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Traditional view: similarity — categorization

Similarity

exemplar theory

prototype theory

Birds Bird?
You've Seen Prototypical
Bird



But does categorization also determine similarity?

Traditional view
perceptual ' conceptual

Interaction view

perceptual _> conceptual
system system



Categorical perception

e We tend to perceive our world in terms of the categories
that we formed

e Qur perceptions are warped such that differences between
objects that belong in different categories are accentuated,
and differences between objects that fall into the same
categories are deemphasized

perceptual _> conceptual
system system






Categorical perception
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From Goldstone and Hendrickson (2009)



acquired distinctiveness: differences between objects Iin
different categories are emphasized

acquired similarity: differences between objects in the
same categories are deemphasized




Per cent identification

Categorical perception (CP) in speech

Categorization task Discrimination task

(“ba” vs. “da” vs. “gau) (ABX, which is X identical to, A or B’?)
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From Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The
discrimination of speech sounds within and across phoneme boundaries. Journal of
experimental psychology, 54(5), 358.
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CP, but discrimination is not solely based on categorization

Categorization task Discrimination task

(“ba” vs. “da” vs. ugau) (ABX, which is X identical to, A or B’?)
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Strong CP model is wrong: discrimination cannot be predicted solely from a
categorization task
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CP, but discrimination is not solely based on categorization
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Russian blues reveal effects of language

on color discrimination

Jonathan Winawer*'¥, Nathan Witthoft**, Michael C. Frank*, Lisa Wu$, Alex R. WadeT, and Lera Boroditsky*

*Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307; SDepartment of Neurology, David Geffen
School of Medicine, University of California, Los Angeles, CA 90095-1769; TBrain Imaging Center, Smith-Kettlewell Eye Research Institute, San Francisco, CA

94115; and *Department of Psychology, Stanford University, Stanford, CA 94305

Communicated by Gordon H. Bower, Stanford University, Stanford, CA, March 7, 2007 (received for review September 22, 2006)

English and Russian color terms divide the color spectrum differ-
ently. Unlike English, Russian makes an obligatory distinction
between lighter blues (“goluboy’’) and darker blues (*'siniy’’). We
investigated whether this linguistic difference leads to differences
in color discrimination. We tested English and Russian speakers in
a speeded color discrimination task using blue stimuli that spanned
the siniy/goluboy border. We found that Russian speakers were
faster to discriminate two colors when they fell into different
linguistic categories in Russian (one siniy and the other goluboy)
than when they were from the same linguistic category (both siniy
or both goluboy). Moreover, this category advantage was elimi-
nated by a verbal, but not a spatial, dual task. These effects were
stronger for difficult discriminations (i.e., when the colors were
perceptually close) than for easy discriminations (i.e., when the
colors were further apart). English speakers tested on the identical
stimuli did not show a category advantage in any of the conditions.
These results demonstrate that (/) categories in language affect
performance on simple perceptual color tasks and (ii) the effect of
language is online (and can be disrupted by verbal interference).

categorization | cross-linguistic | Whorf

D ifferent languages divide color space differently. For exam-
ple, the English term “blue” can be used to describe all of
the colors in Fig. 1. Unlike English, Russian makes an obligatory
distinction between lighter blues (“goluboy””) and darker blues
(“siniy”’). Like other basic color words, “siniy” and “goluboy”
tend to be learned early by Russian children (1) and share many
of the usage and behavioral properties of other basic color words
(2). There is no single generic word for “blue” in Russian that
can be used to describe all of the colors in Fig. 1 (nor to
adequately translate the title of this work from English to
Russian). Does this difference between languages lead to dif-
ferences in how people discriminate colors?

The question of cross-linguistic differences in color perception
has a long and venerable history (e.g., refs. 3-14) and has been
a cornerstone issue in the debate on whether and how much
language shapes thinking (15). Previous studies have found
cross-linguistic differences in subjective color similarity judg-
ments and color confusability in memory (4, 5, 10, 12, 16). For

Most of the experiments have tested banal “weak”
versions of the Whorfian hypothesis, namely that words
can have some effect on memory or categorization. . . .
In a typical experiment, subjects have to commit paint
chips to memory and are tested with a multiple-choice
procedure. In some of these studies, the subjects show
slightly better memory for colors that have readily
available names in their language. . . . All [this] shows is
that subjects remembered the chips in two forms, a
non-verbal visual image and a verbal label, presumably
because two types of memory, each one fallible, are
better than one. In another type of experiment subjects
have to say which two of three color chips go together;
they often put the ones together that have the same
name in their language. Again, no surprise. I can imagine
the subjects thinking to themselves, “Now how on earth
does this guy expect me to pick two chips to put
together? He didn’t give me any hints, and they’re all
pretty similar. Well, I’d probably call these two ‘green’
and that one ‘blue,” and that seems as good a reason to
put them together as any.”

