
Neural networks and deep learning
(part 1)

1

course website:
https://brendenlake.github.io/CCM-site/

Brenden Lake & Todd Gureckis

Computational Cognitive Modeling

3 levels of analysis for information processing systems

• Computational level
• What is the goal of the computation, why is it appropriate, and what

is the logic of the strategy by which it can be carried out?

• Algorithmic level
• How can this computational theory be implemented?
• In particular, what is the representation of the input and output, and

what is the algorithm for the transformation?

• Implementational level
• How can the representation and algorithm be realized physically?
• e.g., neural mechanisms that implement the algorithm.

Marr’s levels of analysis

Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. MIT Press. Cambridge, Massachusetts.

Example: tic-tac-toe

3 levels of analysis for information processing systems

• Computational level
• What is the goal of the computation, why is it appropriate, and what

is the logic of the strategy by which it can be carried out?
• Goal: Achieve three in a row, while preventing your opponent from

reaching three in a row.

• Algorithmic level
• How can this computational theory be implemented?
• In particular, what is the representation of the input and output, and

what is the algorithm for the transformation?

• Implementational level
• How can the representation and algorithm be realized physically?
• e.g., neural mechanisms that implement the algorithm.

Example: tic-tac-toe

3 different types of analysis of an information-processing system

• Algorithmic level
• How can this computational theory be implemented?
• In particular, what is the representation of the input and output, and

what is the algorithm for the transformation?
• See rules below, or any other computer program

Simon’s 1973 tic-tac-toe program for playing a perfect game
1. Win: If the player has two in a row, they can place a third to get three in a row.
2. Block: If the opponent has two in a row, the player must play the third themselves to block the opponent.
3. Fork: Create an opportunity where the player has two threats to win (two non-blocked lines of 2).
4. Blocking an opponent's fork: If there is only one possible fork for the opponent, the player should block it. Otherwise, the player should block any forks in any

way that simultaneously allows them to create two in a row. Otherwise, the player should create a two in a row to force the opponent into defending, as long as it
doesn't result in them creating a fork. For example, if "X" has two opposite corners and "O" has the center, "O" must not play a corner in order to win. (Playing a
corner in this scenario creates a fork for "X" to win.)

5. Center: A player marks the center. (If it is the first move of the game, playing on a corner gives the second player more opportunities to make a mistake and may
therefore be the better choice; however, it makes no difference between perfect players.)

6. Opposite corner: If the opponent is in the corner, the player plays the opposite corner.
7. Empty corner: The player plays in a corner square.
8. Empty side: The player plays in a middle square on any of the 4 sides.

An example of one algorithm (but there are an infinite number of others)…

Example: tic-tac-toe

• Implementational level
• How can the representation and algorithm be realized physically?
• e.g., neural mechanisms that implement the algorithm.

• neurons, circuits, tinker toys, etc. are all possibilities

(Thanks Josh Tenenbaum for the example)

Parallel distributed processing (PDP):
Neural network models of cognition

David Rumelhart, James McClelland, and the PDP
Research Group (1986)

What kind of computer is the mind?

Key principles of neural network models
of cognition

• Neurally-inspired computation. Taking inspiration from the low-level (how neurons
compute) is key to understanding the high-level (intelligence and cognition)

• Intelligence is an emergent phenomenon. Complex behavior can emerge from a
very large number of simple, interactive computations.

• Simulation is central. It’s hard to predict how complexity will emerge.
Computational modeling and simulation are essential for understanding
intelligence.

Image from OpenStax Biology

A biological neuron

A simple artificial neuron

x0

x1

x2

w0

w2

yw1 axon
soma

input neuron

synapse

strength

x0

x1

x2

w0

w2

yw1 y = g(
X

i

xiwi + b)

g : activation function

b : bias

x : input vector

w : weight vector

y : output

(
1 net � 0

0 net < 0
g(net) =

activation function:

A simple artificial neuron (or “unit”)
(“perceptron”; Rosenblatt, 1958)

x0 x1 y

0 0 0

0 1 1

1 0 1

1 1 1

Computing the logical OR function

x0
w0

y
w1

x1

b
y = g(

X

i

xiwi + b)

(
1 net � 0

0 net < 0
g(net) =

logical OR function

x0w0 x1w1 b net y
0×1 0×1 -0.1 -0.1 0
0×1 1×1 -0.1 0.9 1
1×1 0×1 -0.1 0.9 1
1×1 1×1 -0.1 1.9 1

x0

y

x1

w1 = 1.0

w0 = 1.0

b = �0.1

x0 x1 y

0 0 0

0 1 0

1 0 0

1 1 1

Computing the logical AND function

x0
w0

y
w1

x1

b
y = g(

X

i

xiwi + b)

(
1 net � 0

0 net < 0
g(net) =

logical AND function

x0w0 x1w1 b net y
0×0.9 0×0.9 -1.0 -1.0 0
0×0.9 1×0.9 -1.0 -0.1 0
1×0.9 0×0.9 -1.0 -0.1 0
1×0.9 1×0.9 -1.0 0.8 1

x0

y

x1

b = �1.0

w0 = 0.9

w1 = 0.9

Artificial neural networks

Example: Retrieving information from memory
A key property of memory is that it’s content addressable:
• “I met one of your friends the other day. He has short black hair,

glasses, he goes to school with you…”

Gender Hair color Hair length Glasses School

Susan F black long N Princeton

Sally F blonde long Y NYU

Bo Nonbinary brown short N Columbia

Pablo M black short Y NYU

…

…

What are some weaknesses of structuring memory this way for
content addressable retrieval?

