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Reminder: final paper proposals due 11/15

* Final assignment proposal due on Mon 11/15 (one half page
written).

* Final paper due date is Monday 12/16
 The final paper is written individually (no groups).

 The final paper should address one of the topics covered in the
class in more detail. Alternatively, it could investigate a topic that

was not covered in class.

* The paper should include a critical review of the literature, along
with theoretical conclusions or suggestions for future research. |
would expect papers to be about 12 pages long

- If you want to link the paper to your research, that’s encouraged.



Deductive vs. inductive reasoning

Deductive reasoning involves logical reasoning from one or
more statements (premises) to reach a certain conclusion

If an angle is between 90° and 180°, then it is obtuse
We know that A = 120°
Therefore, A is an obtuse angle

Inductive reasoning involves probabilistic reasoning from
premises that supply some evidence for the truth of the conclusion

Foxes have sesamoid bones.
Pigs have sesamoid bones.
Therefore, Gorillas have sesamoid bones.




Category learning is inherently an inductive task,
but that’s not the type of induction we mean today

Here are some “tufas”, where are the others?

“tufa” “tufa”



Category-based induction (example 1)

Predicting unobserved properties based on a category label

“Can you take care of my dog?”

id/a © | have never met your dog, but | can guess
"/ . .
"{\\!, -what food it may like,
. -It probably barks, likes chasing squirrels, likes
playing catch, etc.
-1t will poop,
-It will probably drool,
-efc.

f




Category-based induction (example 2)

Predicting unobserved properties based on knowledge of other categories

“Can you take care of my chinchilla?”

| know next to nothing about chinchillas, but
| can guess
-what food it may like,
-It probably squeaks,
P> -1t will poop,
| -ltdoesn’t need to be taken for a walk,
-~ -etc.

o]




Category-based induction (example 3)
(Gelman & Markman, 1986)

Provided Query

“What does this bird’s heart have?”

L

“This bird’s heart has a right aortic arch only

Results: 4 year olds generalize based on
category membership ~68% of time,
overriding a distractor chosen for strong

perceptual similarity

“This bat’s heart has a left aortic arch only”



Category-based induction is very common in
communication

“Why didn’t you turn in your homework?”
* “My dog ate my homework” is straightforward
* "My dad ate my homework™ requires an explanation

“Where did you get those shoes?”

e “| picked these shoes up at the mall” is straightforward

e “| picked these shoes off my neighbor’s porch” requires an
explanation



First study of category-based induction

JOURNAL OF VERBAL LEARNING AND VERBAL BEHAVIOR 14, 665-681 (1975)

Inductive Judgments about Natural Categories

LANCE J. Rips

University of Chicago

The present study examined the effects of semantic structure on simple inductive judg-
ments about category members. For a particular category (e.g., mammals), subjects were
told that one of the species (e.g., forses) had a given property (an unknown disease) and
were asked to estimate the proportion of instances in the other species that possessed the
property. The results indicated that category structure—in particular, the typicality
of the species—influenced subjects’ judgments. These results were interpreted by models
based on the following assumption: When little is known about the underlying distribution
of a property, subjects assume that the distribution mirrors that of better-known properties.
For this reason, if subjects learn that an unknown property is possessed by a typical species
(i.e., one that shares many of its properties with other category members), they are more
likely to generalize than if the same fact had been learned about an atypical species.

Gaps in our knowledge of facts force us to
rely on inductive methods in determining the
truth or probability of certain statements.
One, by now traditional, way of studying
inductive strategies experimentally is through
concept attainment tasks, which have been
claimed to provide a direct analogue of induc-
tive reasoning (Hunt, Marin, & Stone, 1966;
Trabasso, Rollins, & Shaughnessy, 1971).
The basis of the analogy is that in concept
formation paradigms, as in inductive reason-
ing, tentative hypotheses are advanced on the
basis of preliminary evidence. These hypo-
theses are strengthened by confirming evidence
or are revised in the light of contradictory

making, and tachistoscopic recognition.
Nevertheless, it is concept attainment that
is most often cited as the counterpart of
inductive reasoning.

However, Rosch (1975) has noted that
concept attainment paradigms may differ
critically from other inductive situations. Most
concept attainment studies employ logical
combinations of binary attributes so that the
resulting concept has well-defined boundaries.
A concept so defined has an all-or-none
structure, in the sense that no instance is a
better exemplar of the concept than any
other. Natural language concepts, on the
other hand, do possess internal structure, and



Rips’ (1975) category-based induction task

e Used mammals and birds
e Used blank predicates, which hopefully do not have
any specific effect on induction
e.g., a new type of contagious disease
(however, as you know from Kemp & Tenenbaum
reading, disease isn’t a good choice for taxonomic

reasoning!)

