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Reminder: final paper proposals due 11/15

• Final assignment proposal due on Mon 11/15 (one half page 
written).

• Final paper due date is Monday 12/16

• The final paper is written individually (no groups).

• The final paper should address one of the topics covered in the 
class in more detail. Alternatively, it could investigate a topic that 
was not covered in class. 

• The paper should include a critical review of the literature, along 
with theoretical conclusions or suggestions for future research. I 
would expect papers to be about 12 pages long

• If you want to link the paper to your research, that’s encouraged.



Deductive reasoning involves logical reasoning from one or 
more statements (premises) to reach a certain conclusion

Deductive vs. inductive reasoning

         Foxes have sesamoid bones.
    Pigs have sesamoid bones.
    Therefore, Gorillas have sesamoid bones.

If an angle is between 90° and 180°, then it is obtuse
We know that A = 120°
Therefore, A is an obtuse angle

Inductive reasoning involves probabilistic reasoning from 
premises that supply some evidence for the truth of the conclusion



�tufa� �tufa� 

�tufa� 

Modeling word learning (Tenenbaum & Xu) 

Category learning is inherently an inductive task, 
but that’s not the type of induction we mean today

Here are some “tufas”, where are the others?



I have never met your dog, but I can guess
-what food it may like,
-It probably barks, likes chasing squirrels, likes 
playing catch, etc.
-It will poop,
-It will probably drool,
-etc.

Category-based induction (example 1)

“Can you take care of my dog?”

Predicting unobserved properties based on a category label



Category-based induction (example 2)
Predicting unobserved properties based on knowledge of other categories

“Can you take care of my chinchilla?”

I know next to nothing about chinchillas, but 
I can guess
-what food it may like,
-It probably squeaks, 
-It will poop,
-It doesn’t need to be taken for a walk,
-etc.



Category-based induction (example 3)
188 S.A. Gelman and E. M. Markman 

Figure 1. Sample triad used in Studies 1-5. 

As predicted, adults based their inferences on the common natural kind 
membership of the objects, far more often than on their outward appearance. 
Overall, they concluded that the target picture had the same property as the 
other similarly labeled object an average of 86% of the time, which is signi- 
ficantly greater than chance, t (19) = 15.77, p < .OOl. Furthermore, subjects 
were highly confident that their choices were correct (mean rating was 5.8 
on the 7 point scale, which is significantly greater than chance, t (19) = 11.65, 
p < .OOl). 

Similarity ratings 
It was important that the pictures that we thought were similar were in 

fact perceived as similar. Therefore we gathered ratings of perceptual similar- 
ity from adult subjects. Eighteen undergraduates participated to fulfill a 
course requirement for an introductory psychology class. 

The 20 sets of pictures were divided into two pairs per set: The target 
picture paired with the picture that received the same category label and the 
target picture paired with the picture that was designed to be more similar in 
appearance. Subjects were given a set of written instructions, telling them 
that each pair should be rated on “how much alike the two pictures look to 
one another, on a scale of ‘1’ (not at all similar) to ‘7’ (extremely similar).” 
Subjects were told that they could take into account shape, color, size, com- 
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“This bird’s heart has a right aortic arch only”

“This bat’s heart has a left aortic arch only”

“What does this bird’s heart have?”

Provided Query

Results: 4 year olds generalize based on 
category membership ~68% of time, 
overriding a distractor chosen for strong 
perceptual similarity

(Gelman & Markman, 1986)



Category-based induction is very common in 
communication

“Why didn’t you turn in your homework?”

• “My dog ate my homework” is straightforward

• “My dad ate my homework” requires an explanation


“Where did you get those shoes?”

• “I picked these shoes up at the mall” is straightforward

• “I picked these shoes off my neighbor’s porch” requires an 

explanation




First study of category-based induction
JOURNAL OF VERBAL LEARNING AND VERBAL BEHAVIOR 14, 665-681 (1975) 

Inductive Judgments about Natural Categories 

LANCE J. RIPS 

University of Chicago 

The present study examined the effects of semantic structure on simple inductive judg- 
ments about category members. For a particular category (e.g., mammals), subjects were 
told that one of the species (e.g., horses) had a given property (an unknown disease) and 
were asked to estimate the proportion of instances in the other species that possessed the 
property. The results indicated that category structure--in particular, the typicality 
of the species--influenced subjects' judgments. These results were interpreted by models 
based on the following assumption: When little is known about the underlying distribution 
of a property, subjects assume that the distribution mirrors that of better-known properties. 
For this reason, if subjects learn that an unknown property is possessed by a typical species 
(i.e., one that shares many of its properties with other category members), they are more 
likely to generalize than if the same fact had been learned about an atypical species. 