• You might have to search through each row in sequence
• You could use an indexing scheme, but it may not recover well from

errors and noise

Memory could be structured like a database table…

Interactive activation model

name age

occupation

marital status

gang

education

hidden / instance

(McClelland, 1981)

• Each item is a unit with mutually excitatory connections to its properties
• Properties are organized into pools of mutually inhibitory units (e.g., since a

person can’t be both in their 20’s and in their 30’s)

Interactive activation model - Jets and Sharks
(software for Homework 1)

Network structure: connecting an instance unit
with its properties

excitatory connection
inhibitory connection

Retrieving Ike’s properties from his name

external input

Interactive activation model - details
x0

x1

x2

w0

w2

yw1
y(t+1) = g(y(t),

X

i

x(t)
i wi + b)

(
u(t) + (max� u(t))net� decay(u(t) � rest) net > 0

u(t) + (u(t) �min)net� decay(u(t) � rest) net  0
g(u(t),net) =

x(t+1)
i = g(x(t)

i , y(t)wi + b)

• activity propagates forward to y,

• at the same time, activity propagates backward to xi

This is a recurrent neural network:

This activation function is more complex and depends on the current activation u(t):

max : max activation for a unit

min : minimum activation for a unit

rest : resting activation

decay : how fast we decay to rest

e.g.
person
node

properties units take continuous (rather than binary) values

“Rich get richer” dynamics

yx

b = 0.5 b = 0.4

w = �1

step 01 : x 0.56 y 0.45

step 02 : x 0.52 y 0.16

step 03 : x 0.62 y 0.00

step 04 : x 0.74 y -0.23

step 05 : x 0.84 y -0.47

step 06 : x 0.90 y -0.67

step 07 : x 0.92 y -0.78

step 08 : x 0.92 y -0.83

step 09 : x 0.92 y -0.84

step 10 : x 0.92 y -0.85

step 11 : x 0.92 y -0.85

step 12 : x 0.92 y -0.86

step 100 : x 0.92 y -0.86

…max = 1

min = �1

rest = �0.1

decay = 0.1

(
u(t) + (max� u(t))net� decay(u(t) � rest) net > 0

u(t) + (u(t) �min)net� decay(u(t) � rest) net  0
g(u(t),net) =

unit activity over time

y(t+1) = g(y(t),
X

i

x(t)
i wi + b)

If two units are competing (mutual inhibition), the unit with stronger net input
will tend to dominate over time.

reaches stable state

Unit x wins!

Content addressability: Retrieving Ike’s name
from only partial information

“Who do you know who is
a Shark with a junior high
education?”

external input

Rich get richer dynamics:
If multiple units are
competing, the one with
stronger activation tends to
dominate over time

Graceful degradation: Retrieving Ike’s name
from imperfect information

“Who is the Shark in their
30s, with a junior high
education, that is a bookie
and divorced?

(where Ike otherwise matches,
except he is single)

Spontaneous generalization

--1

1. THE APPEAL OF PDP

McClelland (1981) developed a simulation model that illustrates how
a system with these properties would act as a content addressable
memory. The model is obviously oversimplified, but it illustrates many
of the characteristics of the more complex models that will be con-
sidered in later chapters.

Consider the information represented in Figure 10, which lists a
number of people we might meet if we went to live in an unsavory
neighborhood, and some of their hypothetical characteristics. A subset

Name

Art

Sam
Clyde
Mi~e
Jim
Greg
John
Doug
Lance
George
Pete
Fred
Gene
Ralph

Phil
Ike
Nick
Don
Ned
Karl
Ken
Earl
Rick

Neal
Dave

The Jets and The Sharks

Gang

Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets

Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks

Age

40'
30'
20'
40'
30'
20'
20'
20'
30'
20'
20'
20'
20'
20'
30'

COL.

COL.

Edu

Sing.
Mar.
Sing.
Sing.
Sing.
Div.
Mar.
Mar.
Sing.
Mar.
Div.
Sing.
Sing.
Sing.
Sing.

Mar.
Sing.
Sing.
Mar.
Mar.
Mar.
Sing.
Mar.
Div.
Mar.
Sing.
Div.

Mar Occupation

30'
30'
30'
30'
30'
40'
20'
40'
30'
30'
30'
30'

COL.

COL.
COL.

COL.

Pusher
Burglar
Bookie
Bookie
Bookie
Burglar
Pusher
Burglar
Bookie
Burglar
Burglar
Bookie
Pusher
Pusher
Pusher

Pusher
Bookie
Pusher
Burglar
Bookie
Bookie
Burglar
Burglar
Burglar
Pusher
Bookie
Pusher

FIGURE 10. Characteristics of a number of individuals belonging to two gangs, the Jets
and the Sharks. (From "Retrieving General and Specific Knowledge From Stored
Knowledge of Specifics" by 1. L. McClelland , 1981, Proceedings of the Third Annual Confer-
ence of the Cognitive Science Society, Berkeley, CA. Copyright 1981 by J. L. McClelland.
Reprinted by permission.)

20’s
9 of 15

J.H.
9 of 15

Single
9 of 15

Common attributes:

“What are Jets usually like?”