 Example trial: “If pigs have a disease, what proportion
of deer would be likely to get the disease?”
Only one premise category
Answer given as a proportion
Two basic variables: can substitute “pigs” (premise)
or “deer” (conclusion) with any mammal, including
“dogs”, “rabbits,” etc.



Rips’s (1975) semantic spaces
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Rips’ (1975) results

 Subjects’ answers seem to rely on two factors:
e Similarity of the premise to conclusion category
(smaller distance is stronger argument)
e Typicality of premise category (smaller distance in
MDS space from premise to superordinate category

leads to strong argument)

e Typicality of the conclusion category had no effect (but
it may be redundant with the first two).
* Note that there is a categorical component and a
noncategorical component to this theorv.

“If pigs have a disease, what

proportion of deer would be likely to
get the disease?”
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Catégory-Based Induction

Daniel N. Osherson Edward E. Smith
Massachusetts Institute of Technology University of Michigan
Ormond Wilkie Alejandro Lopez
Massachusetts Institute of Technology University of Michigan
Eldar Shafir
Princeton University

An argument is categorical if its premises and conclusion are of the form All members of C have
property P, where C is a natural category like FALCON or BIRD, and P remains the same across
premises and conclusion. An example i1s Grizzly bears love onions. Therefore, all bears love onions.
Such an argument is psychologically strong to the extent that belief in its premises engenders belief
in its conclusion. A subclass of categorical arguments is examined, and the following hypothesis is
advanced: The strength of a categorical argument increases with (a) the degree to which the premise
categories are similar to the conclusion category and {b) the degree to which the premise categories
are similar to members of the lowest level category that includes both the premise and the conclusion
categories. A model based on this hypothesis accounts for 13 qualitative phenomena and the quanti-

tative results of several experiments.

The Problem of Argument Strength

Fundamental to human thought is the confirmation relation,
joining sentences P, ... P, to another sentence C just in case
belief in the former leads to belief in the latter. Theories of con-
firmation may be cast in the terminology of argument strength,
because P, ... P, confirm C only to the extent that P, ... P,/
C is a strong argument. We here advance a partial theory of
argument strength, hence of confirmation.

To begin, it will be useful to review the terminology of argu-
ment strength. By an argument is meant a finite list of sen-
tences, the last of which is called the conclusion and the others
its premises. Schematic areuments are written in the form P,

belief in the conclusion of an argument (independently of its
premises) is not sufficient for argument strength. For this rea-
son, Argument 1 is stronger than Argument 2 for most people,
even though the conclusion of Argument 2 is usually considered
more probable than that of Argument 1. An extended discus-
sion of the concept of argument strength is provided in Osher-
son, Smith, and Shafir (1986). It will be convenient to qualify
an argument as strong, without reference to a particular person
S, whenever the argument is strong for most people in a target
population (e.g., American college students). We also say that
P,...P,confirm Cif P, ... P,/Cisstrong.

An illuminating characterization of argument strength

exrmrrld cmcnmmnsant A lasen nbnea bavesnsd n thnnmaa A lhaliaf Euvnti e



Examples of Osherson et al. induction problems

Specific Argument (all categories at same level)

Mosquitoes use the neurotransmitter dinedron.
Ants use the neurotransmitter dihedron.
Bees use the neurotransmitter dihedron.

General Argument (conclusion at more general level)

Grizzly bears love onions.
Polar bears love onions.
All bears love onions




Two key Osherson et al. variables for inductive
strength

Similarity-coverage model:

e Similarity of premises to conclusion
> maximum of each pair of premise-conclusion
categories

e Coverage: How well the premise categories cover
the superordinate category that includes all the
categories mentioned?
> average of similarity, as computed above, between

premise set and each member of higher-level
category

* Note analogy to Rips: also a categorical and
noncategorical (similarity) component



Two key Osherson et al. variables

e Similarity of premises to conclusion
> maximum of each pair of premise-conclusion categories

Example:
Flies use the neurotransmitter dihedron.
Ants use the neurotransmitter dihedron.
Bees use the neurotransmitter dihedron.