Gaps in our knowledge of facts force us to 
rely on inductive methods in determining the 
truth or probability of certain statements. 
One, by now traditional, way of studying 
inductive strategies experimentally is through 
concept attainment tasks, which have been 
claimed to provide a direct analogue of induc- 
tive reasoning (Hunt, Marin, & Stone, 1966; 
Trabasso, Rollins, & Shaughnessy, 1971). 
The basis of the analogy is that in concept 
formation paradigms, as in inductive reason- 
ing, tentative hypotheses are advanced on the 
basis of preliminary evidence. These hypo- 
theses are strengthened by confirming evidence 
or are revised in the light of contradictory 
evidence. Of course, thus broadly construed, 
induction is mirrored not only in concept 
attainment, but also in many other paradigms, 
for example in problem-solving, decision- 

Thanks are due to G. H. Bower, D. Burke, H. H. 
Clark, D. Follesdal, J. G. Greeno, J. Huttenlocher, 
W. D. Marslen-Wilson, R. N. Shepard, E. A. C. 
Thomas, H. Wainer, and especially to Edward Smith 
for comments on a preliminary version of this paper. 
Part of the research reported here was supported by 
United States Public Health Service Grant  MH-19705 
and by a grant from the Spencer Foundation. 

The author 's address is Department of Behavioral 
Sciences, University of Chicago, 5848 S. University 
Avenue, Chicago, Illinois, 60637. 
Copyright © 1975 by Academic Press, Inc. 
All rights ofreproducSon in any form reserved. 
Printed in Great Britain 

making, and tachistoscopic recognition. 
Nevertheless, it is concept attainment that 
is most often cited as the counterpart of 
inductive reasoning. 

However, Rosch (1975) has noted that 
concept attainment paradigms may differ 
critically from other inductive situations. Most 
concept attainment studies employ logical 
combinations of binary attributes so that the 
resulting concept has well-defined boundaries. 
A concept so defined has an all-or-none 
structure, in the sense that no instance is a 
better exemplar of the concept than any 
other. Natural language concepts, on the 
other hand, do possess internal structure, and 
in many cases this is due to their relationships 
with other concepts. To illustrate, the best 
examples of mammals seem to be those 
instances that are least like members of the 
contrasting categories, birds and fish; the 
worst examples are those like platypuses or 
whales that share important attributes of the 
contrasting concepts. The effects, in terms of 
long reaction times to verify sentences like .4 
whale is a mammal, have been extensively 
documented (Rosch, 1973; Rips, Shoben, & 
Smith, 1973; Sanford & Seymour, 1974; 
Smith, Shoben & Rips, 1974; and Wilkins, 
1971). 

665 



• Used mammals and birds
• Used blank predicates, which hopefully do not have 

any specific effect on induction
e.g., a new type of contagious disease
(however, as you know from Kemp & Tenenbaum 
reading, disease isn’t a good choice for taxonomic 
reasoning!)

• Example trial: “If pigs have a disease, what proportion 
of deer would be likely to get the disease?” 

Only one premise category
Answer given as a proportion
Two basic variables: can substitute “pigs” (premise) 
or “deer” (conclusion) with any mammal, including 
“dogs”, “rabbits,” etc.

Rips’ (1975) category-based induction task
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To study inductive decisions about natural 
categories, we must incorporate these cate- 
gories directly in our experimental paradigm. 
All inductive situations, however, require at 
least three components: (a) a set of instances, 
(b) some property which could consistently be 
possessed by the instances, and (c) an initial 
specification of those instances known to 
have the property. We can then require a 
subject to make some judgment about those 
instances not already known to have the 
property. To these minimal requirements, we 
can add a further restriction. We limit our- 
selves to cases in which the set mentioned in 
(a) is composed of natural kinds (e.g., birds, 
fruit, .furniture). Some thought must also be 
given to the type of property in (b). If the 
property is some well-known feature of the 
instances, then subjects' inductive judgments 
may reflect little more than their real world 
knowledge about this specific case. An 
alternative is to invent a nonsense property 
about which the subject can have no knowl- 
edge at all. However, it may prove difficult to 
convince subjects to accept the task and to 
use what they know about the structure of 
the category in making their decisions. The 
property we require should force subjects to 
consider the nature of the category without, 
so to speak, giving away the answer. 

Towards these ends, the experiments pre- 
sented below made use of the following 
procedure. Subjects read a problem concern- 

ing animal species inhabiting a small island. 
The problem listed the names of the species 
(e.g., robins, geese, and hawks), together with 
the fact that the number of animals in each 
was approximately the same. The problem 
then stated that all of the animals in one of 
the species (e.g., all of the robins) had a 
new type of communicable disease. Subjects 
were then asked to estimate, for each of the 
other species, the proportion of animals that 
also had the disease. We can let the Given 
Instance denote that species said to have the 
disease, and the Target Instances those 
species about which estimates must be 
made. 