Interactive activation model - Summary

Instead of entries in a database, entries and properties are implemented as
simple neuron-like units, connected by mutually excitatory connections.

This simple model has complex behavior, and displays several important
(and non-obvious properties!) that match well with human memory:

• Retrieval by name - Given a name, you can retrieve an entry’s properties
• Content addressability - Given a few properties, you can retrieve an

entry’s name
• Graceful degradation - Retrieval is still possible if some properties are

misspecified
• Spontaneous generalization - The model can make inferences about a

typical member of a class

Review: Key principles of neural network
models of cognition

• Neurally-inspired computation. Taking inspiration from the low-level (how
neurons compute) is key to understanding the high-level (intelligence
and cognition)

• Intelligence is an emergent phenomenon. Complex behavior can emerge
from a very large number of simple, interactive computations.

• Simulation is central. It’s hard to predict how complexity will emerge.
Computational modeling and simulation are essential for understanding
intelligence.

What about learning?

x0

y

x1

w1 = 1.0

w0 = 1.0

b = �0.1

• In the previous examples, the neural networks were simple enough that we could
set the connection strengths by hand to perform the desired computations.

• This is not a feasible general strategy, since models get much more complex

• Moreover, we would like computational tools for trying to understand learning and
cognitive development

In practice, connection strengths are almost never set by hand.

Learning by optimizing an objective function
x0

w0

w1

x1

b

ŷ

ŷ = g(
X

i

xiwi + b)

E(w, b) = (ŷ � y)2

Error/loss function:
 “squared error”

We want to minimize the squared difference between the
predicted output and the target output (also could use
“sum squared error”, or “mean squared error”, across
multiple different predictions)

g(net) =
1

1 + e�net

net

g(net)

activation function:
 “sigmoid” or “logistic function”

g : activation function

b : bias

x : input vector

w : weight vector

ŷ : predicted output

y : target output

Logistic regression = single connectionist neuron
x0

w0

w1

x1

b

ŷ

ŷ = g(
X

i

xiwi + b)

g(net) =
1

1 + e�net

net

g(net)

activation function:
 “sigmoid” or “logistic function”

E(w, b) = (ŷ � y)2

Error/loss functions:
 “squared error”

Some differences:
- Logistic regression only accepts 0 or 1 discrete output, whereas

this formulation can accept 0-1 continuous output
- Logistic regression uses a negative log-likelihood loss, so it is

fitting a maximum likelihood estimate

 “negative log-likelihood”

g : activation function

b : bias

x : input vector

w : weight vector

ŷ : predicted output

y : target output

E(w, b) = � log[ŷy(1� ŷ)1�y]

A naive, informal algorithm: Parameter wiggling
ŷ = g(

X

i

xiwi + b) g(net) =
1

1 + e�net

x0

x1

x0 x1 y

0 0 0
0 1 1
1 0 1
1 1 1

logical OR

b = -0.601

w0 = -0.033

w1 = -0.390
x = [1, 1]
ŷ = 0.26 (predicted output)
y = 1.0 (target)
E(w,b) = 0.54 (squared error)

Computing the error:

E(w, b) = (ŷ � y)2

ŷ

What if we try wiggling each parameter?

If we increase w0 by 0.02, our error E(w,b) becomes 0.51
If we decrease w0 by 0.02, our error E(w,b) becomes 0.55

Thus, let’s increase w0 by 0.02!
Now we have improved our error

A smarter algorithm:
stochastic gradient descent

E

wi

wi wi � ↵
@E

@wi
↵ : learning rate

Computing the gradient tells us which direction to go for steepest descent:

@E

@wi

Credit https://rasbt.github.io/mlxtend/

Learning via stochastic gradient descent
ŷ = g(

X

i

xiwi + b) g(net) =
1

1 + e�net

x0

x1

x0 x1 y

0 0 0
0 1 1
1 0 1
1 1 1

logical OR

b = -0.601

w0 = -0.033

w1 = -0.390
x = [1, 1]
ŷ = 0.26 (predicted output)
E(w,b) = 0.54 (error)

@E(w, b)

@wi
= 2(ŷ � y)g(net)(1� g(net))xi

= 2(0.26� 1)(.26)(1� .26)1

= �0.285

wi wi � ↵
@E

@wi

Computing the error:

E(w, b) = (ŷ � y)2

Computing the gradient:

Update with gradient descent

↵ : learning rate

ŷ

(if we increase weight, error goes down)

g : activation function

b : bias

x : input vector

w : weight vector

ŷ : predicted output

y : target output

b = -0.601

w0 = -0.033

w1 = -0.390

b = -0.573

w0 = -0.005

w1 = -0.361

Before update After update
(all parameters increased)

w0 w0 � ↵(�0.285)
w1 w1 � ↵(�0.285)

↵ = 0.1

Update rules

Learning rate

ŷ ŷ

1.0

1.0

1.0

1.0
ŷ = 0.28ŷ = 0.26

Visualizing an update to the weights

Notice that the new
prediction is a little
bit better! (closer to
the target y = 1.0)(similar update for bias)

Update

epochs (complete passes through data set)

sum
squared
error

b = -2.84

w0 = 6.18

w1 = 6.18

Final network

x0

x1

ŷ

Error over time

We repeatedly cycle through each pattern in the training set, making
updates after each pattern as in the previous slide.

