
Computational Cognitive Modeling

course website:
https://brendenlake.github.io/CCM-site/

2

course website:
https://brendenlake.github.io/CCM-site/

Computational Cognitive Modeling

3

Brenden Lake
Assistant Professor, Data Science and Psychology

office hours: Mondays 4:30-5:30pm, 60
5th Ave. (CDS) Room 610

https://cims.nyu.edu/~brenden
https://lake-lab.github.io/

https://cims.nyu.edu/~brenden

Todd Gureckis
Professor, Psychology

Affiliate, Center for Data Science

4

office hours: TBD

http://gureckislab.org

5

Solim LeGris
PhD student, Psychology

office hours: TBD

6

Cindy Luo
MS student, Data Science

office hours: TBD

What is Computational Cognitive
Modeling?

• Computational Cognitive Modeling is devoted to
understanding the human mind and brain, in terms of their
underlying computational processes.

• Building computer simulations that mimic the intelligent
behavior of humans, and using these simulations to predict
and explain human behavior.

Key questions for this course

• What is intelligence?

• What kind of computer is the mind and brain?

• Can we better understand the mind/brain by building computational
cognitive models?

• Can we better understand behavioral data by building computational
cognitive models?

• Can we improve machine intelligence by incorporating insights from
human intelligence?

9

At the intersection of cognitive psychology
and data science

cognitive
psychology data science

machine
learning / AI

computational cognitive modeling

10

• Similar goals: build computational models
to explain or predict behavioral data

• Similar computational paradigms and
techniques: neural networks / deep
learning, reinforcement learning, Bayesian
modeling, probabilistic graphical models,
program induction

• Data science is about extracting
knowledge from data. The human mind is
the best (known) system for extracting
knowledge from data.

• There is ripe potential for even deeper
connections. We hope that, by bringing
together students from a variety of
backgrounds, this class can help realize
this potential.

Connections between computational cognitive
modeling and data science

cognitive
psychology data science

machine
learning / AI

computational cognitive modeling

11

This has been debated for
thousands of years. If you don’t
have an immediate answer, don’t
feel bad. Various proposals have
been thrown around from by
Plato, Buddha, Aristotle,
Zoroaster…. ancient Greek,
Indian, and Islamic philosophers,
and even several folks at NYU.

What is a mind?

12

What do minds do?

Minds encompass our
thoughts, which are mental
processes that allow us to deal
with the world. These include
not only explicit wishes,
desires, and intentions, but
also unconscious processes.

What is a mind?

13

Does MIND=BRAIN?

We know that we can’t have a
mind or thoughts without a brain,
but does that mean that minds
and brain are synonymous?

What is a mind?

14

A “slippery slope” argument can
convince us that minds are not
literally brains, but encompass
anything that is organized as
representational states that
accurately reflect aspects of the
world.

What is a mind?

15

The Brain/Mind Riddle

What is common to the
various entities (person
1, person 2, cat 1, cat 2,
robot, etc.) that look at
this scene of two
cylinders and a sphere
and agree upon what is
viewed?

Shimon Edelman’s argument

16

The question: What is common to observers viewing
the same scene and who agree upon what is viewed?

• Can’t literally be neurons. My neurons are my own, and
you can’t borrow them to solve your own problems.

• Is it the literal organization of the human nervous system?
We know (or at least believe) that cats have a very similar
visual system and view the world much like we do. Is it
the mammalian visual system? What about other
animals?

• What about artificial systems formed of computers and
video cameras that can accurately recognize the scene as
well?

• The key to minds is not their physical substrate, but
the relations that states of the system have to one
another, and to the external environment.

Minds as computers

17

• Minds aren’t human neurons or cat neurons or robot parts. They
are dynamic, continually evolving systems that relate ongoing
internal (i.e., mind) states and external (i.e., world) states

• Correspondences can be made between two systems by
describing what they do, independent of their exact physical
substrate.

• We can describe these correspondences through the
language of computation, simply because the THEORY OF
COMPUTATION offers formal insights into how ostensibly
dissimilar systems can be formally identical.

18

“Verbally expressed statements are sometimes
flawed by internal inconsistencies, logical
contradictions, theoretical weaknesses and
gaps. A running computational model, on the
other hand, can be considered as a sufficiency
proof of the internal coherence and
completeness of the ideas it is based upon.”
(Fum, Del Missier, & Stocco, 2007)

Why build computational cognitive models?
(As a psychologist)

19

Some famous psychological theories…

• Attention is like a spotlight

• A child learning about the world is like a scientist theorizing
about science

• Language influences thought

• Working memory is having 7 +/- 2 slots to store items

• Categorization happens by comparing novel instances to
past exemplars

• Categories influence perception

Each of these theories benefits from formalization
with a computational model to…

• Make predictions explicit

• Implications often defy expectations

• Aid communication between scientists

• Support cumulative progress

20

“Formal (i.e., mathematical or computational)
theories have a number of advantages that
psychologists often overlook. They force the
theorist to be explicit, so that assumptions are
publicly accessible and reliability of derivations
can be confirmed...” (Hintzman, 1990)

21

machine
learning / AI /
data science

Rich history of connections
between fields

cognitive
science /
psychology

22

Bi-directional exchanges of
computational methods and paradigms

machine
learning / AI /
data science

cognitive
science /
psychology

• Artificial neural networks

• Temporal difference learning

• Factor analysis

• Multi-dimensional scaling

• Probabilistic graphical models

• Structured Bayesian models

• Bayesian non-parametric models

• Probabilistic programming

• Recurrent neural networks

•…

23

Computational cognitive modeling can help
make more powerful machines with more

human-like learning capabilities

machine
learning / AI /
data science

cognitive
science /
psychology

24

Data science is about extracting knowledge from data. The
human mind is the best general system we know of for
extracting knowledge from data.

cognitive
psychology data science

machine
learning / AI

computational cognitive modeling

25

scene understanding

language acquisition

creativity

general purpose

 problem solving

commonsense reasoning

language understanding

concept learning

question asking

computational problems that are
easier for people than for machines

one-shot learning

curiosity and motivation

self-assessment

forming explanations

transferring to new tasks

inventing new tasks

Special opportunities for
improving machine learning

and AI through both
engineering and REVERSE

engineering.

compositional learning

26

• In practice, data scientists deal with huge quantities of behavioral data..

Can we better understand behavioral data by
building computational cognitive models?

27

popular applications with behavioral data

collaborative filtering churn modeling

adaptive content (e.g., news feed)

28

popular challenges for developing machine
learning / AI algorithms

 digit recognition (MNIST)

object recognition (ImageNet)

Figure 5. A selection of evaluation results, grouped by human rating.

4.3.7 Analysis of Embeddings

In order to represent the previous word St�1 as input to
the decoding LSTM producing St, we use word embedding
vectors [22], which have the advantage of being indepen-
dent of the size of the dictionary (contrary to a simpler one-
hot-encoding approach). Furthermore, these word embed-
dings can be jointly trained with the rest of the model. It
is remarkable to see how the learned representations have
captured some semantic from the statistics of the language.
Table 4.3.7 shows, for a few example words, the nearest
other words found in the learned embedding space.

Note how some of the relationships learned by the model
will help the vision component. Indeed, having “horse”,
“pony”, and “donkey” close to each other will encourage the
CNN to extract features that are relevant to horse-looking
animals. We hypothesize that, in the extreme case where
we see very few examples of a class (e.g., “unicorn”), its
proximity to other word embeddings (e.g., “horse”) should
provide a lot more information that would be completely
lost with more traditional bag-of-words based approaches.