Similarity({Flies, Ants}, Bees)
= Max[(Similarity(Flies, Bees), Similarity(Ants, Bees)]
= Similarity(Flies, Bees)

e Coverage: How well the premise categories cover the superordinate category
that includes all the categories mentioned?
> average of similarity, as computed above, between premise set and each
member of higher-level category

Example:
Grizzly bears love onions.
Polar bears love onions.
All bears love onions

AVERAGE OF...

Similarity({Grizzly, Polar}, Black bears) = Similarity(Grizzly, Black bears),
Similarity({Grizzly, Polar}, Grizzly bears) = Similarity(Grizzly, Grizzly),
Similarity({Grizzly, Polar}, Panda bears) = Similarity(Polar, Panda),



Summary of 13 phenomena

Table 1
Summary of the 13 Phenomena
Stronger argument Weaker argument
Phenomenon (Version a) (Version b)
General arguments

1. Premise Typicality
2. Premise Diversity

3. Conclusion Specificity
4. Premise Monotonicity

Specific arguments
5. Premise~Conclusion
Similarity
6. Premise Diversity

7. Premise Monotonicity

8. Premise-Conclusion
Asymmetry
Mixed arguments
9. Nonmonotonicity—General

10. Nonmonotonicity-Specific
General and specific arguments
11. Inclusion Fallacy
Limiting-case arguments
12, Premise-Conclusion
Identity
3. Premise-Conciusion
Inclusion

ROBIN/BIRD [73]

HIPPO, HAMSTER/
MAMMAL [59]

BLUEJAY, FALCON/
BIRD [75]

HAWK, SPARROW
EAGLE/BIRD [75]

ROBIN, BLUEJAY/
SPARROW [76]

LION, GIRAFFE/
RABBIT [52]

FOX, PIG
WOLF/GORILLA
[66]

MICE/BAT [41]{40)

CROW, PEACOCK/
BIRD [68]
FLY/BEE [51]

ROBIN/BIRD [52}

PENGUIN/BIRD [7]

HIPPO, RHINO/MAMMAL
[21]

BLUEJAY, FALCON/ANIMAL

[5]

SPARROW, EAGLE/BIRD [5]

ROBIN, BLUEJAY /GOOSE
[4]

LION, TIGER/RABBIT [28]

PIG, WOLF/GORILLA [14])
BAT/MICE [39](20)

CROW, PEACOCK
RABBIT/BIRD [12] _
FLY, ORANGUTAN/BEE [29]

ROBIN/OSTRICH [28]

PELICAN/PELICAN

ANIMAL/BIRD

Note. Number of subjects in Study | preferring each argument is given in brackets.

Entries in parentheses are results of Study 2,



Premise Typicality

In general, the more typical the premise categories, the
stronger the argument (via coverage).
So, (3) is stronger than (4).

(3) Robins have a high potassium in their blood.
All birds have a high potassium in their blood.

(4) Penguins have a high potassium in their blood.
All birds have a high potassium in their blood.




Premise Diversity

The more variable the premise categories, the stronger the
argument (via coverage). So, (6) is stronger than (5):

(5) Hippopotamuses require Vitamin K.
Rhinoceroses require Vitamin K.
Humans require Vitamin K.

(6) Hippopotamuses require Vitamin K.
Bats require Vitamin K.
Humans require Vitamin K.




Premise Monotonicity

If you add more categories (all of them being at the same level)
to the premises, the argument gets stronger (via similarity and/
or coverage). So, (8) is stronger than (7):

(7) Foxes have sesamoid bones.
Pigs have sesamoid bones.
Gorillas have sesamoid bones.

(8) Foxes have sesamoid bones.
Pigs have sesamoid bones.
Wolves have sesamoid bones.
Gorillas have sesamoid bones.




Inclusion fallacy

Argument (9) is felt to be stronger than argument (10).

(9) Robins have an ulnar artery.
All Birds have an ulnar artery.

(10) Robins have an ulnar artery.
Ostriches have an ulnar artery.

Why is this a fallacy? Argument 10 is logically entailed by
argument 9



Testing the model: “Osherson horse” dataset

Experiment: a set of arguments were
written on cards and ranked for
strength

Argument template:

X requires biotin for hemoglobin synthesis.
Y requires biotin for hemoglobin synthesis.

Horses require biotin for hemoglobin synthesis.