Learning via stochastic gradient descent

x0 x1 ŷ y

0 0 0.05 0
0 1 0.97 1
1 0 0.97 1
1 1 0.99 1

Learned function (logical OR)

Pretty good fit!

g(net) =
1

1 + e�net

net

g(net)

ŷ = g(net) = g(
X

i

xiwi + b)

Computing the gradient of the error with respect to the weight:

Definitions

For logistic function, we have this useful property:

Computing the gradient

Chain rule

@E(u)

@w
=

@E(u)

@u

@u

@w
u = f(w)where

@g(net)

@net
= g(net)(1� g(net))

E(w, b) = (ŷ � y)2

= (g(net)� y)2

@E

@wi
=

@E

@g(net)

@g(net)

@net

@net

@wi

= 2(ŷ � y)
@g(net)

@net

@net

@wi

= 2(ŷ � y)g(net)(1� g(net))
@net

@wi

= 2(ŷ � y)g(net)(1� g(net))xi

Limits of linear classifiers

x0

x1

0 1

0

1 A

B A

B
?

x0

x1

0 1

0

1 AA

B A

Linearly separable Non-linearly separable

Class A vs. B (logical OR) Class A vs. B (logical XOR)

epochs (complete passes through data set)

sum
squared
error

b = 0.018

w0 = -0.007

w1 = -0.008

Final network

x0

x1

ŷ

Error over time

x0 x1 ŷ y

0 0 0.50 0
0 1 0.50 1
1 0 0.50 1
1 1 0.50 0

Learned function (logical XOR)

Terrible fit!

Failing to learn XOR with a linear classifier
(“one or the other, but not both”)

epochs (complete passes through data set)

sum
squared
error

b1 = -3.1

w0 = -5.95

w1 = 5.93

Final network

x0

x1

ŷ

Error over time

x0 x1 ŷ y

0 0 0.05 0
0 1 0.94 1
1 0 0.96 1
1 1 0.05 0

Learned function (logical XOR)

Pretty good fit!

Learning XOR with a multi-layer classifier

h

b0 = -3.98

w2 = 12.78
w3 =7.10

w4 =-7.39

Backpropagation algorithm for computing gradient

w0

w1

x0

x1

ŷh w2

w3

w4

b1b0

@h

@w3

@E

@w0

@E

@w1

@E

@w2

Updates for these weights the same as before:

What about the other weights?
@E

@w3

@E

@w4

Multi-step strategy:

@E

@w3
=

@E

@h

@h

@w3

@E

@h

Step 1) Compute how error changes as a
function of hidden unit activation
Step 2) Compute how hidden unit
activation changes as a function of
weight

Backpropagation algorithm for computing gradient
Multi-step strategy:

w0

w1

x0

x1

ŷh w2

w3

w4

b1b0

@h

@w3

@E

@h

@E

@w3
=

@E

@h

@h

@w3
=

@E

@g(neth)

@g(neth)

@w3

@E

@g(neth)
=

@E

@g(nety)

@g(nety)

@nety

@nety
@g(neth)

= 2(ŷ � y)g(nety)(1� g(nety))w2

@g(neth)

@w3
=

@g(neth)

@neth

@neth
@w3

= g(neth)(1� g(neth))x0

Step 1) Compute how error changes as a
function of hidden unit activation (we worked
most of this step out already for single layer net)

Step 2) Compute how hidden unit activation changes
as a function of weight

wi wi � ↵
@E

@wi

As before, update with gradient descent:

↵ : learning rate

Conceptually, still no different than wiggling w3 and seeing how error changes!

1 variable case

Aside: Chain rule for multivariable functions

x0

x1

ŷ
h1

h2

x0

x1

ŷ
h1

h2

multivariable case

∂E
∂x0

= ∂E
∂h1

∂h1
∂x0

∂E
∂x0

= ∑
i

∂E
∂hi

∂hi

∂x0

Gradient check PASSED
Gradient:
[-0.02436257 -0.]

Gradient check PASSED
Gradient:
[0.02102458 0.02102458]

In []: # neural net class definition
class Net(nn.Module):

def __init__(self):
super(Net, self).__init__()
self.i2h = nn.Linear(2, 1)
self.all2o = nn.Linear(3, 1)

def forward(self, x):
netinput_h = self.i2h(x)
h = F.sigmoid(netinput_h)
x2 = torch.cat((x,h))
netinput_y = self.all2o(x2)
out = F.sigmoid(netinput_y)
return out

def update(pat, target, net):
net.train()
optimizer.zero_grad()
output = net(pat)
loss = F.mse_loss(output, target, size_average=False)
loss.backward()
optimizer.step()

5

w0

w1

x0

x1

ŷh
w2

w3

w4

b1b0

Fortunately, modern software for training neural networks
compute the gradients for you!
This is all the PyTorch code you need to update the weights in the XOR model.

You now know what is going on under the hood.

(this line computes all of the gradients for you.)

Important tricks for training neural networks
• The learning rate is extremely important. Your model may not learn if

you set the rate too high or too low. Often, you want to start the rate high and
decrease it over the course of learning. There are variants of gradient descent such
as “Adam” (Kingma & Ba, 2017) that are faster and automatically adjust the learning
rate.