5. Conclusion

We have presented NIC, an end-to-end neural network
system that can automatically view an image and generate

Word Neighbors
car van, cab, suv, vehicule, jeep
boy toddler, gentleman, daughter, son
street road, streets, highway, freeway
horse pony, donkey, pig, goat, mule
computer computers, pc, crt, chip, compute

Table 6. Nearest neighbors of a few example words

a reasonable description in plain English. NIC is based on
a convolution neural network that encodes an image into a
compact representation, followed by a recurrent neural net-
work that generates a corresponding sentence. The model is
trained to maximize the likelihood of the sentence given the
image. Experiments on several datasets show the robust-
ness of NIC in terms of qualitative results (the generated
sentences are very reasonable) and quantitative evaluations,
using either ranking metrics or BLEU, a metric used in ma-
chine translation to evaluate the quality of generated sen-
tences. It is clear from these experiments that, as the size
of the available datasets for image description increases, so
will the performance of approaches like NIC. Furthermore,
it will be interesting to see how one can use unsupervised
data, both from images alone and text alone, to improve im-
age description approaches.

caption generation (MSCOCO)

• Datasets consist of photos taken by PEOPLE, or
of digits actually drawn by PEOPLE

• Task is to predict labels and sentences produced
by PEOPLE, identifying objects and events that
are meaningful to PEOPLE. In many cases the
labels identify concepts invented by PEOPLE

29

popular challenges for developing machine
learning / AI algorithms

machine translation

language modeling and natural
language understanding

30

x0 x2 x3 x4 x5 x6 x7
0 0 0 1 0 0 0
0 1 0 0 1 0 1
1 0 0 1 0 0 0
1 1 1 1 0 1 1

y
0
0
1
1

see Griffiths (2014). Manifesto for a new
(computational) cognitive revolution.

rather than trying to predict clicks
directly from browser history…

positing a mind to explain and predict behavior

p(y|x; ✓)

31

x0 x2 x3 x4 x5 x6 x7
0 0 0 1 0 0 0
0 1 0 0 1 0 1
1 0 0 1 0 0 0
1 1 1 1 0 1 1

y
0
0
1
1

computational
cognitive modeling

positing a mind to explain and predict behavior
• This course aims to show the value of positing mental processes to explain and predict

behavior, and that mental processes are readily modeled with familiar computational tools to a
data scientist.

• Important caveat: This perspective is not yet mainstream in data science. This course is
will teach you the right tools, but it’s up to you to make the connections to practice!

see Griffiths (2014). Manifesto for a new
(computational) cognitive revolution.

32

machine
learning / AI /
data science

cognitive
science /
psychology

neuroscience

Critical connections with neuroscience also,
but this class is about modeling higher-level

cognitive rather than neural processes

**not this class!

33

• Neural networks / deep learning

• Reinforcement learning

• Bayesian modeling

• Classification/categorization

• Probabilistic graphical models

• Program induction and language of
thought models

We will spend most of our time diving into various
computational modeling paradigms

Notice synergy with contemporary machine learning / data
science!

34

Neural networks / deep learning

© 2003 Nature Publishing Group

314 | APRIL 2003 | VOLUME 4 www.nature.com/reviews/neuro

R E V I EW S

children’s experience, and the coding of experience for
the network finesses some important issues. However,
we argue that the training data capture two essential fea-
tures. First, many types of naturally occurring things
have a hierarchical similarity structure, as Quillian
noticed; and second, from exposure to examples of
objects children learn just what the similarities are and
how they can be exploited.

The Rumelhart model can show how learning can
shape not only overt responses, but also internal repre-
sentations. A special set of internal or hidden units,
labelled ‘representation’ units, was included between the
input units for the individual concepts and the large
group of hidden units that combine the concept and
relation information. When the network is initialized,
the patterns of activation on the representation units are
weak and random, owing to the random initial connec-
tion weights, but gradually these patterns become
differentiated, recapitulating the general-to-specific
progression seen in many developmental studies. The
simulation results in FIG. 4 show that patterns represent-
ing the different concepts are similar at the beginning
of training, but gradually become differentiated in
waves. One wave of differentiation separates plants from
animals. The next waves differentiate birds from fish,
and trees from flowers. Later waves differentiate the
individual objects. The process is continuous, but there
are periods of stability punctuated by relatively rapid
transitions also seen in many other developmental
models54,56,59, reminiscent of the seemingly stage-like
character of many aspects of cognitive development62.

Rumelhart focused on showing how this network
recapitulates Quillian’s hierarchical representation of
concepts, but in a different way than Quillian envi-
sioned it — in the pattern of similarities and differences
among the internal representations of the various con-
cepts, rather than in the form of explicit ‘ISA’ links. This
characteristic of the model is clearly brought out in the
hierarchical clustering analysis of the representations of
the concepts (FIG. 4b). Rumelhart also showed how the
network could generalize what it knows about familiar
concepts to new ones. He introduced the network to a
new concept,‘sparrow’, by adding a new input unit with
0-valued connections to the representation units. He
then presented the network with the input–output pair
‘sparrow–ISA–bird/animal/living thing’. Only the con-
nection weights from ‘sparrow’ to the representation
units were allowed to change. As a result, ‘sparrow’ pro-
duced a pattern of activation similar to that already used
for the robin and the canary. Rumelhart then tested the
responses of the network to other questions about the
sparrow, by probing with the inputs ‘sparrow–CAN’,
‘sparrow–HAS’ and ‘sparrow–IS’. In each case the net-
work activated output units corresponding to shared
characteristics of the other birds in the training set
(CAN grow, CAN move, CAN fly; HAS skin, HAS
wings, HAS feathers), and produced very low activation
of output units corresponding to attributes not charac-
teristic of any animals. Attributes varying between the
birds and attributes possessed by other animals received
intermediate degrees of activation. This behaviour is a

compared to the correct output (activation of ‘grow’,
‘move’,‘fly’ and ‘sing’ should be 1, and activation of other
output units should be 0). The connection weights are
then adjusted to reduce the difference between the tar-
get and the obtained activations. The set of training
experiences includes one for each concept–relation pair,
with the target specifying all valid completions consis-
tent with FIG. 1.

The network is trained through many epochs or suc-
cessive sweeps through the set of training examples.
Only small adjustments to the connection weights are
made after each example is processed, so that learning is
very gradual — akin to the process we believe occurs in
development, as children experience items and their
properties through day-to-day experience. Of course,
the tiny training set used is not fully representative of

Skin

Roots

Gills

Scales

Feathers

Wings

Petals

Bark

Sing

Yellow

Fly

Swim

Move

Grow

Red

Green

Tall

Living

Pretty

Salmon

Sunfish

Canary

Robin

Daisy

Rose

Oak

Pine

Flower

Bird

Flower

Tree

Animal

Living thing

Plant

Relation

Attribute

Item

ISA

IS

CAN

HAS

Salmon

Sunfish

Canary

Robin

Daisy

Rose

Oak

Pine
HiddenRepresentation

Figure 3 | Our depiction of the connectionist network used by Rumelhart60,61. The network
is used to learn propositions about the concepts shown in FIG. 1. The entire set of units used in
the network is shown. Inputs are presented on the left, and activation propagates from left to
right. Where connections are indicated, every unit in the pool on the left (sending) side projects to
every unit on the right (receiving) side. An input consists of a concept–relation pair; the input
‘canary CAN’ is represented by darkening the active input units. The network is trained to turn on
all those output units that represent correct completions of the input pattern. In this case, the
correct units to activate are ‘grow’, ‘move’, ‘fly’ and ‘sing’. Subsequent analysis focuses on the
concept representation units, the group of eight units to the right of the concept input units.
Adapted, with permission, from REF. 61  (1993) MIT Press.