Confirmation Scores for Two-Premise Specific
Arguments (Horse, Experiment 4)

Mammals Score Mammals Score
strong

COW CHIMP .79 GORILLA SEAL 41
COW GORILLA 75 GORILLA ELEPHANT .61
COW MOUSE .74 GORILLA RHINO .63
COW SQUIRREL 72 MOUSE SQUIRREL 17
COW DOLPHIN .73 MOUSE DOLPHIN 28
COW SEAL 13 MOUSE SEAL 25
COW ELEPHANT .75 MOUSE ELEPHANT 58
COW RHINO a7 MOUSE RHINO 62
CHIMP GORILLA 23 SQUIRREL DOLPHIN 32
CHIMP MOUSE 42 SQUIRREL SEAL .26
CHIMP SQUIRREL .40 SQUIRREL ELEPHANT .54
CHIMP DOLPHIN 40 'SQUIRREL RHINO 61
CHIMP SEAL 43 DOLPHIN SEAL .06
CHIMP ELEPHANT 59 DOLPHIN ELEPHANT .54
CHIMP RHINO .64 DOLPHIN RHINO 54
GORILLA MOUSE 48 SEAL ELEPHANT 51
GORILLA SQUIRREL 47 SEAL RHINO .56
GORILLA DOLPHIN .38 ELEPHANT RHINO 57

weak

Results: Similarity-
coverage model
correlates r=0.96 with
confirmation scores



Testing the model: “Osherson mammals” dataset

Experiment: a set of arguments were Argument template:
written on cards and ranked for . . .
en o ds d ed X requires biotin for hemoglobin synthesis.

Strength Y requires biotin for hemoglobin synthesis.
Z requires biotin for hemoglobin synthesis.

All mammals require biotin for hemoglobin synthesis.

Confirmation Scores for Three-Premise, General Arguments

Mammals Score Mammals Score ReSUItS: Slmllarlty-
HORSE COW MOUSE 33 COW SEAL ELEPHANT 47 Coverage model
HORSE COW SEAL 39 COW ELEPHANT RHINO 14  weak ]
HORSE COW RHINO 17 CHIMP GORILLA SQUIRREL .30 —_
HORSE CHIMP SQUIRREL S35 CHIMP GORILLA DOLPHIN 31 Correlates r_0'87 Wlth
HORSE CHIMP SEAL 75 CHIMP GORILLA SEAL 30 1 1
HORSE GORILLA SQUIRREL 64 CHIMP SQUIRREL DOLPHIN .80 Conflrmathn SCOres
HORSE GORILLA DOLPHIN 73 CHIMP SQUIRREL ELEPHANT .62
HORSE MOUSE SQUIRREL 28 CHIMP SQUIRREL RHINO .61
HORSE MOUSE SFEAL .69 CHIMP DOLPHIN ELEPHANT 72
HORSE MOUSE RHINO 42 GORILLA MOUSE SEAL .82 strong
'HORSE SQUIRREL SEAL 63 GORILLA MOUSE ELEPHANT .58
HORSE SQUIRREL ELEPHANT 47 GORILLA SQUIRREL DOLPHIN .80
HORSE DOLPHIN SEAL 27 GORILLA SEAL ELEPHANT .60
HORSE DOLPHIN ELEPHANT 49 GORILLA ELEPHANT RHINO 26
COW CHIMP DOLPHIN 76 MOUSE SQUIRREL SEAL 335
COW CHIMP SEAL 70 MOUSE DQLPHIN SEAL 32
COW CHIMP ELEPHANT 40 MOUSE SEAL ELEPHANT 70
COW MOUSE SEAL .68 MOUSE SEAL RHINO .65
COW MOUSE RHINO 40 MOUSE ELEPHANT RHINO 3t
COW SQUIRREL DOLPHIN 76 SQUIRREL DOLPHIN SEAL 30
COW SQUIRREL RHINO .36 SQUIRREL DOLPHIN RHINO .68
COW DOLPHIN ELEPHANT 48 SQUIRREL SEAL RHINO .62

COW DOLPHIN RHINO 49




Limitations of Osherson et al. approach

* Model is very successful at predicting phenomena in
category-based induction (this paper is always cited)

e But the model doesn’t do well when predicting meaningful
predicates (non-blank; Heit & Rubinstein, 1994)

(11) Given that tuna/rabbits have blood that contains between
2% and 3% potassium, how likely are whales to have blood that
contains between 2% and 3% potassium?”

(12) Given that tuna/rabbits usually gather a large amount of
food at once, how likely are whales to usually gather a large
amount of food at once?”

Induction is greater for rabbit-whale for biological properties, and
tuna-whale in behavioral properties, so the predicate makes a
difference. Oops!