With the exceptions noted below, the 
species were chosen from the Rips et al. 
(1973) scaling solutions for bird and mammal 
instances. These configurations had been 
derived by having subjects rate the similarities 
of each of the pairwise combinations of 
instances, together with the similarity of each 
instance to its superordinate categories (mam- 
mal and animal for the mammal instances, 
and bird and animal for the bird instances). 
These similarity ratings were then submitted 
to Carroll and Chang's (1970) INDSCAL 
program, producing the two-dimensional 
solutions shown in Fig. 1,. In Experiment I 
most of the instances were taken from the 
solution for birds in Panel a, while in Experi- 
ments II-III,  most of the instances were 
mammals drawn from Panel b. 
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FIG. 1. Multidimensional scaling solutions for birds (panel a) and mammals (panel b). 
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Birds Mammals

Rips’s (1975) semantic spaces



Rips’ (1975) results
• Subjects’ answers seem to rely on two factors:

• Similarity of the premise to conclusion category 
(smaller distance is stronger argument)

• Typicality of premise category (smaller distance in 
MDS space from premise to superordinate category 
leads to strong argument)

• Typicality of the conclusion category had no effect (but 
it may be redundant with the first two).

• Note that there is a categorical component and a 
noncategorical component to this theory.

“If pigs have a disease, what 
proportion of deer would be likely to 
get the disease?” 
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Category-Based Induction
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An argument is categorical if its premises and conclusion are of the form All members ofC have
property F, where C is a natural category like FALCON or BIRD, and P remains the same across
premises and conclusion. An example is Grizzly bears love onions. Therefore, all bears love onions.
Such an argument is psychologically strong to the extent that belief in its premises engenders belief
in its conclusion. A subclass of categorical arguments is examined, and the following hypothesis is
advanced: The strength of a categorical argument increases with (a) the degree to which the premise
categories are similar to the conclusion category and (b) the degree to which the premise categories
are similar to members of the lowest level category that includes both the premise and the conclusion
categories. A model based on this hypothesis accounts for 13 qualitative phenomena and the quanti-
tative results of several experiments.

The Problem of Argument Strength

Fundamental to human thought is the confirmation relation,
joining sentences P, ... Pn to another sentence C just in case
belief in the former leads to belief in the latter. Theories of con-
firmation may be cast in the terminology of argument strength,
because P\ ...P, confirm C only to the extent that / > , . . . Pnf
C is a strong argument. We here advance a partial theory of
argument strength, hence of confirmation.

To begin, it will be useful to review the terminology of argu-
ment strength. By an argument is meant a finite list of sen-
tences, the last of which is called the conclusion and the others
its premises. Schematic arguments are written in the form P,
... PJC, whereas real arguments are written vertically, as in
the following examples:

Grizzly bears love onions.
Polar bears love onions.
All bears love onions.

Owls prey on small rodents.
Rattlesnakes prey on small rodents.

(1)

(2)

An argument A is said to be strong for a person 5 just in case 5s
believing A's premises causes S to believe A's conclusion. Mere

Support for this research was provided by National Science Founda-
tion Grants 8609201 and 8705444 to Daniel N. Oshereon and Edward
E. Smith, respectively.

We thank Lawrence Barsalou, Lee Brooks, Susan Gelman, Ellen
Markman, Douglas Medin, Lance Rips, Joshua Stern, and an anony-
mous reviewer for helpful discussion.

Correspondence concerning this article should be addressed to Ed-
ward E. Smith, Department of Psychology, University of Michigan, 330
Packard Road, Arm Arbor, Michigan 48104.

belief in the conclusion of an argument (independently of its
premises) is not sufficient for argument strength. For this rea-
son, Argument 1 is stronger than Argument 2 for most people,
even though the conclusion of Argument 2 is usually considered
more probable than that of Argument 1. An extended discus-
sion of the concept of argument strength is provided in Osher-
son, Smith, and Shafir (1986). It will be convenient to qualify
an argument as strong, without reference to a particular person
S, whenever the argument is strong for most people in a target
population (e.g., American college students). We also say that
P,... P, confirm C if P, . . . PJC is strong.

An illuminating characterization of argument strength
would represent a long step toward a theory of belief fixation
and revision. Unfortunately, no general theory is yet in sight,
and even partial theories are often open to elementary counter-
examples (see Osherson et al., 1986). This article offers a hy-
pothesis about the strength of a restricted set of arguments, ex-
emplified by Arguments 1 and 2. The premises and conclusions
of such arguments attribute a fixed property (e.g., preys on
small rodents) to one or more categories (e.g., OWL and RATTLE-
SNAKE).' The present study focuses on the role of categories in
confirmation; the role of properties is not systematically investi-
gated. In this sense, the model we advance concerns induction
that is category based.

Category-based induction was first examined by Rips (1975).
He studied the strength of single-premise arguments involving
categories such as RABBIT and MOUSE, or EAGLE and BLUEJAY.
The present investigation builds on one of the models that Rips
discusses and applies it to a larger class of arguments.