Because previous cross-linguistic comparisons have relied on
memory procedures or subjective judgments, the question of
whether language affects objective color discrimination perfor-
mance has remained. Studies testing only color memory leave
open the possibility that, when subjects make perceptual dis-
criminations among stimuli that can all be viewed at the same
time, language may have no influence. In studies measuring
subjective similarity, it is possible that any language-congruent
bias results from a conscious, strategic decision on the part of the
subject (19). Thus, such methods leave open the question of
whether subjects’ normal ability to discriminate colors in an
objective procedure is altered by language.

Here we measure color discrimination performance in two
language groups in a simple, objective, perceptual task. Subjects
were simultaneously shown three color squares arranged in a
triad (see Fig. 1) and were asked to say which of the bottom two
color squares was perceptually identical to the square on top.

This design combined the advantages of previous tasks in a
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Effects of language on color discrimination

Russian (color word distinction) English (NO color word distinction)
“‘goluboy” , “siniy" “light blue" : “dark blue"
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Discrimination task

which is the same as the above square?




Results: Effects of language on color discrimination

Russian speakers
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* Russian speakers show categorical perception, but the effect is
eliminated with verbal (but not spatial) interference
* English speakers did not show categorical perception
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Influences of Categorization on Perceptual Discrimination

Robert Goldstone

Four experiments investigated the influence of categorization training on perceptual discrimina-
tion. Ss were trained according to 1 of 4 different categorization regimes. Subsequent to category
learning, Ss performed a Same-Different judgment task. Ss’ sensitivities (d’s) for discriminating
between items that varied on category-(ir)relevant dimensions were measured. Evidence for
acquired distinctiveness (increased perceptual sensitivity for items that are categorized differently)
was obtained. One case of acquired equivalence (decreased perceptual sensitivity for items that are
categorized together) was found for separable, but not integral, dimensions. Acquired equivalence
within a categorization-relevant dimension was never found for either integral or separable
dimensions. The relevance of the results for theories of perceptual learning, dimensional attention,
categorical perception, and categorization are discussed.

Psychologists have long been intrigued by the possibility =~ learning has come a long way since J. S. Bruner et al.’s
that the concepts that people learn influence their perceptual ~ study (Estes, 1986; Kruschke, 1992; Medin & Schaffer,
abilities. It may be that the way people organize their world ~ 1978; Nosofsky, 1986; Reed, 1972), vestiges of this earlier

into categories alters the actual appearance of their world. ~ work are apparent in current research. Specifically, many
The purpose of the present research is to investigate influ-  researchers have investigated concept learning using stim-
ences of Concept ]eaming on perception. uli that have clear-cut dimensions with clearly different

The notion that experience and expectations can influence values on t-hese dimensions. Although such stimuli are
perception can be traced back to the “New Look” movement =~ Mmandatory in many cases for experimental control and
of the 1940s and 50s (J. A. Bruner & Postman, 1949).  Precision, they do not require subjects to perceptually
Evidence suggests that experts perceive structures in X rays  16am new dimensions or finer discriminations. In the
(Norman, Brooks, Coblentz, & Babcook, 1992), beers present descpqu ponpept leammg task§, subje(;ts had tp
(Peron & Allen, 1988), and infant chickens (Biederman & make. fine discriminations along dimensions or isolate di-
Shiffrar, 1987) that are missed by novices. As the experts in ~ enS100S that no.rr.n.ally are.fusefd t(;ﬁether. In 'botl.n casesk,
these fields learn to distinguish among the concepts in their the perceptual 'aplhtles required for the categorization tis
domain (types of fractures, brands of beer, or genders of a?f]:oz;tlsi Cjélriﬁg le;zfl t;?efggz c‘z::ftﬁog:f;g%l;i;ﬁgﬁlgm:y'
chickens), they seem to acquire new ways of perceptually grivé percep(iual Iga’ming.:
structuring the objects to be categorized.