Psychological Review
2009, Vol. 116, No. 1, 20-58
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Structured Statistical Models of Inductive Reasoning

Charles Kemp

Carnegie Mellon University

Joshua B. Tenenbaum
Massachusetts Institute of Technology

Everyday inductive inferences are often guided by rich background knowledge. Formal models of
induction should aim to incorporate this knowledge and should explain how different kinds of knowledge
lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a
Bayesian framework that attempts to meet both goals and describe 4 applications of the framework: a
taxonomic model, a spatial model, a threshold model, and a causal model. Each model makes probabi-
listic inferences about the extensions of novel properties, but the priors for the 4 models are defined over
different kinds of structures that capture different relationships between the categories in a domain. The
framework therefore shows how statistical inference can operate over structured background knowledge,
and the authors argue that this interaction between structure and statistics is critical for explaining the

power and flexibility of human reasoning.

Keywords: inductive reasoning, property induction, knowledge representation, Bayesian inference

Humans are adept at making inferences that take them beyond
the limits of their direct experience. Even young children can learn
the meaning of a novel word from a single labeled example
(Heibeck & Markman, 1987), predict the trajectory of a moving
object when it passes behind an occluder (Spelke, 1990), and
choose a gait that allows them to walk over terrain they have never
before encountered. Inferences like these may differ in many
respects, but common to them all is the need to go beyond the
information given (Bruner, 1973).

Two different ways of going beyond the available information
can be distinguished. Deductive inferences draw out conclusions
that may have been previously unstated but were implicit in the
data provided. Inductive inferences go beyond the available data in
a more fundamental way and arrive at conclusions that are likely
but not certain given the available evidence. Both kinds of infer-

This article describes a formal approach to inductive inference
that should apply to many different problems, but we focus on the
problem of property induction (Sloman & Lagnado, 2005). Ir
particular, we consider cases where one or more categories in
domain are observed to have a novel property and the inductive
task is to predict how the property is distributed over the remaining
categories in the domain. For instance, given that bears have
sesamoid bones, which species is more likely to share this prop
erty: moose or salmon (Osherson, Smith, Wilkie, Lopez, & Shafir
1990; Rips, 1975)? Moose may seem like the better choice becausc
they are more similar biologically to bears, but different propertie:
can lead to different patterns of inference. For example, given tha
a certain disease is found in bears, it may seem more likely that the
disease is found in salmon than in moose—perhaps the bear:
picked up the disease from something they ate.



Structured statistical models of inductive
reasoning

e Everyday inductive inferences are guided by rich
background knowledge

e Different kinds of knowledge leads to distinct patterns
of reasoning

 Theory-based approaches and “the knowledge view”
explain how knowledge matters, but rarely attempt to
formalize the content of intuitive theories

e Kemp and Tenenbaum present a “Bayesian property
induction” framework that can capture different types
of knowledge as different structures and stochastic
processes operating over these structures



Review: Examples of Intuitive Theories or General
Knowledge Relevant to Concept Learning

* biological knowledge
* naive physics
* naive psychology
- beliefs, desires, goals
psychological effects of different events
different personality types
e causal mechanics of various machines and artifacts

Most relevant to Kemp and Tenenbaum...

* biological knowledge

e geographical knowledge

e commonsense knowledge, physical knowledge
e causal, ecological knowledge



Four different intuitive theories to support inductive
reasoning, unified as Bayesian property induction

Taxonomic model
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Taxonomic model Causal model

Example property has enzyme X132 in its bloodstream carries leptospirosis

Structural Form (F) tree directed graph

cheetah giraffe
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Structure (S)
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Example property

Structural Form (F)

Structure (S)

Stochastic Process (T)

Features {f'}
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Bayesian property induction

f € F : feature in set of all possible features

X = {cheetah, monkey} : set of premise categories

v = {lion rilla} - conclusion cateaories cheetahs have sesamoid bones.
= {lion, gorilla} : conclus g monkeys DO NOT have sesamoid bones.
Iy = {1,0} : feature labels for premise categories D lions have sesamoid bones?

Do gorilla have sesamoid bones?

Posterior over features given evidence

labels Ix Posterior
P(f|ly) = PU P heetah @ (O NN NN
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Making Bayesian predictions

f € F : feature in set of all possible features _

cheetahs have sesamoid bones.
monkeys DO NOT have sesamoid bones.
Y = {lion, gorilla} : conclusion categories Do lions have sesamoid bones?

