• activity propagates forward to y,

• at the same time, activity propagates backward to xi

This is a recurrent neural network:

This activation function is more complex and depends on the current activation u(t):

max : max activation for a unit

min : minimum activation for a unit

rest : resting activation

decay : how fast we decay to rest

e.g.  
person 
node

properties units take continuous (rather than binary) values



“Rich get richer” dynamics

yx

b = 0.5 b = 0.4

w = �1

step 01 : x 0.56 y 0.45

step 02 : x 0.52 y 0.16

step 03 : x 0.62 y 0.00

step 04 : x 0.74 y -0.23

step 05 : x 0.84 y -0.47

step 06 : x 0.90 y -0.67

step 07 : x 0.92 y -0.78

step 08 : x 0.92 y -0.83

step 09 : x 0.92 y -0.84

step 10 : x 0.92 y -0.85

step 11 : x 0.92 y -0.85

step 12 : x 0.92 y -0.86

step 100 : x 0.92 y -0.86

…max = 1

min = �1

rest = �0.1

decay = 0.1

(
u(t) + (max� u(t))net� decay(u(t) � rest) net > 0

u(t) + (u(t) �min)net� decay(u(t) � rest) net  0
g(u(t),net) =

unit activity over time

y(t+1) = g(y(t),
X

i

x(t)
i wi + b)

If two units are competing (mutual inhibition), the unit with stronger net input 
will tend to dominate over time.

reaches stable state

Unit x wins!



Content addressability: Retrieving Ike’s name 
from only partial information

“Who do you know who is 
a Shark with a junior high 
education?”

external input

Rich get richer dynamics: 
If multiple units are 
competing, the one with 
stronger activation tends to 
dominate over time 



Graceful degradation: Retrieving Ike’s name 
from imperfect information

“Who is the Shark in their 
30s, with a junior high 
education, that is a bookie 
and divorced?

(where Ike otherwise matches, 
except he is single)



Spontaneous generalization

--1

1. THE APPEAL OF PDP

McClelland (1981) developed a simulation model that illustrates how
a system with these properties would act as a content addressable
memory. The model is obviously oversimplified, but it illustrates many
of the characteristics of the more complex models that will be con-
sidered in later chapters.

Consider the information represented in Figure 10, which lists a
number of people we might meet if we went to live in an unsavory
neighborhood, and some of their hypothetical characteristics. A subset

Name

Art

Sam
Clyde
Mi~e
Jim
Greg
John
Doug
Lance
George
Pete
Fred
Gene
Ralph

Phil
Ike
Nick
Don
Ned
Karl
Ken
Earl
Rick

Neal
Dave

The Jets and The Sharks

Gang

Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets

Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks

Age

40'
30'
20'
40'
30'
20'
20'
20'
30'
20'
20'
20'
20'
20'
30'

COL.

COL.

Edu

Sing.
Mar.
Sing.
Sing.
Sing.
Div.
Mar.
Mar.
Sing.
Mar.
Div.
Sing.
Sing.
Sing.
Sing.

Mar.
Sing.
Sing.
Mar.
Mar.
Mar.
Sing.
Mar.
Div.
Mar.
Sing.
Div.

Mar Occupation

30'
30'
30'
30'
30'
40'
20'
40'
30'
30'
30'
30'

COL.

COL.
COL.

COL.

Pusher
Burglar
Bookie
Bookie
Bookie
Burglar
Pusher
Burglar
Bookie
Burglar
Burglar
Bookie
Pusher
Pusher
Pusher

Pusher
Bookie
Pusher
Burglar
Bookie
Bookie
Burglar
Burglar
Burglar
Pusher
Bookie
Pusher

FIGURE 10. Characteristics of a number of individuals belonging to two gangs, the Jets
and the Sharks. (From "Retrieving General and Specific Knowledge From Stored
Knowledge of Specifics" by 1. L. McClelland , 1981, Proceedings of the Third Annual Confer-
ence of the Cognitive Science Society, Berkeley, CA. Copyright 1981 by J. L. McClelland.
Reprinted by permission.)

20’s 
9 of 15

J.H. 
9 of 15

Single
9 of 15

Common attributes:

“What are Jets usually like?”



Interactive activation model - Summary

Instead of entries in a database, entries and properties are implemented as 
simple neuron-like units, connected by mutually excitatory connections.