This suggestion—that categorization causes changes to
perceptual abilities—is not implicated in most traditional
accounts of concept learning. In J. S. Bruner, Goodnow, and
Austin’s (1956) classic studies of concept learning, subjects Perceptual Learning
saw flash cards with shapes and were required to learn rules
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Evidence for an Influence of Learning on Perception

Robert Goldstone
Indiana University



acquired similarity: differences between objects in the
same categories are deemphasized

acquired distinctiveness: differences between objects In
different categories are emphasized

(a) (b)
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Category learning with hard perceptual discrimination

* Most category learning experiments have clear-cut stimuli with clear
values on the dimensions.

* In present study, participants need to make fine discriminations
between categories, showing how experience with categorization
may drive perceptual learning

Most experiments have easy perceptual discriminations Harder discrimination
(e.g., Shepard, Hovland, & Jenkins) (Goldstone)
category A category B

category A category B




Goldstone Ex 2 : four conditions

Size categorizers

Brightness

Brightness categorizers
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Brightness

Size and brightness categorizers

Goldstone Ex 2 : four conditions
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Goldstone Ex 2 : method

Example categorization trial

- Phase 1: category learning (~60 min)
* 20 training runs over the 16 stimuli Category A or B?

* Phase 2: discrimination (~40 min)
* 576 trials
* judged “same” vs. “different”
* sensitivity measured as d’ = Z(hit rate) -
Z(false alarm rate), where Z is the
inverse normal CDF

Example discrimination trial (are stimuli physically identical?)

Stimulus 2 Response
“same” vs.

“different”

Stimulus 1
(1 000 ms) (1 000 ms)




Brightness

Goldstone Ex 2 : Results

Size categorizers

acquired distinctiveness to size
(note, even within category)
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Brightness

Brightness categorizers
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A A A
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Brightness

Size and brightness categorizers

acquired distinctiveness to size

A <> A 4—F+ B <P B
AL AL S L E S S S
? A ¢8> A «mm> B ¢« B
(D)
A A B B = i
5
aa C e Ctasmmm)D¢ PD
° | ° | D | D 31—
C «» C 8 D«m D
C C D D acquired
2 3 4 _ distinctiveness
Size on brightness

Size

Acquired distinctiveness is attenuated compared to the other conditions,
suggesting competition for attention



separable: dimensions are independent

Brightness

e.g., brightness vs. size

Separable vs. integral dimensions

A A A A
A A A A
B B B B
B B B B

Size

w

N

integral: dimensions interact

e.g., brightness vs. saturation

brightness

.
r 4

saturation



Brightness

Goldstone Ex 4 : Results with integral dimensions

Saturation categorizer
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Review: How does ALCOVE learn?

Learning is incremental fitting of the attention weights and
association weights

Response rule category A  category B

o #SIM(y,4)

P(yeA) = _ _
e#SIM(.,4) 1 ¢SIM(y.B)

sim(y,C) = Z w.. SiIm(y, x)

xeX

W

W association weights
&k &k CX between exemplar x and
- Ax.—v. " d [\

denotes one of
the exemplars

x 0

(; attention weights O O y current stimulus




Review: Network before training
response  P(y € A)

A

association weights W4, 00 0.0

sim(y,C) = Z w.,. sim(y, x)

xeX

Slm(y X) _ ez ;| x—y| WAx Exemplars x

attention weights ~ @¢plor Qsoxture Xs1ash
0.33 0.33 0.33

current stimulus y .



Review: Network after training

response P(y [ A) Response is now nearly

perfect
A sim(y,C) = Z w.. sim(y, x)
xeX

association weights Wy, 1.15 114 114 1.14

Sim(y, x) = ¢ 2, Wi, _1 14 114 _1 4 14 Exemplars X
attention weights ~ Xcojor texture Xslash  Attention only
0.544 0.0 looks at color

current stimulus y .