_ _ . . ,)
I, = {1,0} : feature labels for premise categories Do gorilla have sesamoid bones*

X = {cheetah, monkey} : set of premise categories

Posterior predictive distribution

P(fy=1|lx): Z P(f|lx)

fr=1
fify Hypotheses and prior distribution Prediction
(weighted average across rows)
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Taxonomic intuitive theory

blue whale

Prior over features

P(f)

"Intuitive theory”

Naive enumeration of prior probability of each
feature would require 250 numbers if there are
50 mammals
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Taxonomic model

Example property has enzyme X132 in its bloodstream
Structural Form (F) tree
cheetah
lion
hyena
Structure (S)
giraffe
gazelle
gorilla
monkey
Stochastic Process (T) diffusion
f1f2f3f4f5 fnew
cheetth @ OO O® @
i lion L JOIOX X ) ?
Features /" } hyena OQ@O @@ ?
graffe O @@CO @ ?
gazele OO @O @ ?
gorila O @O OO ?
monkey O @ O O O ?

Spatial model

ideally consumes around 15 g of sodium per week in the wild

low dimensional space

giraffe
lion
gorilla
hyena
gazelle
cheetah
monkey
diffusion
f1f2f3f4f5 fl’lGW
cheetah @ @ @ O O o
lion OO0 ?
hyena OO @ @O ?
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gorila OO0 @O ?
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Making Bayesian predictions P, =11)= ) P(f|L)

' : fy=1
Taxonomic model Spatial model Sty
Example property has enzyme X132 in its bloodstream ideally consumes around 15 g of sodium per week in the wild
Structural Form (F) tree low dimensional space

Observed object

1 1
0.8} 0.87
/‘\%
< 06| 0.6
e [T T T
I|>< 0 aleeeeseeeeeeneene L 0.4}
S
0.2} 0.2}
O 1 1
0 . 10 0 10

white: if * is observed to be true
black: if * is observed to be false



Biological reasoning about animals
A tree fits better than a 2D space

“Osherson horse” dataset
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slide credit:

Cows have property P.
Elephants have property P.

Horses have property P.
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Gorillas have property P.
Mice have property P.
Seals have property P.

All mammals have property P.

Josh Tenenbaum

Correlation

of human
participant
judgments with
model judgements

Evaluated across a
range of difference
premise/conclusion
combinations .

“Osherson
mammals”
dataset

Reminder:
Osheron’s
Similiarity-
coverage model
achieved r=0.96
and r=0.87,
respectively




Spatial reasoning about cities
A 2D space fits better than a tree

“Given that a certain kind of native American artifact has been
found in sites near city X, how likely is the same artifact to be
found near city Y?"

slide credit: Josh Tenenbaum
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Reminder: Rips’s (1975) model was spatial

“If pigs have a disease, what proportion of deer
would be likely to get the disease?”

e Subjects’ answers seem to rely on two factors:
e Similarity of the premise to conclusion category (smaller

distance is stronger argument)
e Typicality of premise category (smaller distance in MDS space

from premise to superordinate category leads to strong
argument) oot / o

sheoep )

cow®
Q
horse
409
mirgal" - |
ammal °rabbit
JAeer

(]
0beur cat jmouse

lion o




Important caveat: Do we need special purpose knowledge
structures to explain these inferences?

Lake et al. (2018; Cognitive Science) show that learning more generic, sparse

structures can account for both taxonomic and spatial reasoning

gorilla biological reasoning spatial reasoning
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Example property

Structural Form (F)

Structure (S)

Stochastic Process (T)

Features {f'}

Spatial model

low dimensional space

giraffe
lion
gorilla
hyena
gazelle
cheetah
monkey
diffusion
JAVANANANE
cheetah @ @ @ O O
lion 0J0l0l IO
hyena OO @ @O
grafe OOOO@®
gazele @ @@ O O
gorila OO O @O
monkey @ O O O O

ideally consumes around 15 g of sodium per week in the wild

f ncw

NN @

Threshold model

low dimensional space

giraffe
lion
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gazelle
cheetah
monkey
drift
JAVEVAVANE
cheetah OO @O O
lion 0000
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is heavy enough to trigger most pit traps
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Making Bayesian predictions Py =11k = ) P(fli)

Jy=1
Spatial model Threshold model
Example property ideally consumes around 15 g of sodium per week in the wild is heavy enough to trigger most pit traps

process diffusion drift
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Observed object
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white: if * is observed to be true
black: if * is observed to be false



Reasoning about threshold properties
A drift process fits better than diffusion

“Given that animal X has a visual system
that fully adapts to darkness in less than
5 minutes, how likely does Y?”