This simple model has complex behavior, and displays several important 
(and non-obvious properties!) that match well with human memory:


• Retrieval by name - Given a name, you can retrieve an entry’s properties
• Content addressability - Given a few properties, you can retrieve an 

entry’s name
• Graceful degradation - Retrieval is still possible if some properties are 

misspecified
• Spontaneous generalization - The model can make inferences about a 

typical member of a class



Review: Key principles of neural network 
models of cognition

• Neurally-inspired computation. Taking inspiration from the low-level  (how 
neurons compute) is key to understanding the high-level (intelligence 
and cognition)

• Intelligence is an emergent phenomenon. Complex behavior can emerge 
from a very large number of simple, interactive computations.

• Simulation is central. It’s hard to predict how complexity will emerge. 
Computational modeling and simulation are essential for understanding 
intelligence.



What about learning?

x0

y

x1

w1 = 1.0

w0 = 1.0

b = �0.1

• In the previous examples, the neural networks were simple enough that we could 
set the connection strengths by hand to perform the desired computations.

• This is not a feasible general strategy, since models get much more complex

• Moreover, we would like computational tools for trying to understand learning and 
cognitive development

In practice, connection strengths are almost never set by hand.



Learning by optimizing an objective function
x0

w0

w1

x1

b

ŷ

ŷ = g(
X

i

xiwi + b)

E(w, b) = (ŷ � y)2

Error/loss function:
   “squared error”

We want to minimize the squared difference between the 
predicted output and the target output (also could use 
“sum squared error”, or “mean squared error”, across 
multiple different predictions)

g(net) =
1

1 + e�net

net

g(net)

activation function:
  “sigmoid” or “logistic function”

g : activation function

b : bias

x : input vector

w : weight vector

ŷ : predicted output

y : target output



Logistic regression = single connectionist neuron
x0

w0

w1

x1

b

ŷ

ŷ = g(
X

i

xiwi + b)

g(net) =
1

1 + e�net

net

g(net)

activation function:
  “sigmoid” or “logistic function”

E(w, b) = (ŷ � y)2

Error/loss functions:
   “squared error”

Some differences:
- Logistic regression only accepts 0 or 1 discrete output, whereas 

this formulation can accept 0-1 continuous output
- Logistic regression uses a negative log-likelihood loss, so it is 

fitting a maximum likelihood estimate

   “negative log-likelihood”

g : activation function

b : bias

x : input vector

w : weight vector

ŷ : predicted output

y : target output

E(w, b) = � log[ŷy(1� ŷ)1�y]



A naive, informal algorithm: Parameter wiggling
ŷ = g(

X

i

xiwi + b) g(net) =
1

1 + e�net

x0

x1

x0 x1 y

0 0 0
0 1 1
1 0 1
1 1 1

logical OR

b = -0.601

w0 = -0.033

w1 = -0.390
x = [1, 1]
ŷ = 0.26 (predicted output)
y = 1.0 (target)
E(w,b) = 0.54 (squared error)

Computing the error:

E(w, b) = (ŷ � y)2

ŷ

What if we try wiggling each parameter?

If we increase w0 by 0.02, our error E(w,b) becomes 0.51
If we decrease w0 by 0.02, our error E(w,b) becomes 0.55

Thus, let’s increase w0 by 0.02!
Now we have improved our error 



A smarter algorithm:  
stochastic gradient descent

E

wi

wi  wi � ↵
@E

@wi
↵ : learning rate

Computing the gradient tells us which direction to go for steepest descent:

@E

@wi

Credit https://rasbt.github.io/mlxtend/



Learning via stochastic gradient descent
ŷ = g(

X

i

xiwi + b) g(net) =
1

1 + e�net

x0

x1

x0 x1 y

0 0 0
0 1 1
1 0 1
1 1 1

logical OR

b = -0.601

w0 = -0.033

w1 = -0.390
x = [1, 1]
ŷ = 0.26 (predicted output)
E(w,b) = 0.54 (error)

@E(w, b)

@wi
= 2(ŷ � y)g(net)(1� g(net))xi

= 2(0.26� 1)(.26)(1� .26)1

= �0.285

wi  wi � ↵
@E

@wi

Computing the error:

E(w, b) = (ŷ � y)2

Computing the gradient:

Update with gradient descent

↵ : learning rate

ŷ

(if we increase weight, error goes down)

g : activation function

b : bias

x : input vector

w : weight vector

ŷ : predicted output

y : target output



b = -0.601

w0 = -0.033

w1 = -0.390

b = -0.573

w0 = -0.005

w1 = -0.361

Before update After update
(all parameters increased)

w0  w0 � ↵(�0.285)
w1  w1 � ↵(�0.285)

↵ = 0.1

Update rules

Learning rate

ŷ ŷ

1.0

1.0

1.0

1.0
ŷ = 0.28ŷ = 0.26

Visualizing an update to the weights

Notice that the new 
prediction is a little 
bit better! (closer to 
the target y = 1.0)(similar update for bias)

Update



epochs (complete passes through data set)

sum 
squared 
error

b = -2.84

w0 = 6.18

w1 = 6.18

Final network

x0

x1

ŷ

Error over time

We repeatedly cycle through each pattern in the training set, making 
updates after each pattern as in the previous slide.

Learning via stochastic gradient descent

x0 x1 ŷ y

0 0 0.05 0
0 1 0.97 1
1 0 0.97 1
1 1 0.99 1

Learned function (logical OR)

Pretty good fit!

g(net) =
1

1 + e�net

net

g(net)



ŷ = g(net) = g(
X

i

xiwi + b)

Computing the gradient of the error with respect to the weight:

Definitions

For logistic function, we have this useful property:

Computing the gradient

Chain rule

@E(u)

@w
=

@E(u)

@u

@u

@w
u = f(w)where

@g(net)

@net
= g(net)(1� g(net))

E(w, b) = (ŷ � y)2

= (g(net)� y)2

@E

@wi
=

@E

@g(net)

@g(net)

@net

@net

@wi

= 2(ŷ � y)
@g(net)

@net

@net

@wi

= 2(ŷ � y)g(net)(1� g(net))
@net

@wi

= 2(ŷ � y)g(net)(1� g(net))xi



Limits of linear classifiers

x0

x1

0 1

0

1 A

B A

B
?

x0

x1

0 1

0

1 AA

B A

Linearly separable Non-linearly separable

Class A vs. B (logical OR) Class A vs. B (logical XOR)



epochs (complete passes through data set)

sum 
squared 
error

b = 0.018

w0 = -0.007

w1 = -0.008

Final network

x0

x1

ŷ

Error over time

x0 x1 ŷ y

0 0 0.50 0
0 1 0.50 1
1 0 0.50 1
1 1 0.50 0

Learned function (logical XOR)

Terrible fit!

Failing to learn XOR with a linear classifier
(“one or the other, but not both”)



epochs (complete passes through data set)

sum 
squared 
error

b1 = -3.1

w0 = -5.95

w1 = 5.93

Final network

x0

x1

ŷ

Error over time

x0 x1 ŷ y

0 0 0.05 0
0 1 0.94 1
1 0 0.96 1
1 1 0.05 0

Learned function (logical XOR)

Pretty good fit!

Learning XOR with a multi-layer classifier

h

b0 = -3.98

w2 = 12.78
w3 =7.10

w4 =-7.39



Backpropagation algorithm for computing gradient

w0

w1

x0

x1

ŷh w2

w3

w4

b1b0

@h

@w3

@E

@w0

@E

@w1

@E

@w2

Updates for these weights the same as before:

What about the other weights?
@E

@w3

@E

@w4

Multi-step strategy:

@E

@w3
=

@E

@h

@h

@w3

@E

@h

Step 1) Compute how error changes as a 
function of hidden unit activation
Step 2) Compute how hidden unit 
activation changes as a function of 
weight



Backpropagation algorithm for computing gradient
Multi-step strategy:

w0

w1

x0

x1

ŷh w2

w3

w4

b1b0

@h

@w3

@E

@h

@E

@w3
=

@E

@h

@h

@w3
=

@E

@g(neth)

@g(neth)

@w3

@E

@g(neth)
=

@E

@g(nety)

@g(nety)

@nety

@nety
@g(neth)

= 2(ŷ � y)g(nety)(1� g(nety))w2

@g(neth)

@w3
=

@g(neth)

@neth

@neth
@w3

= g(neth)(1� g(neth))x0

Step 1) Compute how error changes as a 
function of hidden unit activation (we worked 
most of this step out already for single layer net)

Step 2) Compute how hidden unit activation changes 
as a function of weight

wi  wi � ↵
@E

@wi

As before, update with gradient descent:

↵ : learning rate

Conceptually, still no different than wiggling w3  and seeing how error changes!