Our discussion proceeds as follows. After defining the class
of arguments to be considered in this article, and introducing
some relevant terminology, we document a set of 13 qualitative

' We use capitals to denote categories. Properties are italicized.

I8S



Examples of Osherson et al. induction problems

Specific Argument (all categories at same level)

Mosquitoes use the neurotransmitter dihedron.
Ants use the neurotransmitter dihedron.
Bees use the neurotransmitter dihedron.

General Argument (conclusion at more general level)

Grizzly bears love onions.
Polar bears love onions.
All bears love onions 



Two key Osherson et al. variables for inductive 
strength

Similarity-coverage model:

• Similarity of premises to conclusion
‣ maximum of each pair of premise-conclusion 

categories

• Coverage:  How well the premise categories cover 
the superordinate category that includes all the 
categories mentioned?
‣ average of similarity, as computed above, between 

premise set and each member of higher-level 
category

• Note analogy to Rips: also a categorical and 
noncategorical (similarity) component



Two key Osherson et al. variables
• Similarity of premises to conclusion
‣ maximum of each pair of premise-conclusion categories

Example: 
Flies use the neurotransmitter dihedron.
Ants use the neurotransmitter dihedron.
Bees use the neurotransmitter dihedron.

Similarity({Flies, Ants}, Bees)
= Max[(Similarity(Flies, Bees), Similarity(Ants, Bees)]
= Similarity(Flies, Bees)

• Coverage:  How well the premise categories cover the superordinate category 
that includes all the categories mentioned?
‣ average of similarity, as computed above, between premise set and each 

member of higher-level category

Example: 
Grizzly bears love onions.
Polar bears love onions.
All bears love onions

AVERAGE OF…
Similarity({Grizzly, Polar}, Black bears) = Similarity(Grizzly, Black bears),
Similarity({Grizzly, Polar}, Grizzly bears) = Similarity(Grizzly, Grizzly),
Similarity({Grizzly, Polar}, Panda bears) = Similarity(Polar, Panda),



Summary of 13 phenomena



Premise Typicality

In general, the more typical the premise categories, the 
stronger the argument (via coverage).
So, (3) is stronger than (4).

(3) Robins have a high potassium in their blood.
All birds have a high potassium in their blood.

(4) Penguins have a high potassium in their blood.
All birds have a high potassium in their blood.



Premise Diversity

The more variable the premise categories, the stronger the 
argument (via coverage). So, (6) is stronger than (5):

(5) Hippopotamuses require Vitamin K.
    Rhinoceroses require Vitamin K.
    Humans require Vitamin K.

(6) Hippopotamuses require Vitamin K.
    Bats require Vitamin K.
    Humans require Vitamin K.



Premise Monotonicity

If you add more categories (all of them being at the same level) 
to the premises, the argument gets stronger (via similarity and/
or coverage). So, (8) is stronger than (7):

(7) Foxes have sesamoid bones.
    Pigs have sesamoid bones.
    Gorillas have sesamoid bones.

(8) Foxes have sesamoid bones.
    Pigs have sesamoid bones.
    Wolves have sesamoid bones.
    Gorillas have sesamoid bones.



Inclusion fallacy

Argument (9) is felt to be stronger than argument (10).

(9) Robins have an ulnar artery.
    All Birds have an ulnar artery.

(10) Robins have an ulnar artery.
    Ostriches have an ulnar artery.

Why is this a fallacy? Argument 10 is logically entailed by 
argument 9



198 OSHERSON, SMITH, WILKIE, LOPEZ, SHAFIR

Table 5
Confirmation Scores for Two-Premise Specific
Arguments (Horse, Experiment 4)

Mammals Score Mammals Score

COW CHIMP
COW GORILLA
COW MOUSE
COW SQUIRREL
COW DOLPHIN
COW SEAL
COW ELEPHANT
COW RHINO
CHIMP GORILLA
CHIMP MOUSE
CHIMP SQUIRREL
CHIMP DOLPHIN
CHIMP SEAL
CHIMP ELEPHANT
CHIMP RHINO
GORILLA MOUSE
GORILLA SQUIRREL
GORILLA DOLPHIN

.79

.75

.74

.72

.73

.73

.75

.77

.23

.42

.40

.40

.43

.59

.64

.48

.47

.38

GORILLA SEAL
GORILLA ELEPHANT
GORILLA RHINO
MOUSE SQUIRREL
MOUSE DOLPHIN
MOUSE SEAL
MOUSE ELEPHANT
MOUSE RHINO
SQUIRREL DOLPHIN
SQUIRREL SEAL
SQUIRREL ELEPHANT
SQUIRREL RHINO
DOLPHIN SEAL
DOLPHIN ELEPHANT
DOLPHIN RHINO
SEAL ELEPHANT
SEAL RHINO
ELEPHANT RHINO

.41

.61

.63

.17

.28

.25

.58

.62

.32

.26

.54

.61

.06

.54

.54

.51

.56

.57

dieted confirmation scores and obtained confirmation scores is
.87(JV=45,,p<.01).