housecat lion camel hippo

elephant

“Given that animal X has skin that is more
resistant to penetration than most
synthetic fibers, how likely does Y?”

elephant lion

hippo camel housecat

1D +

1D +
diffusion

drift

Smith dark

r=0.88

r=0.23

Smith skin

r=0.95




Making Bayesian predictions P(y =11k = ) P(fliy

. =1
Taxonomic model Causal model Ty
iraffe
Example property has enzyme X132 in its bloodstream ion ; carries leptospirosis
gazelle
Structural Form (F) tree nvena cheetan k directed graph
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Reason about causal transmission

Another double dissociation: A causal web fits better than a tree for
diseases, and vice versa for biological properties

“Assuming that animal X

has disease D, how likely

is animal Y?”

lion

wolf

wolverine
“

woodchuck bobcat squirrel fox

Web +
transmission

Tree +

diffusion

Disease

(mammals)
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Gene

(mammals)

| r=-0.075 |
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:
KR Y

‘ r=0.9 ‘

“Assuming that animal X
has Gene XR-23, how
likely is animal Y?”

squirrel

woodchuck
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bobcat
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" fox
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Summary: Structured statistical models of
inductive reasoning

e Everyday inductive inferences are guided by rich
background knowledge and intuitive theories, but
rarely do models attempt to formalize the content of
intuitive theories

e Kemp and Tenenbaum present a “Bayesian property
induction” framework that can capture different types
of knowledge as different structures and stochastic
processes operating over these structures

* Having the right structure AND the right process are
crucial to make good inferences



Anderson’s (1991) Bayesian Proposal for Predictions with
Uncertain Categorization

Psychological Review Copyright 1991 by the American Psychological Association, Inc.
1991, Vol. 98, No. 3, 409-429 0033-295X/91/$3.00

The Adaptive Nature of Human Categorization

John R. Anderson
Carnegie Mellon University

A rational model of human categorization behavior is presented that assumes that categorization
reflects the derivation of optimal estimates of the probability of unseen features of objects. A
Bayesian analysis is performed of what optimal estimations would be if categories formed a disjoint
partitioning of the object space and if features were independently displayed within a category. This
Bayesian analysis is placed within an incremental categorization algorithm. The resulting rational
model accounts for effects of central tendency of categories, effects of specific instances, learning of
linearly nonseparable categories, effects of category labels, extraction of basic level categories,
base-rate effects, probability matching in categorization, and trial-by-trial learning functions. Al-
though the rational model considers just 1 level of categorization, it is shown how predictions can
be enhanced by considering higher and lower levels. Considering prediction at the lower, individual
level allows integration of this rational analysis of categorization with the earlier rational analysis of
memory (Anderson & Milson, 1989).

Anderson (1990) presented a rational analysis of human cog- steps involved in a research program that attempts to under-
nition. The term rational derives from similar “rational-man” stand cognition in terms of its adaptation to the environment:
analyses in economics. Rational analyses in other fields are 1. The first task is to specify what the system is trying to

sometimes called adaptationist analyses. Basically, they are ef-  optimize. Perhaps such models are ultimately to be justified in
forts to explain the behavior in some domain on the assump-  terms of maximizing some evolutionary criterion like number
tion that the behavior is optimized with respect to some criteria of surviving offspring. However, this is not a very workable
of adaptive importance. This article begins with a general char-  criterion in most applications. Thus, economics uses wealth as
acterization of how one develops a rational theory of a particu-  the variable to be optimized; optimal foraging theory (Stephens
lar cognitive phenomenon. Then I present the basic theory of & Krebs, 1986) often uses caloric intake; and the rational

mataanrivatinn develaned in Andercon (1990) and review the thmmnets A rmvarnenesr f A ndarenns Br AMilean 10R0) sicece ratriaval Af



Reminder: Anderson’s Rational model

Stimuli plotted in feature space

Feature 2
(“class label”)

2 categories
(“boat” vs. “buoy”)

5 clusters

Feature 1



The Rational model’s formula for predictions with uncertain
categorization

X

Suppose X is an unknown fruit (with some observed properties), and you want to
predict whether or not it is sweet:

P(X is sweet) = Z P(sweet | C)P(C|X)
C
is the proper Bayesian thing to do, if you don’t know the right category C

Also, note the connection with how predictions are made in Kemp & Tenenbaum

P(fY — 1 | ZX) — Z P(fl ZX) f € F : feature in set of all possible features

P Y = {lion, gorilla} : conclusion categories
i ly = {1,0} : feature labels for premise categories



The Rational model’s formula for predictions with uncertain
categorization

conditional probabilities

P(apple[X)=.70 P(sweet|apple)=.50
P(pear|X)=.30 P(sweet|pear)=.90

making a Bayesian prediction
P(X is sweet) = )’ P(sweet|C)P(C|X)
C

= P(sweet|apple)P(apple | X) + P(sweet | pear)P(pear|X)

= .50(.70) + .90(.30) = .62

Note that if you had only used the figure for apples, ignoring that uncertainty of
categorization, you would have estimated a .50 probability that X is sweet.