1 variable case

Aside: Chain rule for multivariable functions

x0

x1

ŷ
h1

h2

x0

x1

ŷ
h1

h2

multivariable case

∂E
∂x0

= ∂E
∂h1

∂h1
∂x0

∂E
∂x0

= ∑
i

∂E
∂hi

∂hi

∂x0



Gradient check PASSED
Gradient:
[-0.02436257 -0. ]

Gradient check PASSED
Gradient:
[ 0.02102458 0.02102458]

In [ ]: # neural net class definition
class Net(nn.Module):

def __init__(self):
super(Net, self).__init__()
self.i2h = nn.Linear(2, 1)
self.all2o = nn.Linear(3, 1)

def forward(self, x):
netinput_h = self.i2h(x)
h = F.sigmoid(netinput_h)
x2 = torch.cat((x,h))
netinput_y = self.all2o(x2)
out = F.sigmoid(netinput_y)
return out

def update(pat, target, net):
net.train()
optimizer.zero_grad()
output = net(pat)
loss = F.mse_loss(output, target, size_average=False)
loss.backward()
optimizer.step()

5

w0

w1

x0

x1

ŷh
w2

w3

w4

b1b0

Fortunately, modern software for training neural networks 
compute the gradients for you!
This is all the PyTorch code you need to update the weights in the XOR model.  

You now know what is going on under the hood.

(this line computes all of the gradients for you.)



Important tricks for training neural networks
• The learning rate is extremely important. Your model may not learn if 

you set the rate too high or too low. Often, you want to start the rate high and 
decrease it over the course of learning. There are variants of gradient descent such 
as “Adam” (Kingma & Ba, 2017) that are faster and automatically adjust the learning 
rate.

• Mini-batch learning. Usually we don’t update the weights after every input 
pattern. Instead, we present a set of patterns in a “batch,” add their gradients 
together, and compute a single update to the weights for the whole mini-batch. This 
is more stable and usually much faster (especially if training your network on a GPU)

• The are much better activation functions than the “sigmoid”.
sigmoid (bad) tanh (better) ReLU (best; train much faster)

• Classification requires a different loss and activation function.
softmax output layer (for c  possible classes) negative log-likelihood loss

g(neti) = eneti

∑c enetc



input output:
“daisy”

layers of feature maps

Backpropagation allows us to efficiently optimize 
a wide range of “deep neural network” models

Deep fully-connected neural network Recurrent neural network

Deep convolutional neural network



Key principles of neural network models 
of cognition

• Neurally-inspired computation. Taking inspiration from the low-level  (how neurons 
compute) is key to understanding the high-level (intelligence and cognition)

• Intelligence is an emergent phenomenon. Complex behavior can emerge from a 
very large number of simple, interactive computations.

• Simulation is central. It’s hard to predict how complexity will emerge. 
Computational modeling and simulation are essential for understanding 
intelligence.



Key principles of deep learning for 
data science and machine learning

• Neurally-inspired computation. Take (very) loose inspiration from the brain when 
designing learning algorithms (mostly in two ways: multiple layers of computation, and 
simple units for collective computation)

• Generic architectures. Model architecture should be as generic as possible. When in 
doubt, let the data decide rather than building in assumptions.

• Learning is central. Models should have a very large number of parameters, and you 
should feed your model as much data as possible.

• Learning from raw data. Learn from the raw data if possible. It is better to learn a 
representation of your data than to hand-craft a representation.

• Gradient-based learning. Gradient descent is very effective in high-dimensional 
parameter spaces (e.g., millions of weights).