Retrieving information
from memory

Learning about

objects and their properties;

modeling cognitive development

Training multi-layer deep
neural networks

35

raw pixels could not possibly distinguish the latter two, while putting
the former two in the same category. This is why shallow classifiers
require a good feature extractor that solves the selectivity–invariance
dilemma — one that produces representations that are selective to
the aspects of the image that are important for discrimination, but
that are invariant to irrelevant aspects such as the pose of the animal.
To make classifiers more powerful, one can use generic non-linear
features, as with kernel methods20, but generic features such as those
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can
all be avoided if good features can be learned automatically using a
general-purpose learning procedure. This is the key advantage of
deep learning.

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which
compute non-linear input–output mappings. Each module in the
stack transforms its input to increase both the selectivity and the
invariance of the representation. With multiple non-linear layers, say
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details
— distinguishing Samoyeds from white wolves — and insensitive to
large irrelevant variations such as the background, pose, lighting and
surrounding objects.

Backpropagation to train multilayer architectures
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable
multilayer networks, but despite its simplicity, the solution was not
widely understood until the mid 1980s. As it turns out, multilayer
architectures can be trained by simple stochastic gradient descent.
As long as the modules are relatively smooth functions of their inputs
and of their internal weights, one can compute gradients using the
backpropagation procedure. The idea that this could be done, and
that it worked, was discovered independently by several different
groups during the 1970s and 1980s24–27.

The backpropagation procedure to compute the gradient of an
objective function with respect to the weights of a multilayer stack
of modules is nothing more than a practical application of the chain

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be
computed by working backwards from the gradient with respect to
the output of that module (or the input of the subsequent module)
(Fig. 1). The backpropagation equation can be applied repeatedly to
propagate gradients through all modules, starting from the output
at the top (where the network produces its prediction) all the way to
the bottom (where the external input is fed). Once these gradients
have been computed, it is straightforward to compute the gradients
with respect to the weights of each module.

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the
next, a set of units compute a weighted sum of their inputs from the
previous layer and pass the result through a non-linear function. At
present, the most popular non-linear function is the rectified linear
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0).
In past decades, neural nets used smoother non-linearities, such as
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster
in networks with many layers, allowing training of a deep supervised
network without unsupervised pre-training28. Units that are not in
the input or output layer are conventionally called hidden units. The
hidden layers can be seen as distorting the input in a non-linear way
so that categories become linearly separable by the last layer (Fig. 1).

In the late 1990s, neural nets and backpropagation were largely
forsaken by the machine-learning community and ignored by the
computer-vision and speech-recognition communities. It was widely
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly
thought that simple gradient descent would get trapped in poor local
minima — weight configurations for which no small change would
reduce the average error.

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always
reaches solutions of very similar quality. Recent theoretical and
empirical results strongly suggest that local minima are not a serious
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and
the surface curves up in most dimensions and curves down in the

Figure 2 | Inside a convolutional network. The outputs (not the filters)
of each layer (horizontally) of a typical convolutional network architecture
applied to the image of a Samoyed dog (bottom left; and RGB (red, green,
blue) inputs, bottom right). Each rectangular image is a feature map

corresponding to the output for one of the learned features, detected at each
of the image positions. Information flows bottom up, with lower-level features
acting as oriented edge detectors, and a score is computed for each image class
in output. ReLU, rectified linear unit.

Red Green Blue

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4)

Convolutions and ReLU

Max pooling

Max pooling

Convolutions and ReLU

Convolutions and ReLU

4 3 8 | N A T U R E | V O L 5 2 1 | 2 8 M A Y 2 0 1 5

REVIEWINSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

convolutional neural networks

than that of IT (12). Comparing a performance-optimized model
to these data would provide a strong test both of its ability to
predict the internal structure of the ventral stream, as well as to
go beyond the direct consequences of category selectivity. We
thus measured the HMO model’s neural predictivity for the V4
neural population (Fig. 5). We found that the HMO model’s
penultimate layer is highly predictive of V4 neural responses
(51:7± 2:3% explained V4 variance), providing a significantly
better match to V4 than either the model’s top or bottom layers.
These results are strong evidence for the hypothesis that V4
corresponds to an intermediate layer in a hierarchical model
whose top layer is an effective model of IT. Of the control
models that we tested, the V2-like model predicts the most V4
variation ð34:1± 2:4%Þ. Unlike the case of IT, semantic models
explain effectively no variance in V4, consistent with V4’s lack of
category selectivity. Together these results suggest that perfor-
mance optimization not only drives top-level output model layers
to resemble IT, but also imposes biologically consistent con-
straints on the intermediate feature representations that can
support downstream performance.

Discussion
Here, we demonstrate a principled method for achieving greatly
improved predictive models of neural responses in higher
ventral cortex. Our approach operationalizes a hypothesis for
how two biological constraints together shaped visual cortex:
(i) the functional constraint of recognition performance and
(ii) the structural constraint imposed by the hierarchical net-
work architecture.

Generative Basis for Higher Visual Cortical Areas. Our modeling
approach has common ground with existing work on neural re-
sponse prediction (27), e.g., the HLN hypothesis. However, in
a departure from that line of work, we do not tune model
parameters (the nonlinearities or the model filters) separately
for each neural unit to be predicted. In fact, with the exception
of the final linear weighting, we do not tune parameters using
neural data at all. Instead, the parameters of our model were
independently selected to optimize functional performance at
the top level, and these choices create fixed bases from which any
individual IT or V4 unit can be composed. This yields a genera-
tive model that allows the sampling of an arbitrary number of

neurally consistent units. As a result, the size of the model does
not scale with the number of neural sites to be predicted—and
because the prediction results were assessed for a random
sample of IT and V4 units, they are likely to generalize with
similar levels of predictivity to any new sites that are measured.

What Features Do Good Models Share? Although the highest-per-
forming models had certain commonalities (e.g., more hierar-
chical layers), many poor models also exhibited these features,
and no one architectural parameter dominated performance
variability (Fig. S3). To gain further insight, we performed an
exploratory analysis of the parameters of the learned HMO
model, evaluating each parameter both for how sensitively it was
tuned and how diverse it was between model mixture components.
Two classes of model parameters were especially sensitive and
diverse (SI Text and Figs. S10 and S11): (i) filter statistics, in-
cluding filter mean and spread, and (ii) the exponent trading off
between max-pooling and average-pooling (16). This observation
hints at a computationally rigorous explanation for experimentally

IT neuronal unitsV4 neuronal units HMO model
Animals (8)
Boats (8)
Cars (8)
Chairs (8)
Faces (8)
Fruits (8)
Planes (8)
Tables (8)

Im
ag

e
 g

en
er

al
iz

at
io

n
O

bj
ec

t
ge

ne
ra

liz
at

io
n

Ca
te

go
ry

ge

ne
ra

liz
at

io
n

Animals (4)
Boats (4)
Cars (4)
Chairs (4)
Faces (4)
Fruits (4)
Planes (4)
Tables (4)

Faces (8)

Fruits (8)

Planes (8)

Tables (8)

C

A
HMAX ModelV1-like Model

Image
generalization

Object
generalization

Category
generalization

0.9

0.6

0.3

0.0

Po
pu

la
tio

n
si

m
ila

rit
ty

 to
 IT

P
ix

el
s

V
1 -

lik
e

S
IF

T

H
M

A
X

V
2-

lik
e

H
M

O
V

4
si

te
s

IT
 s

ite
s

sp
lit

-h
al

f

B

Fig. 4. Population-level similarity. (A) Object-level representation dissimi-
larity matrices (RDMs) visualized via rank-normalized color plots (blue = 0th
distance percentile, red = 100th percentile). (B) IT population and the HMO-
based IT model population, for image, object, and category generalizations
(SI Text). (C) Quantification of model population representation similarity to
IT. Bar height indicates the spearman correlation value of a given model’s
RDM to the RDM for the IT neural population. The IT bar represents the
Spearman-Brown corrected consistency of the IT RDM for split-halves over
the IT units, establishing a noise-limited upper bound. Error bars are taken
over cross-validated regression splits in the case of models and over image
and unit splits in the case of neural data.