ALCOVE can explain acquired distinctiveness and acquired
similarity, as applied across entire dimensions

ALCOVE's similarity before training
But, ALCOVE's attention

A Z doesn't do this, but could if
a combined with category
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Conclusion from Goldstone’s results

- Category learning can clearly produce perceptual changes that last beyond the
categorization task

- Goldstone mainly found acquired distinctiveness, such that differences between objects
in different categories are emphasized

- ALCOVE does not necessarily predict discrimination judgements (it does categorization,
not discrimination), but it is consistent with perceptual changes, especially when these
effects operate across an entire dimension

- Different changes to perception depending on whether dimensions are integral or separable

- But this differs by domain: with speech and more complex stimuli, category learning can
lead to both acquired distinctiveness and acquired similarity, and even acquired similarity
within a class



INFANT BEHAVIOR AND DEVELOPMENT 7, 49-63 (1984)

Cross-Language Speech Perception:
Evidence for Perceptual Reorganization
During the First Year of Life*

JANET F. WERKER AND RICHARD C. TEES
University of British Columbia

Previous work in which we compared English infants, English adults, and Hindi
aduits on their ability to discriminate two pairs of Hindi (non-English) speech con-
trasts has indicated that infants discriminate speech sounds according to phonetic
category without prior specific language experience (Werker, Gilbert, Humphrey,
& Tees, 1981), whereas adults and children as young as age 4 (Werker & Tees, in
press), may lose this ability as a function of age and or linguistic experience. The
present work was designed to (a) determine the generalizability of such a decline
by comparing adult English, adult Salish, and English infant subjects on their per-
ception of a new non-English (Salish) speech contrast, and (b) delineate the time
course of the developmental decline in this ability. The results of these experi-
ments replicate our original findings by showing that infants can discriminate
nonnative speech contrasts without relevant experience, and that there is o de-
cline in this ability during ontogeny. Furthermore, data from both cross-sectional
and longitudinal studies shows that this decline occurs within the first year of life,
and that it is a function of specific language experience.

infants  speech perception cross-language decline

While a large (but finite) number of sound segments occur in the languages of
the world, only a subset is used phonemically (to differentiate meaning) in any
particular language. Several researchers have predicted that human infants are
born with the ability to discriminate the universal set of phonetic contrasts
regardless of language experience, and that this ability declines as a function of
specific linguistic experience (Eimas, 1978; Morse, 1978; Werker et al., 1981).
Alternatively, it has been proposed that experience listening to a language may
be necessary to facilitate the perception of the phonetic distinctions used in
that language (Eilers, Gavin, & Wilson, 1979). Most relevant data support the
first of these predictions, suggesting that rather than having to learn to differ-
entiate phonetic features, young infants seem to respond to speech sounds ac-
cording to the categories that could serve as the basis for adult phonemic

* This work was jointly supported by grants to Richard C. Tees from the Social Sciences
and Humanities Research Council (410-81-0796), the National Research Council (PA0179) of
Canada, and the National Institute of Mental Health (1IRO3NH35829), and by NICHD Grant
HD12420 to Haskins Laboratories. We thank the infants and mothers who made this study possi-
ble. We also thank Kathy Searcy, Sue Tees, and Carole Bawden for their assistance. Special thanks
to Al Liberman for making us welcome at Haskins Laboratories. Requests for reprints should be
sent to Janet F. Werker, Department of Psychology, Dalhousie University, Halifax, Nova Scotia,
B3H 4J1, or to Richard C. Tees, Department of Psychology, University of British Columbia, Van-
couver, BC, V6T 1Y7, Canada.

A0

Janet Werker
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Young infants can discriminate universal set of phonetic contrasts (6 mo),
but they lose non-native contrasts between 8-12 mo

INFANT SUBJECTS REACHING CRITERION
ON HINDI AND SALISH CONTRASTS

« Unlike in Goldstone’s experiment,
speech sound learning is
characterized by declining

rfonts discrimination in first year of line

< * Procedure: Infants habituated to
specific sound category, and rewarded
for head turn when sound category
changes

, - Criterion based on succeeding on 8/10
change trials, and discriminating /ba/ vs

100 — English Infants

o

- Cross-Sectional Data

80 -

English Infants /'
Hindi
infants

60 |-

PERCENT
T

40 P

English Infants
20

or /da/ before and after non-native
80 b Longitudinal Data | contrast test

- « Exp 2 (cross-sectional) with infants of
60

different ages, and Exp 3 (longitudinal)
with same infants, with similar results
- Infants lose non-native contrasts
between 8-12 mo (acquired
- 1 similarity)

6-8 months 8-10 months 10-12 months 11-12 months
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40 |