Modeling semantic cognition with a multi-
layer neural net trained with backpropagation

 

310 | APRIL 2003 | VOLUME 4  www.nature.com/reviews/neuro

How do we know that Socrates is mortal? Aristotle
suggested that we reason from two propositions, in this
case: Socrates is a man; and all men are mortal. This
classical SYLLOGISM forms the basis of many theories of
how we attribute properties to individuals. First we cat-
egorize them, then we consult properties known to
apply to members of the category. Another answer —
the one that we and a growing community of researchers
would give — is that the knowledge that Socrates is
mortal is latent in the connections among the neurons
in the brain that process semantic information. In this
article, we contrast this approach with other proposals,
including a hierarchical propositional approach that
grows out of the classical tradition. We show how it can
address several findings on the acquisition of SEMANTIC

KNOWLEDGE in development and its disintegration in
dementia. It can also capture a set of phenomena that
have motivated the idea that semantic cognition rests
on innately specified, intuitive, domain-specific theo-
ries. Although challenges remain to be addressed, this
approach provides an integrated account of a wide
range of phenomena, and provides a promising basis
for addressing the remaining issues.

The hierarchical propositional approach

In the early days of computer simulation models,
researchers assumed that human semantic cognition
was based on the use of categories and propositions.
Quillian1 proposed that if the concepts were organized
into a hierarchy progressing from specific to general
categories, then propositions true of all members of a
superordinate category could be stored only once, at the
level of the superordinate category. For example, propo-
sitions true of all living things could be stored at the top
of the tree (FIG. 1). Other propositions, true of all ani-
mals but not of plants, could be stored at the next level
down, and so on, with specific facts about an individual
concept stored directly with it. To determine whether a
proposition were true of a particular concept, one could
access the concept, and see whether the proposition was
stored there. If not, one could search at successively
higher levels until the property was found, or until the
top of the hierarchy was reached.

Quillian’s proposal was appealing in part for its
economy of storage: propositions true of many items
could often be specified just once. The proposal also
allowed for immediate generalization of what is known
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Key questions in semantic cognition

• Semantic cognition: our intuitive understanding of objects and their 
properties

• How do we know what properties something has, and which of its 
properties should be generalized to other objects?

• How is the knowledge underlying these abilities acquired, and how 
is it affected by brain disorders?

• Can we understand semantic cognition as gradual optimization in a 
multi-layer neural network?
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Quillian’s hierarchical propositional model

(Quillian, 1968)

• Quillian proposed that concepts are 
represented in a hierarchy 
organized from specific to general.

• Propositions true of all members of 
specific categories are stored only 
once, at the higher-level

• Strengths of the model
• economy of storage
• powerful inferences when 

adding a new concept
• Problems for the model

• How do you handle exceptions? 
(e.g., a penguin that can’t fly)

• How do you decide which level 
to store a property?
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A neural network model of semantic cognition 

• Network is trained to answer 
queries involving an item (e.g., 
“Canary”) and a relation (e.g.,  
“CAN”), outputting all attributes 
that are true of the item/relation 
pair (e.g., “grow, move, fly, sing”)

• Unlike Quillian’s model, 
knowledge is not stored explicitly 
in a hierarchy. It is stored 
implicitly in the web of connection 
weights.

• Starting with random weights, the 
network is trained on all facts 
stored in the Quillian hierarchy on 
the previous slide.

(has “fully-connected layers”- meaning all units in 
previous layer connect to all units in next layer)

(HW 1C)



R = g(b + Wx)

Fully-connected layers as matrix multiplication

Rj = g(bj + ∑
i

Wjixi)

g(net) =
1

1 + e�net

or equivalently in vector/matrix form

Computing activation of representation unit j

Let’s assume the bias b=0Visual interpretation of 

R = sigmoid(Wx)
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A neural network model of semantic cognition 

• Network is trained to answer 
queries involving an item (e.g., 
“Canary”) and a relation (e.g.,  
“CAN”), outputting all attributes 
that are true of the item/relation 
pair (e.g., “grow, move, fly, sing”)

• Unlike Quillian’s model, 
knowledge is not stored explicitly 
in a hierarchy. It is stored 
implicitly in the web of connection 
weights.

• Starting with random weights, the 
network is trained on all facts 
stored in the Quillian hierarchy on 
the previous slide.