V4
 E

xp
la

in
ed

 V
ar

ia
nc

e
(%

)
0

10

20

50

HMO
Layer 1
(8%)

Category
Ideal

Observer
(8%)

HMO
Layer 2
(48%)

HMO
Layer 3
(52%)

HMO
Top Layer

(33%)

30

40

V2-Like
Model
(34%)

HMAX
Model
(24%)

V1-Like
Model
(11%)

Ideal
Observers

Control
Models

HMO
LayersB

A C

V4
Site
60

C
at

eg
or

y
Al

l V
ar

ia
bl

es

Pi
xe

ls
V1

-L
ik

e

PL
O

S0
9

HM
AX V2

-L
ik

e

H
M

O
 L

1
HM

O
 L

2
HM

O
 L

3
HM

O
To

p

SI
FT

Single Site Explained Variance (%)
25 50 75 1000

R
es

po
ns

e
M

ag
ni

fu
de

Bi
nn

ed
 S

ite
 C

ou
nt

s

(n=128)

Fig. 5. V4 neural predictions. (A) Actual vs. predicted response magnitudes
for a typical V4 site. V4 sites are highly visually driven, but unlike IT sites
show very little categorical preference, manifesting in more abrupt changes
in the image-by-image plots shown here. Red highlight indicates the best-
matching model (viz., HMO layer 3). (B) Distributions of explained variances
percentage for each model, over the population of all measured V4 sites
ðn= 128Þ. (C) Comparison of V4 neural explained variance percentage for
various models. Conventions follow those used in Fig. 3.

Yamins et al. PNAS | June 10, 2014 | vol. 111 | no. 23 | 8623

N
EU

RO
SC

IE
N
CE

SE
E
CO

M
M
EN

TA
RY

Recurrent neural networks

(Training RNNs with backpropagation was first done for

computational cognitive modeling!)

applications in cognitive
science (and a bit of

neuroscience)

Neural networks / deep learning

36

Reinforcement learning

37

Bayesian modeling

P (h|D) =
P (h)P (D|h)P

hi
P (hi)P (D|hi)

You meet a man who is 75 years old. How long
will he live?

A movie has grossed 75 million dollars at the box
office, but you don’t know how long it’s been
running. How much will it gross total?

best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2.People’s predictions for various everyday phenomena.The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximatelyErlang.The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).

Volume 17—Number 9 769

Thomas L. Griffiths and Joshua B. Tenenbaum

best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2.People’s predictions for various everyday phenomena.The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximatelyErlang.The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).

Volume 17—Number 9 769

Thomas L. Griffiths and Joshua B. Tenenbaum

h : hypothesis D : data

T S
noise

P(T|S)

The speaker makes an intended sound production T.
Noise in the air perturbs T into S.
The listener calculates the posterior P(T|S)

P (T |S) =
P (S|T)P (T)

P (S)

noise
speech sound from

speakerperception

Bayesian model of speech perception
speaker listener

Cows use biotin for hemoglobin synthesis

Seals use biotin for hemoglobin synthesis

—Therefore—

All mammals use biotin for hemoglobin synthesis

How strong is this inductive argument?

Speech perception under noise

Property induction

Predicting the future

38

Inference in Bayesian models

relative

probability

P (ttotal|t = 50)

Lifespan Movie gross

samples

chain

over

time

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

29.4: The Metropolis–Hastings method 365

that the probability density of the x-coordinates of the accepted points must
be proportional to P ∗(x), so the samples must be independent samples from
P (x).

Rejection sampling will work best if Q is a good approximation to P . If Q
is very different from P then, for cQ to exceed P everywhere, c will necessarily
have to be large and the frequency of rejection will be large.

-4 -3 -2 -1 0 1 2 3 4

P(x)
cQ(x)

Figure 29.9. A Gaussian P (x) and
a slightly broader Gaussian Q(x)
scaled up by a factor c such that
c Q(x) ≥ P (x).

Rejection sampling in many dimensions

In a high-dimensional problem it is very likely that the requirement that cQ∗

be an upper bound for P ∗ will force c to be so huge that acceptances will be
very rare indeed. Finding such a value of c may be difficult too, since in many
problems we know neither where the modes of P ∗ are located nor how high
they are.

As a case study, consider a pair of N -dimensional Gaussian distributions
with mean zero (figure 29.9). Imagine generating samples from one with stan-
dard deviation σQ and using rejection sampling to obtain samples from the
other whose standard deviation is σP . Let us assume that these two standard
deviations are close in value – say, σQ is 1% larger than σP . [σQ must be larger
than σP because if this is not the case, there is no c such that cQ exceeds P
for all x.] So, what value of c is required if the dimensionality is N = 1000?
The density of Q(x) at the origin is 1/(2πσ2

Q)N/2, so for cQ to exceed P we
need to set

c =
(2πσ2

Q)N/2

(2πσ2
P)N/2

= exp
(

N ln
σQ

σP

)
. (29.30)

With N = 1000 and σQ

σP
= 1.01, we find c = exp(10) ! 20,000. What will the

acceptance rate be for this value of c? The answer is immediate: since the
acceptance rate is the ratio of the volume under the curve P (x) to the volume
under cQ(x), the fact that P and Q are both normalized here implies that
the acceptance rate will be 1/c, for example, 1/20,000. In general, c grows
exponentially with the dimensionality N , so the acceptance rate is expected
to be exponentially small in N .

Rejection sampling, therefore, whilst a useful method for one-dimensional
problems, is not expected to be a practical technique for generating samples
from high-dimensional distributions P (x).

29.4 The Metropolis–Hastings method

Importance sampling and rejection sampling work well only if the proposal
density Q(x) is similar to P (x). In large and complex problems it is difficult
to create a single density Q(x) that has this property.

xx(1)

Q(x; x(1))

P ∗(x)

xx(2)

Q(x; x(2))

P ∗(x)

Figure 29.10. Metropolis–Hastings
method in one dimension. The
proposal distribution Q(x′; x) is
here shown as having a shape that
changes as x changes, though this
is not typical of the proposal
densities used in practice.