20

Hindi /fo/vs /fo/
Salish /lzi/vs /ci i/
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Categorization Creates Functional Features

Philippe G. Schyns
Univell)'spi?y of Glasgyglw

Luc Rodet
University of Grenoble

Many theories of object recognition and categorization claim that complex objects are
represented in terms of characteristic features. The origin of these features has been neglected
in theories of object categorization. Do they form a fixed and independent set that exists before
experience with objects, or are features progressively extracted and developed as an organism
categorizes its world? This article maintains that features can be learned flexibly as a
consequence of categorizing and representing objects. All 3 experiments reported in this
article used categories of unfamiliar, computer-synthesized 2-dimensional objects (‘‘Martian
cells”). The results showed that varying the order of category learning induced the creation of
different features that changed the perceptual appearance and the featural representation of
identical category exemplars. Network simulations supported a flexible rather than a

fixed-feature interpretation of the data.

Many theories of object recognition and categorization
assume that objects are represented in memory as groups of
components. To classify an object, one must first identify its
components and then compare them to memory representa-
tions. For example, when a person sees a cup, he or she
might first identify a container or a handle before categoriz-
ing the object properly. Of course, not all components of an
object are necessary for its categorization, but many of them
are probably identified during the recognition process.
Componential accounts that embody this general approach
include theories of object recognition and categorization
(see, among others, Biederman, 1987, Marr & Nishihara,
1978; Rosch & Mervis, 1975; E. E. Smith & Medin, 1981;
Treisman & Gelade, 1980).

Although most object categorization theories are compo-
nential, they have paid less attention to the origin of the
components themselves. Do these components, or features,
form a fixed and independent vocabulary that exists prior to
the experience with objects, or are features progressively
leammed and developed as an organism categorizes and
represents its world? Most current models of category
learning leave aside the issue of feature learning and feature
development. Their feature set is fixed and unaffected by the
classification and learning processes.

Classification and learning processes, however, operate
on a stable featural analysis (a perceptual organization) of

Philinna 1 Qohune Manartmmant Af Dovnhalano TTaivaesito ~f

the ever-changing retinal input. Even though our sophisti-
cated visual apparatus probably comes equipped with a
priori ways of analyzing and organizing retinal images, there
are occasions when a relevant perceptual analysis is not
readily available. For example, complete novices reading
chest X-rays (e.g., Christensen et al., 1981), sexing chickens
(Biederman & Shiffrar, 1987), and categorizing dermatoses
(Norman, Brooks, Coblentz, & Babcock, 1992) have little
understanding of the relevant dimensional structure of these
categories. Even when told what the signs of different
diagnosis are, novices are not always able to see the features
experts use to organize the input. If one takes a developmen-
ta] perspective, it seems clear that infants and young children
are not always able to analyze objects by using all the
stimulus dimensions that are used by adults (C. Smith,
Carey, & Wiser, 1985; L. B. Smith & Kemler, 1978; Ward,
1983).

Thus, there is suggestive evidence that features are
flexible—that is, they adjust to the perceptual experience
and the categorization history of the individual. Flexible
features open the possibility that the same input is differently
perceived and analyzed before being categorized. Hence, a
complete theory of categorization and conceptual develop-
ment should not only explain the ways in which object
features are combined to form concepts, it should also
explain the origin and the development of the features
participating in the analysis of the input. The studies
presented in this article investigate further the claim that a
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Philippe Schyns

University of Glasgow



Review: What counts as a feature?

Similarit

Birds Bird?
You've Seen Prototypical
 What counts as a feature? (Murphy & Medin, 1985) Bird

- To change the importance of age, we could include features for "around 10 years
ago," "around 100 years ago," "1000 years ago”, etc.
~ To change importance of size, we could include “smaller than the earth,” “smaller

than a country”, “smaller than a city,” etc.

e |t is difficult to establish the “respects for similarity” (Medin, Goldstone, & Gentner,
1993, Psych Rev)



Traditional “fixed feature” account of category learning

perceptual —l concepts

features

* Most category learning experiments have clear-cut stimuli with clear
dimensions of variation

* Most models don’t address where the features come from —
iInstead they are provided. This can be characterized as a “fixed

feature view”

category A category B category A category B




Can categorization create new features?