(has “fully-connected layers”- meaning all units in 
previous layer connect to all units in next layer)

two fully connected layers 
(all input units connect to 
all representation units). 
Some arrows not shown.
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Modeling cognitive development of semantic representation 
through learning distributed representations with backpropagation

Pattern of activity over representation layer 

Hierarchical clustering of patterns

During training, model goes through stages that 
resemble broad-to-specific differentiation in 
children’s cognitive development

• first differentiates plants vs. animals (epoch 
250)

• then birds vs. fish and trees vs. flowers 
(epoch 750)

• then ful differentiation (epoch 2500)

key term: distributed 
representation



Modeling cognitive development of semantic representation 
through training with backpropagation
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Modeling semantic dementia by adding noise to 
the neural network

• For human patients with 
semantic dementia (a form 
of progressive brain 
damage), specific categories 
and properties are lost first, 
while more general 
information is preserved.

• If random noise is added to 
the representation layer of 
the neural network, a similar 
pattern of losing the specifics 
but keeping the general 
information is observed.

Patient naming pictures of birds Drawing a camel shows loss of 
specifics

Knowledge at increasing levels of noise
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Summary: A neural network model of 
semantic cognition 

• Network is trained to answer queries 
involving an item (e.g., “Canary”) and a 
relation (e.g.,  “CAN”), outputting all 
attributes that are true of the item/
relation pair (e.g., “grow, move, fly, sing”)

• Trained with stochastic gradient 
descent, as we learned about in this 
lecture

• The model helps us to understand the 
broad-to-specific pattern of 
differentiation in children’s cognitive 
development

• It also helps us to understand the 
specific-to-general deterioration in 
semantic dementia



Key principles of neural network models 
of cognition

• Neurally-inspired computation. Taking inspiration from the low-level  (how neurons 
compute) is key to understanding the high-level (intelligence and cognition)

• Intelligence is an emergent phenomenon. Complex behavior can emerge from a 
very large number of simple, interactive computations.

• Simulation is central. It’s hard to predict how complexity will emerge. 
Computational modeling and simulation are essential for understanding 
intelligence.
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Figure 1. The animals and vehicles used as stimuli for the global categorization task 
in Experiment 1. 

Mandler & McDonough (1993)
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• On trial 9, they get a new item 
from that category

• On trial 10, they get a new item 
from a new category
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Pattern 1: Categorization 
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Pattern 2: Categorization-advanced 
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Pattern 3: No categorization 

trial 0 trial 9 trial 10 

Pattern 4: Ambiguous categorization 
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Figure 2. Idealized examples of possible patterns of examination times on the last 
trial of familiarization (Trial 8), on the same-category test exemplar (Trial 9), and on 
the contrasting-category exemplar (Trial 10). 

three tasks are shown in Figure 3; panel (A) shows examination times on the 
global animal-vehicle task, panel (B) shows times on the within-vehicle task 
(cars vs. airplanes), and panel (C) shows times on the within-animal task (dogs 
vs. fish). In addition, Table 1 shows the percentage of subjects who examined the 
contrasting category test object longer than the same-category test object. The 
percentages from all four experiments are included in this table. We present this 
table to provide an overall summary and as an estimate of how consistently a 
given age group categorizes each kind of contrast. 

A three-factor mixed-design ANOVA was conducted on the test trial examina- 
tion times. The within-subject factor was trial (8, 9, and IO) and the between- 

Potential patterns of results
evidence for categorization
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Figure 3. Mean examination times (in seconds) in Experiment 1 for the last famil- 
iarization trial (Trial 8), same-category test exemplar (Trial 9), and contrasting- 
category exemplar (Trial 10). Panel (A) shows the global animal-vehicle task, panel 
(B)  shows the car-airplane task, and panel (C) shows the dog-fish task. 
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Mandler & McDonough (1993) results

“categorization; global” (8 = 9 <  10)

“categorization; basic-level” (8 = 9 <  10)

“ambiguous; basic-level”
(8 <  10 only)



Mandler & McDonough (1993) results
Children in the task

• CAN distinguish animals from vehicles (global)
• CAN distinguish cars from airplanes (basic)
• CAN’T distinguish dogs from fish (basic) (results were actually 

ambiguous)

So, children seem to form global categories first, and these 
are “conceptual" distinctions according to Mandler

Potential problems with conclusions
• We know global contrast is conceptual because "exemplars do 

not look very much alike”, but Quinn asks: “what about planes 
have silver wheels and vertical tail fins, versus birds with texture 
wings and ruffled feathers?”

• What do we make of fact that children can learn some basic-level 
classes in these experiments?

• Heavy reliance on affirming the null hypothesis, even when there 
is some evidence of discrimination (e.g., 8 < 10)