The Metropolis–Hastings algorithm instead makes use of a proposal den-
sity Q which depends on the current state x(t). The density Q(x′;x(t)) might
be a simple distribution such as a Gaussian centred on the current x(t). The
proposal density Q(x′;x) can be any fixed density from which we can draw
samples. In contrast to importance sampling and rejection sampling, it is not
necessary that Q(x′;x(t)) look at all similar to P (x) in order for the algorithm
to be practically useful. An example of a proposal density is shown in fig-
ure 29.10; this figure shows the density Q(x′;x(t)) for two different states x(1)

and x(2).
As before, we assume that we can evaluate P ∗(x) for any x. A tentative

new state x′ is generated from the proposal density Q(x′;x(t)). To decide

Q(h0;h(t))

P (h|D)

h(t) h

E[�(h)|D] ⇡ 1

T

X

t

�(h(t))

• Exact inference

• Monte Carlo methods

• Importance sampling

• Markov Chain Monte Carlo

39

Probabilistic graphical models

extent to which graphs with many clusters are penalized, and is
fixed for all of our experiments. The normalizing constant for
P(S!F) depends on the number of structures compatible with a
given form, and ensures that simpler forms are preferred when-

ever possible. For example, any chain Sc is a special case of a grid,
but P(Sc!F ! chain) " P(Sc!F ! grid) because there are more
possible grids than chains given a fixed number of entities. It
follows that P(Sc, F ! chain!D) " P(Sc, F ! grid!D) for any

New
York

Bombay

Buenos Aires

Moscow

Sao Paulo

Mexico City

Jakarta

Tokyo

Lima

London

Bangkok

SantiagoLos Angeles

Berlin

Madrid

Chicago
VancouverToronto

Sydney

Perth

Anchorage

Cape Town

Nairobi

Vladivostok

Dakar

Kinshasa

Bogota

Honolulu

Wellington

Cairo
Shanghai

Teheran

Irkutsk

Manila

Budapest

GinsburgBrennan
Scalia

Thomas

O'Connor

Kennedy

White
Souter

BreyerMarshall
Blackmun Stevens Rehnquist

B

C

Elephant
Rhino Horse

Cow

CamelGiraffe

Chimp
Gorilla

Mouse
Squirrel Tiger

Lion
Cat

Dog
Wolf

Seal
Dolphin

Robin
Eagle

Chicken

Salmon Trout

Bee

Iguana

Alligator

Butterfly

AntFinch

Penguin

Cockroach

Whale

Ostrich

Deer

E

A

D

Fig. 3. Structures learned from biological features (A), Supreme Court votes (B), judgments of the similarity between pure color wavelengths (C), Euclidean
distances between faces represented as pixel vectors (D), and distances between world cities (E). For A–C, the edge lengths represent maximum a posteriori edge
lengths under our generative model.

4

3

5

2
1

Wolfowitz
Rice
Powell
Ashcroft
Cheney
Card

1

Bush

Myers
Feith

Armitage

Libby

DC

Whitman

Rumsfeld

1
11 321

2
3

A

P CAB R WL CA
B
R
M
W
R
P

WFMR

6

C
L
CW

A

F

A B

Fig. 4. Structures learned from relational data (Upper) and the raw data organized according to these structures (Lower). (A) Dominance relationships among a troop
of sooty mangabeys. The sorted data matrix has most of its entries above the diagonal, indicating that animals tend to dominate only the animals below them in the
order. (B) A hierarchy representing interactions between members of the Bush administration. (C) Social cliques representing friendship relations between prisoners.
The sorted matrix has most of its entries along the diagonal, indicating that prisoners tend only to be friends with prisoners in the same cluster. (D) The Kula ring
representing armshell trade between New Guinea communities. The relative positions of the communities correspond approximately to their geographic locations.

Kemp and Tenenbaum PNAS ! August 5, 2008 ! vol. 105 ! no. 31 ! 10689

CO
M

PU
TE

R
SC

IE
N

CE
S

PS
YC

HO
LO

G
Y

SE
E

CO
M

M
EN

TA
RY

extent to which graphs with many clusters are penalized, and is
fixed for all of our experiments. The normalizing constant for
P(S!F) depends on the number of structures compatible with a
given form, and ensures that simpler forms are preferred when-

ever possible. For example, any chain Sc is a special case of a grid,
but P(Sc!F ! chain) " P(Sc!F ! grid) because there are more
possible grids than chains given a fixed number of entities. It
follows that P(Sc, F ! chain!D) " P(Sc, F ! grid!D) for any

New
York

Bombay

Buenos Aires

Moscow

Sao Paulo

Mexico City

Jakarta

Tokyo

Lima

London

Bangkok

SantiagoLos Angeles

Berlin

Madrid

Chicago
VancouverToronto

Sydney

Perth

Anchorage

Cape Town

Nairobi

Vladivostok

Dakar

Kinshasa

Bogota

Honolulu

Wellington

Cairo
Shanghai

Teheran

Irkutsk

Manila

Budapest

GinsburgBrennan
Scalia

Thomas

O'Connor

Kennedy

White
Souter

BreyerMarshall
Blackmun Stevens Rehnquist

B

C

Elephant
Rhino Horse

Cow

CamelGiraffe

Chimp
Gorilla

Mouse
Squirrel Tiger

Lion
Cat

Dog
Wolf

Seal
Dolphin

Robin
Eagle

Chicken

Salmon Trout

Bee

Iguana

Alligator

Butterfly

AntFinch

Penguin

Cockroach

Whale

Ostrich

Deer

E

A

D

Fig. 3. Structures learned from biological features (A), Supreme Court votes (B), judgments of the similarity between pure color wavelengths (C), Euclidean
distances between faces represented as pixel vectors (D), and distances between world cities (E). For A–C, the edge lengths represent maximum a posteriori edge
lengths under our generative model.

4

3

5

2
1

Wolfowitz
Rice
Powell
Ashcroft
Cheney
Card

1

Bush

Myers
Feith

Armitage

Libby

DC

Whitman

Rumsfeld

1
11 321

2
3

A

P CAB R WL CA
B
R
M
W
R
P

WFMR

6

C
L
CW

A

F

A B

Fig. 4. Structures learned from relational data (Upper) and the raw data organized according to these structures (Lower). (A) Dominance relationships among a troop
of sooty mangabeys. The sorted data matrix has most of its entries above the diagonal, indicating that animals tend to dominate only the animals below them in the
order. (B) A hierarchy representing interactions between members of the Bush administration. (C) Social cliques representing friendship relations between prisoners.
The sorted matrix has most of its entries along the diagonal, indicating that prisoners tend only to be friends with prisoners in the same cluster. (D) The Kula ring
representing armshell trade between New Guinea communities. The relative positions of the communities correspond approximately to their geographic locations.