• Mini-batch learning. Usually we don’t update the weights after every input
pattern. Instead, we present a set of patterns in a “batch,” add their gradients
together, and compute a single update to the weights for the whole mini-batch. This
is more stable and usually much faster (especially if training your network on a GPU)

• The are much better activation functions than the “sigmoid”.
sigmoid (bad) tanh (better) ReLU (best; train much faster)

• Classification requires a different loss and activation function.
softmax output layer (for c possible classes) negative log-likelihood loss

g(neti) = eneti

∑c enetc

input output:
“daisy”

layers of feature maps

Backpropagation allows us to efficiently optimize
a wide range of “deep neural network” models

Deep fully-connected neural network Recurrent neural network

Deep convolutional neural network

Key principles of neural network models
of cognition

• Neurally-inspired computation. Taking inspiration from the low-level (how neurons
compute) is key to understanding the high-level (intelligence and cognition)

• Intelligence is an emergent phenomenon. Complex behavior can emerge from a
very large number of simple, interactive computations.

• Simulation is central. It’s hard to predict how complexity will emerge.
Computational modeling and simulation are essential for understanding
intelligence.

Key principles of deep learning for
data science and machine learning

• Neurally-inspired computation. Take (very) loose inspiration from the brain when
designing learning algorithms (mostly in two ways: multiple layers of computation, and
simple units for collective computation)

• Generic architectures. Model architecture should be as generic as possible. When in
doubt, let the data decide rather than building in assumptions.

• Learning is central. Models should have a very large number of parameters, and you
should feed your model as much data as possible.

• Learning from raw data. Learn from the raw data if possible. It is better to learn a
representation of your data than to hand-craft a representation.

• Gradient-based learning. Gradient descent is very effective in high-dimensional
parameter spaces (e.g., millions of weights).

Modeling semantic cognition with a multi-
layer neural net trained with backpropagation

310 | APRIL 2003 | VOLUME 4 www.nature.com/reviews/neuro

How do we know that Socrates is mortal? Aristotle
suggested that we reason from two propositions, in this
case: Socrates is a man; and all men are mortal. This
classical SYLLOGISM forms the basis of many theories of
how we attribute properties to individuals. First we cat-
egorize them, then we consult properties known to
apply to members of the category. Another answer —
the one that we and a growing community of researchers
would give — is that the knowledge that Socrates is
mortal is latent in the connections among the neurons
in the brain that process semantic information. In this
article, we contrast this approach with other proposals,
including a hierarchical propositional approach that
grows out of the classical tradition. We show how it can
address several findings on the acquisition of SEMANTIC

KNOWLEDGE in development and its disintegration in
dementia. It can also capture a set of phenomena that
have motivated the idea that semantic cognition rests
on innately specified, intuitive, domain-specific theo-
ries. Although challenges remain to be addressed, this
approach provides an integrated account of a wide
range of phenomena, and provides a promising basis
for addressing the remaining issues.

The hierarchical propositional approach

In the early days of computer simulation models,
researchers assumed that human semantic cognition
was based on the use of categories and propositions.
Quillian1 proposed that if the concepts were organized
into a hierarchy progressing from specific to general
categories, then propositions true of all members of a
superordinate category could be stored only once, at the
level of the superordinate category. For example, propo-
sitions true of all living things could be stored at the top
of the tree (FIG. 1). Other propositions, true of all ani-
mals but not of plants, could be stored at the next level
down, and so on, with specific facts about an individual
concept stored directly with it. To determine whether a
proposition were true of a particular concept, one could
access the concept, and see whether the proposition was
stored there. If not, one could search at successively
higher levels until the property was found, or until the
top of the hierarchy was reached.

Quillian’s proposal was appealing in part for its
economy of storage: propositions true of many items
could often be specified just once. The proposal also
allowed for immediate generalization of what is known

THE PARALLEL DISTRIBUTED
PROCESSING APPROACH TO
SEMANTIC COGNITION

James L. McClelland* and Timothy T. Rogers‡

How do we know what properties something has, and which of its properties should be

generalized to other objects? How is the knowledge underlying these abilities acquired, and how

is it affected by brain disorders? Our approach to these issues is based on the idea that cognitive

processes arise from the interactions of neurons through synaptic connections. The knowledge in

such interactive and distributed processing systems is stored in the strengths of the connections

and is acquired gradually through experience. Degradation of semantic knowledge occurs through

degradation of the patterns of neural activity that probe the knowledge stored in the connections.

Simulation models based on these ideas capture semantic cognitive processes and their

development and disintegration, encompassing domain-specific patterns of generalization in young

children, and the restructuring of conceptual knowledge as a function of experience.

SYLLOGISM

A formal structure for

deduction in argument,

consisting of a major and a

minor premise from which a

conclusion logically follows.

*Center for the Neural
Basis of Cognition and
Department of Psychology,
Carnegie Mellon University,
4400 Fifth Avenue,
Pittsburgh, Pennsylvania
15213-2683, USA.
‡Medical Research Council
Cognition and Brain
Sciences Unit,
15 Chaucer Road,
Cambridge CB2 2EF, UK.
e-mails: jlm@cnbc.cmu.edu;
tim.rogers@mrc-cbu.
cam.ac.uk
doi:10.1038/nrn1076

Key questions in semantic cognition

• Semantic cognition: our intuitive understanding of objects and their
properties

• How do we know what properties something has, and which of its
properties should be generalized to other objects?