A replication of the previous study was performed with new
subjects using all 45 arguments based on 2 distinct mammals
from the base set. The resulting correlation between obtained
and predicted confirmation scores was .63 (N = 45, p < .01).
Another replication used all one-premise arguments derived
from the base set and gave a correlation of .75 (N = 10, p < .01).

The foregoing experiments provide evidence for the predic-
tive value of the coverage variable of the similarity-coverage
model. To evaluate the role of the similarity variable, a second
series of studies was performed with specific conclusions. For
example, 20 new subjects rated all 36 possible arguments of the
form

A'requires biotin for hemoglobin synthesis.
Y requires biotin for hemoglobin synthesis.
Horses require biotin for hemoglobin synthesis.

where X and Y are distinct mammals drawn from the base set,
neither of them HORSE, and different arguments contain dis-
tinct pairs of mammals in their premises. As before, the ranks
assigned by the 20 subjects to the 36 arguments were averaged
and divided by 36. Table 5 presents these mean ranks.

According to the Similarity-Coverage Model, the strength of
each argument is given by

aSlM(X, Y; HORSE) + (1 - a)SlM(X, Y; [X, Y, HORSE]).

Because A" and Fare mammals, [X, Y, HORSE] = MAMMAL, so
the foregoing expression reduces to

aSlM(X, Y; HORSE) + (1 - a)SIM(JT, Y; MAMMAL).

For each pair-Y, Y of mammals figuring in the experiment, the
value of SIMCY, Y; HORSE) was taken directly from the data of
the initial similarity study (using the MAX interpretation of
SIM(A", Y; HORSE)). Regarding the second term, an approxima-
tion to SIM(.Y, Y; MAMMAL) was computed as described above.

The Similarity-Coverage Model implies that these two predic-
tor variables should predict the obtained confirmation scores
up to linearity. In fact, the multiple correlation coefficient be-
tween the latter two variables and the obtained confirmation
scores is .96 (N = 45, p < .01).

Can the data be used to provide evidence for both similarity
and coverage variables in the strength of specific arguments,
that is, is there evidence for both SIM( ,̂ Y; HORSE) and SIM(A;
Y; MAMMAL) in an argument of form X, F/HORSE? A natural
way to test for the effect of these variables would be to compute
the partial correlation between each predictor variable and the
obtained confirmation score with the effects of the other predic-
tor variable partialled out. Unfortunately, the interpretation of
such an analysis is clouded by the fact that the similarity and
coverage variables rely on overlapping facts about SIM. In par-
ticular, a high value of SIM(^T, Y; HORSE) increases the value of
SIM(,Y, Y; MAMMAL). For this reason, instead of partial corre-
lations, we have computed nonpartial, Pearson coefficients be-
tween obtained confirmation and each predictor variable taken
alone. The correlation between obtained confirmation scores
and the similarity variables SIM(JT, Y; HORSE) is .95 (N = 45,
p< .01). The correlation between obtained confirmation scores
and the coverage variable SIM(,Y, Y; MAMMAL) is .67 (N = 45,
p < .01). These two coefficients are significantly different

The foregoing results suggest that maximum similarity to
HORSE is sufficient to account for the obtained confirmation
scores. This fact should not be taken to support the view that the
strength of specific arguments depends only on the similarity of
the premise categories to the conclusion category. Such a hy-
pothesis is contradicted by qualitative phenomena discussed
earlier (e.g., premise diversity for specific arguments, see Phe-
nomenon 6).

The foregoing study was replicated three times using different
mammals for the conclusion category, and different numbers
of premises. The obtained correlations between predicted and
observed confirmation scores were all .94 or better.

Other Replications

As a check on the robustness of the preceding findings, five
additional studies were performed. Each study involved one or
more of the following changes compared to the seven original
studies. First, instead of ranking arguments, subjects rated the
probability of an argument's conclusion assuming the truth of
its premises; in addition, different blank properties were used
for every argument. Second, subjects were native French or
Spanish speakers, working with translated materials. Third, the
category INSECT was used in place of MAMMAL. All correlations
in these studies between predicted and observed confirmation
scores were significant at the .01 level, with a median correla-
tion of .88. See Smith et al. (1989) for details.