Kemp and Tenenbaum PNAS ! August 5, 2008 ! vol. 105 ! no. 31 ! 10689

CO
M

PU
TE

R
SC

IE
N

CE
S

PS
YC

HO
LO

G
Y

SE
E

CO
M

M
EN

TA
RY

an
im

al
s

features

cases

ju
dg

es

Neural network representation

A B

D

wA wB

In the control, inference condition, children said that Object A
was a blicket only 6% of the time and always said that Object B
was a blicket (100% of the time), significantly more often. Per-
formance on the backward blocking condition was quite different:
Children categorized Object A as a blicket 99% of the time.
However, the critical question was how children would categorize
Object B. Overall, children categorized Object B as a blicket only
31% of the time. In fact, even the youngest children categorized
Object B as a blicket significantly less often in the backward
blocking condition (50% of the time) than they did in the one-
cause condition (100% of the time). In summary, children as
young as 3 years old made different judgments about the causal
power of Object B, depending on what happened with Object A.
They used the information from trials that just involved A to make
their judgment about B.
Children responded in a similar way to the “make it go” inter-

vention question. This question was analogous to the “make it
stop” question in Gopnik et al. (2001). Children had never seen the
experimenter place the B block on the detector by itself in either
condition. Nevertheless, in the inference condition they placed this
block on the detector by itself 84% of the time. In the backward
blocking condition they did so 19% of the time, significantly less
often, and significantly less often than they placed the A block on
the detector by itself (64% of the time).
What would the various learning models predict about this

problem? In the pretest, children are shown that some blocks are
blickets (about half the blocks, in fact). Children then have the
following data in the following sequence.
Inference

1. A absent, B absent, E absent

2. A present, B present, E present

3. A present, B present, E present

4. A present, B absent, E absent

Backward blocking

1. A absent, B absent, E absent

2. A present, B present, E present

3. A present, B present, E present

4. A present, B absent, E present

According to the RW model, both A and B are positively
associated with E (the effect). The last trial, Trial 4, should
strengthen or weaken the association with A but should have no
effect on the association with B, because B is absent. If that
association is sufficiently strong, subjects should conclude that
both A and B cause E. In particular, B should be equally strongly
associated with E in the inference condition and the backward
blocking condition.
In contrast, both Cheng’s (1997) learning rule, with a suitable

choice of focal sets, and constraint-based and Bayesian learning
methods yield a qualitative difference between A and B in the
backward blocking condition. In the RW model, the effect or lack
of effect of the A block by itself has no influence on the judgment
about B, but it has a crucial effect in these other models.
According to Cheng’s (1997) methods, if the focal set for A in

the backward blocking condition consists of Cases 1 and 4 (so B

Figure 13. Procedure used in Sobel et al. (in press, Experiment 2).

23CAUSAL MAPS

A B

D

A B

D

A B

D

A B

D

Four hypotheses for Bayesian structure learning

(prior favors fewer edges)

Backward blocking as Bayesian structure learning

Neural net does not
naturally capture the
decrease in probability for
‘B’ after the ‘A alone’ trial.

X1X2

X1 X1

E E

h11 h00
X2 X2

X(0)

E(1)

Z(1)

V(1)

E(0)

Z(0)

V(0)

E(n)

Z(n)

V(n)

...

...

t=0 t=1 t=n

h
h
1

0

present
absent

E E

h h0110

X2X1

(a)

door
state

vibrational
energy

(b) block
position

noise

time

Figure 1: Hypothesis spaces of causal Bayes nets for (a) the blicket detector and (b) the
mechanical vibration domains.

B1,B2 B1,B2 B1 B2
0

0.2

0.4

0.6

0.8

1
(a)

Baseline After
 "12"
trial

 After
"1 alone"

 trial

B1,B2 B1,B2 B1 B2
0

0.2

0.4

0.6

0.8

1
(b)

Baseline After
 "12"
trial

 After
"1 alone"

 trial

B1,B2,B3 B1,B2 B3 B1 B2,B3
0

0.2

0.4

0.6

0.8

1
(c)

Baseline After
 "12"
trial

After
 "13"
trial

People
Bayes

Figure 2: Human judgments and model predictions (based on Figure 1a) for one-shot back-
wards blocking with blickets, when blickets are (a) rare or (b) common, or (c) rare and only
observed in ambiguous combinations. Bar height represents the mean judged probability
that an object has the causal power to activate the detector.

0.1 0.3 0.9 2.7 8.1
2

3

4

5

6

Time (sec)

C
au

sa
l s

tre
ng

th

 X = 15
 X = 7
 X = 3
 X = 1

0.1 0.3 0.9 2.7 8.1
2

3

4

5

6

Time (sec)

 P
(h

1|
 T

,
X)

0.1 0.3 0.9 2.7 8.1
2

3

4

5

6

Time (sec)

 P
(h

1|
 T

,
X)

Figure 3: Probability of a causal connection between two events: a block dropping onto a
beam and a trap door opening. Each curve corresponds to a different spatial gap between
these events; each x-axis value to a different temporal gap . (a) Human judgments. (b)
Predictions of the dynamic Bayes net model (Figure 1b). (c) Predictions of the spatiotem-
poral decay model.

A,B
Baseline

A,B
after ‘AB’ trial after ‘A alone’ trial

A B

Adult vs. model judgements

pr
ob

ab
ili

ty
 th

at
 o

bj
ec

t i
s

a
“b

lic
ke

t”

(Tenenbaum & Griffiths, 2003)

neural net
does not
capture

Neural network representation

A B

D

wA wB

In the control, inference condition, children said that Object A
was a blicket only 6% of the time and always said that Object B
was a blicket (100% of the time), significantly more often. Per-
formance on the backward blocking condition was quite different:
Children categorized Object A as a blicket 99% of the time.
However, the critical question was how children would categorize
Object B. Overall, children categorized Object B as a blicket only
31% of the time. In fact, even the youngest children categorized
Object B as a blicket significantly less often in the backward
blocking condition (50% of the time) than they did in the one-
cause condition (100% of the time). In summary, children as
young as 3 years old made different judgments about the causal
power of Object B, depending on what happened with Object A.
They used the information from trials that just involved A to make
their judgment about B.
Children responded in a similar way to the “make it go” inter-

vention question. This question was analogous to the “make it
stop” question in Gopnik et al. (2001). Children had never seen the
experimenter place the B block on the detector by itself in either
condition. Nevertheless, in the inference condition they placed this
block on the detector by itself 84% of the time. In the backward
blocking condition they did so 19% of the time, significantly less
often, and significantly less often than they placed the A block on
the detector by itself (64% of the time).
What would the various learning models predict about this

problem? In the pretest, children are shown that some blocks are
blickets (about half the blocks, in fact). Children then have the
following data in the following sequence.
Inference

1. A absent, B absent, E absent

2. A present, B present, E present

3. A present, B present, E present

4. A present, B absent, E absent

Backward blocking

1. A absent, B absent, E absent

2. A present, B present, E present

3. A present, B present, E present

4. A present, B absent, E present

According to the RW model, both A and B are positively
associated with E (the effect). The last trial, Trial 4, should
strengthen or weaken the association with A but should have no
effect on the association with B, because B is absent. If that
association is sufficiently strong, subjects should conclude that
both A and B cause E. In particular, B should be equally strongly
associated with E in the inference condition and the backward
blocking condition.
In contrast, both Cheng’s (1997) learning rule, with a suitable

choice of focal sets, and constraint-based and Bayesian learning
methods yield a qualitative difference between A and B in the
backward blocking condition. In the RW model, the effect or lack
of effect of the A block by itself has no influence on the judgment
about B, but it has a crucial effect in these other models.
According to Cheng’s (1997) methods, if the focal set for A in

the backward blocking condition consists of Cases 1 and 4 (so B

Figure 13. Procedure used in Sobel et al. (in press, Experiment 2).

23CAUSAL MAPS

A B

D

A B

D

A B

D

A B

D

Four hypotheses for Bayesian structure learning

(prior favors fewer edges)

Backward blocking as Bayesian structure learning

Neural net does not
naturally capture the
decrease in probability for
‘B’ after the ‘A alone’ trial.

X1X2

X1 X1

E E

h11 h00
X2 X2

X(0)

E(1)

Z(1)

V(1)

E(0)

Z(0)

V(0)

E(n)

Z(n)

V(n)

...

...

t=0 t=1 t=n

h
h
1

0

present
absent

E E

h h0110

X2X1

(a)

door
state

vibrational
energy

(b) block
position

noise

time

Figure 1: Hypothesis spaces of causal Bayes nets for (a) the blicket detector and (b) the
mechanical vibration domains.