• How is the knowledge underlying these abilities acquired, and how
is it affected by brain disorders?

• Can we understand semantic cognition as gradual optimization in a
multi-layer neural network?

Fish

Living thing

Tree Flower Bird

ISA

ISA

ISA

ISA

ISAISAISAISAISAISAISAISA

Pine Oak Rose Daisy CanaryRobin Sunfish Salmon

ISA ISA

Green Tall Red Yellow Red Sing Yellow Yellow Red

Bark

Big

Roots

Petals Feathers

Fly

Wings

Swim

Gills

Scales

Skin

Move

Living

Grow

Pretty

Leaves

Leaves

IS IS IS IS IS IS IS ISCAN

CAN

IS

IS

HAS

HAS

IS

HAS HAS

CAN

HAS

CAN

HAS

HAS

HAS

CAN

HAS

HAS

Plant Animal

Quillian’s hierarchical propositional model

(Quillian, 1968)

• Quillian proposed that concepts are
represented in a hierarchy
organized from specific to general.

• Propositions true of all members of
specific categories are stored only
once, at the higher-level

• Strengths of the model
• economy of storage
• powerful inferences when

adding a new concept
• Problems for the model

• How do you handle exceptions?
(e.g., a penguin that can’t fly)

• How do you decide which level
to store a property?

Skin

Roots

Gills

Scales

Feathers

Wings

Petals

Bark

Sing

Yellow

Fly

Swim

Move

Grow

Red

Green

Tall

Living

Pretty

Salmon

Sunfish

Canary

Robin

Daisy

Rose

Oak

Pine

Flower

Bird

Flower

Tree

Animal

Living thing

Plant

Relation

Attribute

Item

ISA

IS

CAN

HAS

Salmon

Sunfish

Canary

Robin

Daisy

Rose

Oak

Pine
HiddenRepresentation

A neural network model of semantic cognition

• Network is trained to answer
queries involving an item (e.g.,
“Canary”) and a relation (e.g.,
“CAN”), outputting all attributes
that are true of the item/relation
pair (e.g., “grow, move, fly, sing”)

• Unlike Quillian’s model,
knowledge is not stored explicitly
in a hierarchy. It is stored
implicitly in the web of connection
weights.

• Starting with random weights, the
network is trained on all facts
stored in the Quillian hierarchy on
the previous slide.

(has “fully-connected layers”- meaning all units in
previous layer connect to all units in next layer)

(HW 1C)

R = g(b + Wx)

Fully-connected layers as matrix multiplication

Rj = g(bj + ∑
i

Wjixi)

g(net) =
1

1 + e�net

or equivalently in vector/matrix form

Computing activation of representation unit j

Let’s assume the bias b=0Visual interpretation of

R = sigmoid(Wx)

 1.4
 -2.0
 -0.2
 -1.2

0 0 0 0 0 1 0 0x

 0.8
 0.1
 0.5
 0.2

Wx W
 -0.1 0.8 -0.3 1.7 1.4 1.4 -2.9 -0.5
 -1.9 -0.9 0.6 0.2 -1.1 -2.0 0.8 -0.3
 -0.4 0.1 -0.5 2.1 1.0 -0.2 -1.4 1.1
 -1.8 -0.5 0.7 0.8 0.1 -1.2 -1.1 -0.3

Item/input Representation

Item

Salmon

Sunfish

Canary

Robin

Daisy

Rose

Oak

Pine

A neural network model of semantic cognition

• Network is trained to answer
queries involving an item (e.g.,
“Canary”) and a relation (e.g.,
“CAN”), outputting all attributes
that are true of the item/relation
pair (e.g., “grow, move, fly, sing”)

• Unlike Quillian’s model,
knowledge is not stored explicitly
in a hierarchy. It is stored
implicitly in the web of connection
weights.

• Starting with random weights, the
network is trained on all facts
stored in the Quillian hierarchy on
the previous slide.

(has “fully-connected layers”- meaning all units in
previous layer connect to all units in next layer)

two fully connected layers
(all input units connect to
all representation units).
Some arrows not shown.

x

W R

sigmoid(Wx)

a b
Epoch 250 Epoch 750 Epoch 2,500

Salmon

Sunfish

Canary

Robin

Daisy

Rose

Oak

Pine

a b
Epoch 500

E
u
cl

id
ea

n
 d

is
ta

n
ce

Epoch 1,500 Epoch 2,500
2.5

2.0

1.5

1.0

0.5

0.0

S
al

m
o
n

S
al

m
o
n

S
u
n
fis

h

S
u
n
fis

h

C
an

ar
y

C
an

ar
y

R
o
b

in

R
o
b

in

D
ai

sy

D
ai

sy

R
o
se

R
o
se

O
ak

O
ak

P
in

e

P
in

e

S
al

m
o
n

S
u
n
fis

h
C

an
ar

y
R

o
b

in

D
ai

sy
R

o
se

O
ak

P
in

e

Skin

Roots

Gills

Scales

Feathers

Wings

Petals

Bark

Sing

Yellow

Fly

Swim

Move

Grow

Red

Green

Tall

Living

Pretty

Salmon

Sunfish

Canary

Robin

Daisy

Rose

Oak

Pine

Flower

Bird

Flower

Tree

Animal

Living thing

Plant

Relation

Attribute

Item

ISA

IS

CAN

HAS

Salmon

Sunfish

Canary

Robin

Daisy

Rose

Oak

Pine
HiddenRepresentation

Modeling cognitive development of semantic representation
through learning distributed representations with backpropagation