Discussion

The conjunction of qualitative and quantitative evidence dis-
cussed in previous sections provides reason to believe that the
two terms of the similarity-coverage model reflect genuine psy-
chological processes that are central to confirmation. The

Testing the model: “Osherson horse” dataset
Experiment: a set of arguments were 
written on cards and ranked for 
strength

Argument template:

weak

strong
Results: Similarity-
coverage model 
correlates r=0.96 with 
confirmation scores
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Table 5
Confirmation Scores for Two-Premise Specific
Arguments (Horse, Experiment 4)

Mammals Score Mammals Score

COW CHIMP
COW GORILLA
COW MOUSE
COW SQUIRREL
COW DOLPHIN
COW SEAL
COW ELEPHANT
COW RHINO
CHIMP GORILLA
CHIMP MOUSE
CHIMP SQUIRREL
CHIMP DOLPHIN
CHIMP SEAL
CHIMP ELEPHANT
CHIMP RHINO
GORILLA MOUSE
GORILLA SQUIRREL
GORILLA DOLPHIN

.79

.75

.74

.72

.73

.73

.75

.77

.23

.42

.40

.40

.43

.59

.64

.48

.47

.38

GORILLA SEAL
GORILLA ELEPHANT
GORILLA RHINO
MOUSE SQUIRREL
MOUSE DOLPHIN
MOUSE SEAL
MOUSE ELEPHANT
MOUSE RHINO
SQUIRREL DOLPHIN
SQUIRREL SEAL
SQUIRREL ELEPHANT
SQUIRREL RHINO
DOLPHIN SEAL
DOLPHIN ELEPHANT
DOLPHIN RHINO
SEAL ELEPHANT
SEAL RHINO
ELEPHANT RHINO

.41

.61

.63

.17

.28

.25

.58

.62

.32

.26

.54

.61

.06

.54

.54

.51

.56

.57

dieted confirmation scores and obtained confirmation scores is
.87(JV=45,,p<.01).

A replication of the previous study was performed with new
subjects using all 45 arguments based on 2 distinct mammals
from the base set. The resulting correlation between obtained
and predicted confirmation scores was .63 (N = 45, p < .01).
Another replication used all one-premise arguments derived
from the base set and gave a correlation of .75 (N = 10, p < .01).

The foregoing experiments provide evidence for the predic-
tive value of the coverage variable of the similarity-coverage
model. To evaluate the role of the similarity variable, a second
series of studies was performed with specific conclusions. For
example, 20 new subjects rated all 36 possible arguments of the
form

A'requires biotin for hemoglobin synthesis.
Y requires biotin for hemoglobin synthesis.
Horses require biotin for hemoglobin synthesis.

where X and Y are distinct mammals drawn from the base set,
neither of them HORSE, and different arguments contain dis-
tinct pairs of mammals in their premises. As before, the ranks
assigned by the 20 subjects to the 36 arguments were averaged
and divided by 36. Table 5 presents these mean ranks.

According to the Similarity-Coverage Model, the strength of
each argument is given by

aSlM(X, Y; HORSE) + (1 - a)SlM(X, Y; [X, Y, HORSE]).

Because A" and Fare mammals, [X, Y, HORSE] = MAMMAL, so
the foregoing expression reduces to

aSlM(X, Y; HORSE) + (1 - a)SIM(JT, Y; MAMMAL).

For each pair-Y, Y of mammals figuring in the experiment, the
value of SIMCY, Y; HORSE) was taken directly from the data of
the initial similarity study (using the MAX interpretation of
SIM(A", Y; HORSE)). Regarding the second term, an approxima-
tion to SIM(.Y, Y; MAMMAL) was computed as described above.

The Similarity-Coverage Model implies that these two predic-
tor variables should predict the obtained confirmation scores
up to linearity. In fact, the multiple correlation coefficient be-
tween the latter two variables and the obtained confirmation
scores is .96 (N = 45, p < .01).

Can the data be used to provide evidence for both similarity
and coverage variables in the strength of specific arguments,
that is, is there evidence for both SIM( ,̂ Y; HORSE) and SIM(A;
Y; MAMMAL) in an argument of form X, F/HORSE? A natural
way to test for the effect of these variables would be to compute
the partial correlation between each predictor variable and the
obtained confirmation score with the effects of the other predic-
tor variable partialled out. Unfortunately, the interpretation of
such an analysis is clouded by the fact that the similarity and
coverage variables rely on overlapping facts about SIM. In par-
ticular, a high value of SIM(^T, Y; HORSE) increases the value of
SIM(,Y, Y; MAMMAL). For this reason, instead of partial corre-
lations, we have computed nonpartial, Pearson coefficients be-
tween obtained confirmation and each predictor variable taken
alone. The correlation between obtained confirmation scores
and the similarity variables SIM(JT, Y; HORSE) is .95 (N = 45,
p< .01). The correlation between obtained confirmation scores
and the coverage variable SIM(,Y, Y; MAMMAL) is .67 (N = 45,
p < .01). These two coefficients are significantly different

The foregoing results suggest that maximum similarity to
HORSE is sufficient to account for the obtained confirmation
scores. This fact should not be taken to support the view that the
strength of specific arguments depends only on the similarity of
the premise categories to the conclusion category. Such a hy-
pothesis is contradicted by qualitative phenomena discussed
earlier (e.g., premise diversity for specific arguments, see Phe-
nomenon 6).

The foregoing study was replicated three times using different
mammals for the conclusion category, and different numbers
of premises. The obtained correlations between predicted and
observed confirmation scores were all .94 or better.