B1,B2 B1,B2 B1 B2
0

0.2

0.4

0.6

0.8

1
(a)

Baseline After
 "12"
trial

 After
"1 alone"

 trial

B1,B2 B1,B2 B1 B2
0

0.2

0.4

0.6

0.8

1
(b)

Baseline After
 "12"
trial

 After
"1 alone"

 trial

B1,B2,B3 B1,B2 B3 B1 B2,B3
0

0.2

0.4

0.6

0.8

1
(c)

Baseline After
 "12"
trial

After
 "13"
trial

People
Bayes

Figure 2: Human judgments and model predictions (based on Figure 1a) for one-shot back-
wards blocking with blickets, when blickets are (a) rare or (b) common, or (c) rare and only
observed in ambiguous combinations. Bar height represents the mean judged probability
that an object has the causal power to activate the detector.

0.1 0.3 0.9 2.7 8.1
2

3

4

5

6

Time (sec)

C
au

sa
l s

tre
ng

th

 X = 15
 X = 7
 X = 3
 X = 1

0.1 0.3 0.9 2.7 8.1
2

3

4

5

6

Time (sec)

 P
(h

1|
 T

,
X)

0.1 0.3 0.9 2.7 8.1
2

3

4

5

6

Time (sec)

 P
(h

1|
 T

,
X)

Figure 3: Probability of a causal connection between two events: a block dropping onto a
beam and a trap door opening. Each curve corresponds to a different spatial gap between
these events; each x-axis value to a different temporal gap . (a) Human judgments. (b)
Predictions of the dynamic Bayes net model (Figure 1b). (c) Predictions of the spatiotem-
poral decay model.

A,B
Baseline

A,B
after ‘AB’ trial after ‘A alone’ trial

A B

Adult vs. model judgements

pr
ob

ab
ili

ty
 th

at
 o

bj
ec

t i
s

a
“b

lic
ke

t”

(Tenenbaum & Griffiths, 2003)

neural net
does not
captureCausal learning as structure learning

Structure discovery and evaluating inductive arguments

40

Program induction and language of thought models
the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).

RESEARCH | RESEARCH ARTICLES

...

relation:!
attached along

relation:!
attached along

relation:!
attached at start

v) exemplars

vi) raw data

iv) object!
template

iii) parts

ii) sub-parts

i) primitives

A B

type level
token level

Figure 3: Novel questions generated by the probabilistic model. Across four contexts, five model questions are
displayed, next to the two most informative human questions for comparison. Model questions were sampled
such that they are not equivalent to any in the training set. The natural language translations of the question
programs are provided for interpretation. Questions with lower energy are more likely according to the model.

9

Figure 3: Novel questions generated by the probabilistic model. Across four contexts, five model questions are
displayed, next to the two most informative human questions for comparison. Model questions were sampled
such that they are not equivalent to any in the training set. The natural language translations of the question
programs are provided for interpretation. Questions with lower energy are more likely according to the model.

9

Figure 3: Novel questions generated by the probabilistic model. Across four contexts, five model questions are
displayed, next to the two most informative human questions for comparison. Model questions were sampled
such that they are not equivalent to any in the training set. The natural language translations of the question
programs are provided for interpretation. Questions with lower energy are more likely according to the model.

9

Figure 3: Novel questions generated by the probabilistic model. Across four contexts, five model questions are
displayed, next to the two most informative human questions for comparison. Model questions were sampled
such that they are not equivalent to any in the training set. The natural language translations of the question
programs are provided for interpretation. Questions with lower energy are more likely according to the model.

9

for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate

SCIENCE sciencemag.org 11 DECEMBER 2015 • VOL 350 ISSUE 6266 1335

1 2

1 2

1 2

1 2

1 2

1 2

Human or Machine?

Fig. 5. Generating new exemplars. Humans and machines were given an image of a novel character
(top) and asked to produce new exemplars.The nine-character grids in each pair that were generated by
a machine are (by row) 1, 2; 2, 1; 1, 1.

RESEARCH | RESEARCH ARTICLES

“six” “two”

though, we also do not include a successor function, mean-
ing a function which maps the representation of N to the
representation of N + 1. While neither a successor function
or a Mod-N function is assumed, both can be constructed
in this representational system.

3.4. Hypothesis space for the model

The hypothesis space for the learning model consists of
all ways these primitives can be combined to form lambda
expressions—lexicons—which map sets to number words.
This therefore provides a space of exact numerical mean-
ings. In a certain sense, the learning model is therefore
quite restricted in the set of possible meanings it will con-
sider. It will not ever, for instance, map a set to a different
concept or a word not on the count list. This restriction is
computationally convenient and developmentally plausi-
ble. Wynn (1992) provided evidence that children know
number words refer to some kind of numerosity before
they know their exact meanings. For example, even chil-
dren who did not know the exact meaning of ‘‘four’’
pointed to a display with several objects over a display
with few when asked ‘‘Can you show me four balloons?’’
They did not show this patten for nonsense word such as
‘‘Can you show me blicket balloons?’’ Similarly, children
map number words to some type of cardinality, even if
they do not know which cardinalities (Lipton & Spelke,
2006; Sarnecka & Gelman, 2004). Bloom and Wynn

(1997) suggest that perhaps this can be accounted for by
a learning mechanism that uses syntactic cues to deter-
mine that number words are a class with a certain
semantics.

However, within the domain of functions which map
sets to words, this hypothesis space is relatively unre-
stricted. Some example hypotheses are shown in Fig. 1.
The hypothesis space contains functions with partial
numerical knowledge—for instance, hypotheses that have
the correct meaning for ‘‘one’’ and ‘‘two’’, but not ‘‘three’’
or above. For instance, the 2-knower hypothesis takes an
argument S, and first checks if (singleton? S) is true—if S
has one element. If it does, the function returns ‘‘one’’. If
not, this hypothesis returns the value of (if (doubleton? S)
‘‘two’’ undef). This expression is another if-statement, one
which returns ‘‘two’’ if S has two elements, and undef
otherwise. Thus, this hypothesis represent a 2-knower
who has the correct meanings for ‘‘one’’ and ‘‘two’’, but
not for any higher numbers. Intuitively, one could build
much more complex and interesting hypotheses in this
format—for instance, ones that check more complex prop-
erties of S and return other word values.

Fig. 1 also shows an example of a CP-knower lexicon.
This function makes use of the counting routine and recur-
sion. First, this function checks if S contains a single ele-
ment, returning ‘‘one’’ if it does. If not, this function calls
set-difference on S and (select S). This has the effect of
choosing an element from S and removing it, yielding a

Fig. 1. Example hypotheses in the LOT. These include subset-knower, CP-knower, and Mod-N hypotheses. The actual hypothesis space for this model is
infinite, including all expressions which can be constructed in the LOT.

204 S.T. Piantadosi et al. / Cognition 123 (2012) 199–217

40

Course website
https://brendenlake.github.io/CCM-site/

Course discussion: Ed Discussion

Readings posted on Ed Discussion

Getting in touch

If you need to send an individual message,

Email address for instructors and TAs:
instructors-ccm-spring2024@googlegroups.com

Ed Discussion should be your main point of contact. If you have a
question, and you think there is a possibility that someone may have
the same question, please post it to EdStem for everyone’s benefit.
Those registered for the course should be automatically enrolled, but
there’s a backup “join” link on the course website.