—

perceptual
features

concepts

e Alternative is a “flexible feature view” : if a fragment of a
stimulus categorizes objects, that fragment is instantiated
as a unit in the representational code

e Suggestive evidence reading chest X-Rays and sexing
chickens seems to require experience and specialized
features

»
. \ !
»
om ick Sexing” by J. H. Lunn, 1948, Am.
i ph by the Un ty of Minnesota ho ogr Laborn

(Biederman & Shiffrar, 1987)



Schyns and Rodet : Preliminary experiment




Schyns and Rodet : Preliminary experiment

study phase with no explicit task besides study stimuli

Group A-BC
shown 5 examples shown 5 examples
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Group AB-C
shown 5 examples shown 5 examples
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Schyns and Rodet : Pilot Results

How do participants parse 5 novel test cells?
“draw outlines around the parts they saw during preexposure”

Group A-BC 83% consistent with this parse
¢
Y 4
Cs [ pJ
Group AB-C 100% consistent with this parse
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Schyns and Rodet : Experiment 2

Explicit categorization task

Group X = Y - XY Hypothetical

Category 1 Category 2 Category 3 feature library

(10 examples) (10 examples) (10 examples)

X Y
©Oe® .-

library is [X, Y]
Group XY - XY

Category 1 Category 2 Category 3
(10 examples) (10 examples) (10 examples)

“ e

library is [XY, X, Y]




Schyns and Rodet : Experiment 2
How will they classify a novel stimulus X-Y?

roup X - Y = XY :
Group Stimulus X-Y
Category 1 Category 2 Category 3

©eo® -°
re ~

“category
representation”

b Hypothesis:
labeled “Category 3"
Group XY - X - Y

Category 1 Category 2 Category 3

Hypothesis:
labeled “Category 1”
or “Category 2”

C &

“category
representation”




Schyns and Rodet : Experiment 2

Note stimuli were presented in two views, “as if two glimpses in a
microscope” (does this matter??)
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Schyns and Rodet : Experiment 2 Results
How will they classify a novel stimulus X-Y?

Group X = Y = XY Stimulus X-Y

Category 1 Category 2 Category 3

labeled “Category 3”
88% of time

“category
representation”

Group XY = X = Y
Category 1 Category 2 Category 3

labeled either

“Category 1”

or “Category 2”

79% of time
“category

representation”




Schyns and Rodet : Conclusions

* features are flexible and develop with categorization experience,
to influence perception of subsequent categorization examples

* Unlike theory-based concepts and the knowledge view, which also
propose flexible features (or feature weighting), they emphasize
the perceptual changes that accompany feature creation

e Beyond ALCOVE and almost every other model, more than
“feature reweighting” will be required to understand how
categorization influences perception



Review: Deep convolutional neural network

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0);

A M W i W A ¥ LV P T M L L i & L T L S L A A L e A B B S L B v B B M S S M D A B L A L M & L A (T M L M O A LT Ay A T A L & & = T & 4

Convolutions and RelLU
B S L L& L LS LY & T 2 L 7T Lo oo o o E O SB S FF gz S s N =

Wrf J o oy S H o [ il - ) S/ S S A

Convolutions and RelLU

T ey T Ly L

From LeCun, Bengio, & Hinton (2015).



Review: Deep convolutional neural network

layers of feature maps

j::::::::: :HJT‘___I—‘_i_lé;::.::L

e These models learn from the raw input stimuli

e Critically, these models learn their features. They do not
assume a fixed feature decomposition (although they
assume features are translation invariant, and other
inductive biases)

e They discover functionally-relevant features given the
task at hand



Discovered functional features

Training data (ImageNet)
e Usually trained on
ImageNet
> 1.2 million images
with labels
> 1000 categories

Raw filters

Image patches that
maximally activate
each filter
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-
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(Zeiler & Fergus, 2014)



Discovered functional

features

16 different filters

Image patches that
maximally activate
each filter

10 different filters

Image patches that
maximally activate
each filter

~x

- ,/ | W” E,::ﬂ

WA ”'”HHI

(Zeiler & Fergus, 2014)




Potential explantation through modern neural network models?

How will they classify a novel stimulus X-Y?
Stimulus X-Y

Group X = Y = XY
Category 1 Category 2 Category 3

labeled “Category 3”
88% of time

“category
representation”

Group XY = X = Y
Category 1 Category 2 Category 3

labeled either

“Category 1”

or “Category 2”

79% of time
“category

representation”