Questions arising from Anderson’s model

 Will people actually use multiple categories in making
these inductive predictions?

e Murphy & Ross (1994) were skeptical that people are

doing this... and a similar experiment from Murphy &
Ross (2010) is on the next slide

X

P(X is sweet) = Z P(sweet | C)P(C|X)
C



Federico Cyrus

Consider a new red drawing.
Who most likely drew it?
Probability?

What shape is it likely to have?

Normative answer for: What
shape is it likely to have?

P(shape = heart|color =red) =

)’ P(shape = heart| C)P(C| color = red)
C

]
L]
|
A
\ 4
A

OUee

= P(shape = heart | George)P(George | color = red)

George Tony + P(shape = heart | Tony)P(Tony | color = red)

(Murphy & Ross, 2010)



Murphy and Ross (2010) Results

e We can classify individual subjects by strategy in this design
» Only 30% of responses used multiple categories
» 22 subjects consistently focused on single category
(answer: triangle)
» 7 always used multiple categories, as the rational model
predicts (answer: heart)

» Others were mixed —_—— |
B 0 ==
| ] m B
Normative answer for: What O == N
shape is it likely to have? B
P(shape = heart|color =red) = \ 4 <> 4 A
2 P(shape = heart| C)P(C|color = red) Y VA 9
C A A
O @0 A



Murphy and Ross find that people aren’t Bayesian. But if
people only consider the most likely category, how do we
explain success of other Bayesian categorization models?

H .. ... @ .-

100+
] B sub.
I basic
super.
=

1 3 sub. 3 basic 3 super.
Bayesian model

p(y € C|X)= ) P(y € C|h)p(h|X)
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Adults

o
-
HH

chosen
(@)
D

test objects

Percentage of

1 -

B sub.
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super.

| ——x |

1 3 sub. 3 basic 3 super.




Review: Most likely hypothesis doesn’t cut it

Full Bayesian model Generalizing to a new example y
B Sy ﬁ. oL pye CIX)= ¥ P(y € Clp(h|X)
- © @ heH

1 5 S— e
N sub.
0.57 [ basic
H [ Jsuper.
— ]

1 3 sub. 3 basic 3 super.

Most likely hypothesis only

Generalizing to a new example y

N - s h* = argmax, . P(h|X)
- p(y € C|X) = P(y € C|h¥)

1 3 sub. 3 basic 3 super.

generalization is too sharp



Review: Making Bayesian predictions

f € F : feature in set of all possible features _

cheetahs have sesamoid bones.
monkeys DO NOT have sesamoid bones.
Y = {lion, gorilla} : conclusion categories Do lions have sesamoid bones?

_ _ . . ,)
I, = {1,0} : feature labels for premise categories Do gorilla have sesamoid bones*

X = {cheetah, monkey} : set of premise categories

Posterior predictive distribution

P(fy=1|lx): Z P(f|lx)

fr=1
fify Hypotheses and prior distribution Prediction
(weighted average across rows)
cheetah O O OO OO0 0 00000000
iom OO OO0 00000 OO0 00
gorila O O @ @ O 0O 0O®O 0000000
monkey O @ O@®@ O @ OO®OO®OO0O0O0 0O
PU) 2888533588353 8883¢d
S S S S S S S S S S S oS oS S
Data /Iy Hypotheses and posterior distribution Prediction
(weighted average across rows)
cheetah @ 9 O o @ O
lion ? OO0 00O
gorilla  ? O @ O o
monkey (O O O O O O
p(fliy) S S - S
o o o o



Conclusions

Categories are important in induction:

e Even when the question is about a specific category,
typicality to a general category is important (Rips;
Osherson)

* When people choose a category, they base their
induction on it even if they aren’t sure it’s the right
category (Murphy & Ross)

Knowledge is also very important in induction, and Kemp
and Tenenbaum provide a model that shows how
knowledge and statistics can combine to make inferences
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