Lectures

Thursdays 10-11:40AM in 12 Waverly Pl Room G08.

There is no zoom or lecture capture; if you can’t make it
to class, you can email us to request last year’s video.

(instructors-ccm-spring2024@googlegroups.com)

mailto:instructors-ccm-spring2023@googlegroups.com

Labs

 Fridays 12:30-1:20PM in 12 Waverly Pl Room G08.

Labs should have working lecture capture. (But we may
have technical difficulties in first week or so)

Brightspace (not used)

We won’t use it for much, unless you want to watch recorded
labs.

If needed, auditors and folks on the waitlist can get added to
brightspace. Please add your email to spreadsheet linked on
the class website.

Thurs. Jan 25: Introduction

Thurs. Feb. 1: Neural networks / Deep learning (part 1)

Thurs. Feb. 8: Neural networks / Deep learning (part 2)

Thurs. Feb. 15: Reinforcement learning (part 1)

Thurs. Feb. 22: Reinforcement learning (part 2)

Thurs. Feb. 29: Reinforcement learning (part 3)

Thurs. Mar 7: Bayesian modeling (part 1)

Thurs. Mar 14: Bayesian modeling (part 2)(same slides as part 1)

Thurs. Mar. 21: No class, Spring break

Thurs. Mar. 28: Model comparison and fitting, tricks of the trade

Thurs. Apr 4: Categorization

Thurs. Apr 11: Probabilistic Graphical models

Thurs. Apr 18: Information sampling and active learning

Thurs. April 25: Program induction and language of thought models

Thurs. May 2: Computational Cognitive Neuroscience

Lecture schedule

Lab schedule

Fri. Jan 26, Python and Jupyter notebooks review

Fri. Feb 2, Introduction to PyTorch

Fri. Feb 9, HW 1 Review

Fri. Feb 16, No lab

Fri. Feb 23, Reinforcement learning

Fri. Mar 1, HW 2 review

Fri. Mar 8, Probability Review

Fri. Mar 15, HW 3 Review

Fri. Mar 22, No lab (Spring break)

Fri. Mar 29, No lab

Fri. Apr 5, TBD

Fri. Apr 12, HW 4 Review

Fri. Apr 19, TBD

Fri. Apr 26, TBD

Fri. May 3, TBD

	 •	 Math: We will use concepts from linear algebra, calculus, and
probability. If you had linear algebra and calculus as an
undergrad, or if you have taken Math Tools in the psychology
department, you will be in a good position for approaching the
material. Familiarity with probability is also assumed. We will
review some of the basic technical concepts in lab.

	 •	 Programming: Previous experience with Python is required.
Previous IN CLASS experience with Python is strongly
recommend—it’s assumed you know how to program in
Python. The assignments will use Python 3 and Jupyter
Notebooks (http://jupyter.org)

Pre-requisites

Grading:

	 •	 The final grade is based on the homeworks (65%) and the final project

(35%). Class participation may be used in cases in borderline grades.

Final project:

	 •	 The final project will be done in groups of 3-4 students. A short paper
will be turned in describing the project (approximately 6 pages). The
project will represent either an substantial extension of one of the
homeworks (e.g., exploring some new aspect of one of the
assignments), implementing and extending an existing cognitive
modeling paper, or a cognitive modeling project related to your research.
We provide a list of project ideas (see website), but of course you do not
have to choose from this list.

Homeworks — programming requirements

Programming: We assume you are familiar with
programming in Python

Homeworks use this setup:

• Python 3

• Jupyter notebooks

• Standard Python packages for scientific computing

• numpy

• scipy

• pandas

• matplotlib

• PyTorch library for neural networks

Using your laptop setup is encouraged!

Jupyter notebooks

Pre-configured cloud environment

Students registered for the course have the option of
completing homework assignments on their personal
computers (encouraged if know how to set it up!), or in a
cloud Jupyter environment with all required packages pre-
installed (see website).

Collaboration and honor code

We take the collaboration policy and academic integrity
very seriously. Violations of the policy will result in zero
points and possible disciplinary referral.

You may discuss the homework assignments with your
classmates, but you must run the simulations and
complete the write-ups for the homeworks on your own.
Under no circumstance should students look at each
other’s code or write ups, or code/write-ups from
previous years of this course. Do not share your write up
or code with any of your classmates under any
circumstances.

Late work:
• We will take off 10% for each day a homework or final project is late.

See policy on extensions, regrading, no extra credit, etc. on syllabus

Laptops in class:

• Laptops in class are discouraged. We know many try to take notes on their laptops, but it’s
easy to get distracted (social media, etc.). This also distracts everyone behind you!

We encourage you to engage with the class and material, and engage with us as the
instructors. Ask questions!

All slides are posted so there is no need to copy things down, and paper notes are great too.

Course policies

58

Background survey

• Who knows about:

- Prototype vs. exemplar
models?

- Categorical perception?

- Semantic networks?

- Logistic regression?

- Backpropagation algorithm?

- Simple recurrent network?

- Model-based vs. model-free
reinforcement learning?

- Bayes’ rule?

- Conditional independence?

- Conjugate prior?

- Metropolis-Hastings?

- Explaining away?

- Probabilistic programming?

• Previous coursework:

• Cognitive Psychology? Programming? Probability, statistics, MathTools?

Machine learning? AI? Deep learning?

• Currently enrolled in what type of program:

• Psychology Ph.D.? Psychology Masters? Data Science Masters? DS Ph.D.?

Other graduate program? Undergraduate?

59

1. Experience with the major paradigms for computational cognitive modeling

2. An introduction to key technical tools (in Python and Jupyter notebooks):

• Neural networks / deep learning (in PyTorch)

• Reinforcement learning

• Bayesian modeling

• Model comparison and fitting

• Probabilistic graphical models

• Program induction and language of thought models

3. How to build computational models to test and evaluate psychological theories, and to
understand behavioral data by modeling the underlying cognitive processes.

4. Ideally, students will leave the course with a richer understanding of how computational
modeling advances cognitive science, and how computational cognitive modeling can
inform research in data science, machine learning, and artificial intelligence

What you will come away with…

60

Is this course a substitute for machine learning?

• No. It’s not a substitute, it’s complementary.

• This course does survey various computational paradigms (deep
learning, reinforcement learning, Bayesian modeling, classification,
graphical models, etc.), and there is some overlap with ML classes
in terms of technical content.

• But unlike ML classes, this is also a cognitive science class. Our
examples and applications aim to understand human
learning, reasoning, and development, and to understand
intelligent behavior more generally.

• We get into some mathematical background, but ML courses take
a more formal approach than we do here. We aim for a more
accessible introduction.

• You will get hands on experience with running and analyzing
complex models, implementing models, and analyzing behavioral
data with computational models. Extensive final project.

For next time....

Readings for the next two lectures

• McClelland, J. L., Rumelhart, D. E., & Hinton, G. E. The Appeal of Parallel Distributed
Processing. Vol I, Ch 1.

• LeCun, Y., Bengio, Y. & Hinton, G. (2015). Deep learning. Nature 521:436–44.

• McClelland, J. L., & Rogers, T. T. (2003). The parallel distributed processing approach to
semantic cognition. Nature Reviews Neuroscience, 4(4), 310-322.

• Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179-211.

• Peterson, J., Abbott, J., & Griffiths, T. (2016). Adapting Deep Network Features to Capture
Psychological Representations. Presented at the 38th Annual Conference of the Cognitive
Science Society.

Homework 1 on neural networks will be released before next class

Questions?

62