Pattern of activity over representation layer

Hierarchical clustering of patterns

During training, model goes through stages that
resemble broad-to-specific differentiation in
children’s cognitive development

• first differentiates plants vs. animals (epoch
250)

• then birds vs. fish and trees vs. flowers
(epoch 750)

• then ful differentiation (epoch 2500)

key term: distributed
representation

Modeling cognitive development of semantic representation
through training with backpropagation

E
u
cl

id
ea

n
 d

is
ta

n
ce

c d

Learning epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Plants vs. Animals
Birds vs. Fish
Trees vs. Flowers
Robin vs. Canary
Pine vs. Oak

2,5002,0001,5001,0005000

A
ct

iv
at

io
n

c d

Learning epochs
2,500

0.0

0.2

0.4

0.6

0.8

1.0

Canary-CAN-Grow
Canary-CAN-Move
Canary-CAN-Fly
Canary-CAN-Sing
Pine-HAS-Leaves

2,5002,0001,5001,0005000

Broad-to-specific stages of conceptual development

Properties are also acquired in general-to-specific manner

Land animal

Robin

Canary

Oak

Maple

Rose
Sunflower

Bird

Dog

Goat

Pig

Tree

Flower

AnimalPlant

a

PCA embedding over time of representation layer

Noise

b
A

ct
iv

at
io

n

0 1 2 3 4 5 6

1.0

0.8

0.6

0.4

0.2

0.0

Pine-HAS-Leaves
Canary-CAN-Sing
Canary-CAN-Fly
Canary-CAN-Move
Canary-CAN-Grow

Item

Bird
Chicken
Duck
Swan
Eagle
Ostrich
Peacock
Penguin
Rooster

Sept. 91

+
+
+
+
Duck
Swan
Duck
Duck
Chicken

March 92

+
+
Bird
Bird
Bird
Bird
Bird
Bird
Chicken

March 93

Animal
Animal
Dog
Animal
Horse
Animal
Vehicle
Part of animal
Dog

Picture naming responses for JL c IF’s delayed copy of a camel

Modeling semantic dementia by adding noise to
the neural network

• For human patients with
semantic dementia (a form
of progressive brain
damage), specific categories
and properties are lost first,
while more general
information is preserved.

• If random noise is added to
the representation layer of
the neural network, a similar
pattern of losing the specifics
but keeping the general
information is observed.

Patient naming pictures of birds Drawing a camel shows loss of
specifics

Knowledge at increasing levels of noise

Land animal

Robin

Canary

Oak

Maple

Rose
Sunflower

Bird

Dog

Goat

Pig

Tree

Flower

AnimalPlant

a

Skin

Roots

Gills

Scales

Feathers

Wings

Petals

Bark

Sing

Yellow

Fly

Swim

Move

Grow

Red

Green

Tall

Living

Pretty

Salmon

Sunfish

Canary

Robin

Daisy

Rose

Oak

Pine

Flower

Bird

Flower

Tree

Animal

Living thing

Plant

Relation

Attribute

Item

ISA

IS

CAN

HAS

Salmon

Sunfish

Canary

Robin

Daisy

Rose

Oak

Pine
HiddenRepresentation

Summary: A neural network model of
semantic cognition

• Network is trained to answer queries
involving an item (e.g., “Canary”) and a
relation (e.g., “CAN”), outputting all
attributes that are true of the item/
relation pair (e.g., “grow, move, fly, sing”)

• Trained with stochastic gradient
descent, as we learned about in this
lecture

• The model helps us to understand the
broad-to-specific pattern of
differentiation in children’s cognitive
development

• It also helps us to understand the
specific-to-general deterioration in
semantic dementia

Key principles of neural network models
of cognition

• Neurally-inspired computation. Taking inspiration from the low-level (how neurons
compute) is key to understanding the high-level (intelligence and cognition)

• Intelligence is an emergent phenomenon. Complex behavior can emerge from a
very large number of simple, interactive computations.

• Simulation is central. It’s hard to predict how complexity will emerge.
Computational modeling and simulation are essential for understanding
intelligence.

Extra

Figure 1. The animals and vehicles used as stimuli for the global categorization task
in Experiment 1.

Mandler & McDonough (1993)

Examination trials
1. vehicle1

2. vehicle2

3. vehicle3

4. vehicle4

5. vehicle1

6. vehicle2

7. vehicle3

8. vehicle4

9. vehicle5

10. animal1

Figure
1.

The anim
als

and vehicles
used as stim

uli
for the global

categorization
task

in
Experim

ent
1.

Figure 1. The animals and vehicles used as stimuli for the global categorization task
in Experiment 1.

Figure 1. The animals and vehicles used as stimuli for the global categorization task
in Experiment 1.

Figure 1. The animals and vehicles used as stimuli for the global categorization task
in Experiment 1.

Figure
1.

The anim
als

and vehicles
used as stim

uli
for the global

categorization
task

in
Experim

ent
1.

Figure
1.

The anim
als

and vehicles
used as stim

uli
for the global

categorization
task

in
Experim

ent
1.

Figure 1. The animals and vehicles used as stimuli for the global categorization task
in Experiment 1.