Other Replications

As a check on the robustness of the preceding findings, five
additional studies were performed. Each study involved one or
more of the following changes compared to the seven original
studies. First, instead of ranking arguments, subjects rated the
probability of an argument's conclusion assuming the truth of
its premises; in addition, different blank properties were used
for every argument. Second, subjects were native French or
Spanish speakers, working with translated materials. Third, the
category INSECT was used in place of MAMMAL. All correlations
in these studies between predicted and observed confirmation
scores were significant at the .01 level, with a median correla-
tion of .88. See Smith et al. (1989) for details.

Discussion

The conjunction of qualitative and quantitative evidence dis-
cussed in previous sections provides reason to believe that the
two terms of the similarity-coverage model reflect genuine psy-
chological processes that are central to confirmation. The
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Table 4
Confirmation Scores for Three-Premise, Genera! Arguments

Mammals Score Mammals Score

HORSE COW MOUSE
HORSE COW SEAL
HORSE COW RHINO

HORSE CHIMP SQUIRREL
HORSE CHIMP SEAL
HORSE GORILLA SQUIRREL
HORSE GORILLA DOLPHIN
HORSE MOUSE SQUIRREL
HORSE MOUSE SEAL

HORSE MOUSE RHINO
HORSE SQUIRREL SEAL

HORSE SQUIRREL ELEPHANT
HORSE DOLPHIN SEAL

HORSE DOLPHIN ELEPHANT
COW CHIMP DOLPHIN
COW CHIMP SEAL
COW CHIMP ELEPHANT
COW MOUSE SEAL
COW MOUSE RHINO
COW SQUIRREL DOLPHIN
COW SQUIRREL RHINO
COW DOLPHIN ELEPHANT
COW DOLPHIN RHINO

.33

.39

.17

.55

.75

.64

.73

.28

.69

.42

.63

.47

.27

.49

.76

.70

.40

.68

.40

.76

.36

.48

.49

COW SEAL ELEPHANT
COW ELEPHANT RHINO
CHIMP GORILLA SQUIRREL
CHIMP GORILLA DOLPHIN
CHIMP GORILLA SEAL
CHIMP SQUIRREL DOLPHIN
CHIMP SQUIRREL ELEPHANT
CHIMP SQUIRREL RHINO
CHIMP DOLPHIN ELEPHANT
GORILLA MOUSE SEAL
GORILLA MOUSE ELEPHANT
GORILLA SQUIRREL DOLPHIN
GORILLA SEAL ELEPHANT

GORILLA ELEPHANT RHINO
MOUSE SQUIRREL SEAL
MOUSE DOLPHIN SEAL
MOUSE SEAL ELEPHANT
MOUSE SEAL RHINO
MOUSE ELEPHANT RHINO
SQUIRREL DOLPHIN SEAL
SQUIRREL DOLPHIN RHINO
SQUIRREL SEAL RHINO

.47

.14

.30

.31

.30

.80

.62

.61

.72

.82

.58

.80

.60

.26

.35

.32

.70

.65

.31

.30

.68

.62

Coverage Model makes no claims about the average value of
the parameter a in the sample of subjects participating in our
studies, we leave the a, b, d coefficients as free parameters.

Confirmation Studies

Separate groups of 20 subjects ranked the strength of argu-
ments based on the instances in the base set. For example, one
group ranked 45 arguments of the form

X requires biotin for hemoglobin synthesis,
y requires biotin for hemoglobin synthesis.
Z requires biotin for hemoglobin synthesis.
All mammals require biotin for hemoglobin synthesis.

where X, Y, and Z are distinct mammals drawn from the base
set, and different arguments contain distinct trios of mammals
in their premises. Together, there are 120 such premise-triples,
and 45 were randomly generated to create the 45 arguments.
These premise-triples are presented in Table 4.

Four sets of 45 cards were prepared, corresponding to the 45
arguments generated for the experiment. The names of the
three mammals figuring in the premises were printed near the
top of each card. The four sets differed in the order in which the
mammals on a card appeared; four different random patterns
were used. The following instructions were used:

We are frequently called upon to make judgments of the likelihood
of something being true on the basis of limited information. Con-
sider the following statement:

All mammals require biotin for hemoglobin synthesis.

How likely would you think that this statement is true if you knew,
say, that all coyotes required biotin for hemoglobin synthesis?
Would your opinion change if, instead of coyotes, you knew the
statement to be true of moles, or anteaters?

In this task you will be helping us to find out more about this type
of reasoning. You will be handed a set of 45 cards. On each card
will be written the name of the three mammals. For each card, you
are to accept it as given that the mammals listed require biotin for
hemoglobin synthesis. On the basis of this evidence, you are to
determine how likely it is that all mammals require biotin for he-
moglobin synthesis. Each card is to be evaluated entirely indepen-
dently of the others.