Figure 1. The animals and vehicles used as stimuli for the global categorization task
in Experiment 1.

Figure
1.

The anim
als

and vehicles
used as stim

uli
for the global

categorization
task

in
Experim

ent
1.

Figure 1. The animals and vehicles used as stimuli for the global categorization task
in Experiment 1.

• On trial 9, they get a new item
from that category

• On trial 10, they get a new item
from a new category

300 J.M. Mandler and 1. McDonough

Pattern 1: Categorization

15 -

Pattern 2: Categorization-advanced

trial .9 trial 9 trial 10

Pattern 3: No categorization

trial 0 trial 9 trial 10

Pattern 4: Ambiguous categorization

15 -

B 13-

p *
.5 ll-

trial 8 trial 9 trial 10 trial 8 trial 9 trial 10

Figure 2. Idealized examples of possible patterns of examination times on the last
trial of familiarization (Trial 8), on the same-category test exemplar (Trial 9), and on
the contrasting-category exemplar (Trial 10).

three tasks are shown in Figure 3; panel (A) shows examination times on the
global animal-vehicle task, panel (B) shows times on the within-vehicle task
(cars vs. airplanes), and panel (C) shows times on the within-animal task (dogs
vs. fish). In addition, Table 1 shows the percentage of subjects who examined the
contrasting category test object longer than the same-category test object. The
percentages from all four experiments are included in this table. We present this
table to provide an overall summary and as an estimate of how consistently a
given age group categorizes each kind of contrast.

A three-factor mixed-design ANOVA was conducted on the test trial examina-
tion times. The within-subject factor was trial (8, 9, and IO) and the between-

Potential patterns of results
evidence for categorization

15-

1 3 -

,~ 11

(A) Global Animal-Vehicle Task

-It- 9-month olds
• -e- 11-month olds

i ! i

trial 8 trial 9 trial 10

15

= 13

.El 11

"3,
S

7

(B) Car-Airplane Task

9-month olds
• ~ - 11-month olds

15-

1 3 -

• ~ 11 .j
'~ 9 -!

7

I I I

trial 8 trial 9 trial 10

(C) D o g - F i s h T a s k

i u i

trial 8 trial 9 trial 10

4 - 9-month olds
• .e- 11-month olds

Figure 3. Mean examination times (in seconds) in Experiment 1 for the last famil-
iarization trial (Trial 8), same-category test exemplar (Trial 9), and contrasting-
category exemplar (Trial 10). Panel (A) shows the global animal-vehicle task, panel
(B) shows the car-airplane task, and panel (C) shows the dog-fish task.

301

15-

1 3 -

,~ 11

(A) Global Animal-Vehicle Task

-It- 9-month olds
• -e- 11-month olds

i ! i

trial 8 trial 9 trial 10

15

= 13

.El 11

"3,
S

7

(B) Car-Airplane Task

9-month olds
• ~ - 11-month olds

15-

1 3 -

• ~ 11 .j
'~ 9 -!

7

I I I

trial 8 trial 9 trial 10

(C) D o g - F i s h T a s k

i u i

trial 8 trial 9 trial 10

4 - 9-month olds
• .e- 11-month olds

Figure 3. Mean examination times (in seconds) in Experiment 1 for the last famil-
iarization trial (Trial 8), same-category test exemplar (Trial 9), and contrasting-
category exemplar (Trial 10). Panel (A) shows the global animal-vehicle task, panel
(B) shows the car-airplane task, and panel (C) shows the dog-fish task.

301

15-

1 3 -

,~ 11

(A) Global Animal-Vehicle Task

-It- 9-month olds
• -e- 11-month olds

i ! i

trial 8 trial 9 trial 10

15

= 13

.El 11

"3,
S

7

(B) Car-Airplane Task

9-month olds
• ~ - 11-month olds

15-

1 3 -

• ~ 11 .j
'~ 9 -!

7

I I I

trial 8 trial 9 trial 10

(C) D o g - F i s h T a s k

i u i

trial 8 trial 9 trial 10

4 - 9-month olds
• .e- 11-month olds

Figure 3. Mean examination times (in seconds) in Experiment 1 for the last famil-
iarization trial (Trial 8), same-category test exemplar (Trial 9), and contrasting-
category exemplar (Trial 10). Panel (A) shows the global animal-vehicle task, panel
(B) shows the car-airplane task, and panel (C) shows the dog-fish task.

301

Mandler & McDonough (1993) results

“categorization; global” (8 = 9 < 10)

“categorization; basic-level” (8 = 9 < 10)

“ambiguous; basic-level”
(8 < 10 only)

Mandler & McDonough (1993) results
Children in the task

• CAN distinguish animals from vehicles (global)
• CAN distinguish cars from airplanes (basic)
• CAN’T distinguish dogs from fish (basic) (results were actually

ambiguous)

So, children seem to form global categories first, and these
are “conceptual" distinctions according to Mandler

Potential problems with conclusions
• We know global contrast is conceptual because "exemplars do

not look very much alike”, but Quinn asks: “what about planes
have silver wheels and vertical tail fins, versus birds with texture
wings and ruffled feathers?”

• What do we make of fact that children can learn some basic-level
classes in these experiments?

• Heavy reliance on affirming the null hypothesis, even when there
is some evidence of discrimination (e.g., 8 < 10)