Some of the mammals may seem to provide stronger evidence than
others, \four task is to arrange the 45 cards in order of increasing
strength of evidence.

The mechanics of a ranking procedure were then explained,
and it was made explicit that no ties in the ranking were per-
mitted.

The ranks assigned by the 20 subjects were averaged and di-
vided by 45. Each argument thus received an "obtained con-
firmation score," namely, a number between 0 and 1, where 1
represents high assessed confirmation and 0 represents low as-
sessed confirmation. These obtained confirmation scores are
presented in Table 4.

Consider now the predicted confirmation scores. According
to the similarity-coverage model, the strength of each of the
arguments is given by

«SIM(X Y, Z; MAMMAL)

+ (1 - aJSIMfX, y, 2; (X, Y, Z, MAMMAL]).

Because X, Y, and Z are mammals, [X, Y, Z, MAMMAL] = MAM-
MAL, so the foregoing expression reduces to SIM(X, Y, Z; MAM-
MAL). For each triple X, Y, Z of mammals figuring in the experi-
ment, an approximation to SIM(.Y, Y, Z; MAMMAL) was com-
puted by first determining the maximum similarity of each
mammal in the base set to X, Y, Z, and then taking the average
of these maximum similarities. The correlation between pre-
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Table 4
Confirmation Scores for Three-Premise, Genera! Arguments

Mammals Score Mammals Score

HORSE COW MOUSE
HORSE COW SEAL
HORSE COW RHINO

HORSE CHIMP SQUIRREL
HORSE CHIMP SEAL
HORSE GORILLA SQUIRREL
HORSE GORILLA DOLPHIN
HORSE MOUSE SQUIRREL
HORSE MOUSE SEAL

HORSE MOUSE RHINO
HORSE SQUIRREL SEAL

HORSE SQUIRREL ELEPHANT
HORSE DOLPHIN SEAL

HORSE DOLPHIN ELEPHANT
COW CHIMP DOLPHIN
COW CHIMP SEAL
COW CHIMP ELEPHANT
COW MOUSE SEAL
COW MOUSE RHINO
COW SQUIRREL DOLPHIN
COW SQUIRREL RHINO
COW DOLPHIN ELEPHANT
COW DOLPHIN RHINO

.33

.39

.17

.55

.75

.64

.73

.28

.69

.42

.63

.47

.27

.49

.76

.70

.40

.68

.40

.76

.36

.48

.49

COW SEAL ELEPHANT
COW ELEPHANT RHINO
CHIMP GORILLA SQUIRREL
CHIMP GORILLA DOLPHIN
CHIMP GORILLA SEAL
CHIMP SQUIRREL DOLPHIN
CHIMP SQUIRREL ELEPHANT
CHIMP SQUIRREL RHINO
CHIMP DOLPHIN ELEPHANT
GORILLA MOUSE SEAL
GORILLA MOUSE ELEPHANT
GORILLA SQUIRREL DOLPHIN
GORILLA SEAL ELEPHANT

GORILLA ELEPHANT RHINO
MOUSE SQUIRREL SEAL
MOUSE DOLPHIN SEAL
MOUSE SEAL ELEPHANT
MOUSE SEAL RHINO
MOUSE ELEPHANT RHINO
SQUIRREL DOLPHIN SEAL
SQUIRREL DOLPHIN RHINO
SQUIRREL SEAL RHINO

.47

.14

.30

.31

.30

.80

.62

.61

.72

.82

.58

.80

.60

.26

.35

.32

.70

.65

.31

.30

.68

.62

Coverage Model makes no claims about the average value of
the parameter a in the sample of subjects participating in our
studies, we leave the a, b, d coefficients as free parameters.

Confirmation Studies

Separate groups of 20 subjects ranked the strength of argu-
ments based on the instances in the base set. For example, one
group ranked 45 arguments of the form

X requires biotin for hemoglobin synthesis,
y requires biotin for hemoglobin synthesis.
Z requires biotin for hemoglobin synthesis.
All mammals require biotin for hemoglobin synthesis.

where X, Y, and Z are distinct mammals drawn from the base
set, and different arguments contain distinct trios of mammals
in their premises. Together, there are 120 such premise-triples,
and 45 were randomly generated to create the 45 arguments.
These premise-triples are presented in Table 4.

Four sets of 45 cards were prepared, corresponding to the 45
arguments generated for the experiment. The names of the
three mammals figuring in the premises were printed near the
top of each card. The four sets differed in the order in which the
mammals on a card appeared; four different random patterns
were used. The following instructions were used:

We are frequently called upon to make judgments of the likelihood
of something being true on the basis of limited information. Con-
sider the following statement:

All mammals require biotin for hemoglobin synthesis.

How likely would you think that this statement is true if you knew,
say, that all coyotes required biotin for hemoglobin synthesis?
Would your opinion change if, instead of coyotes, you knew the
statement to be true of moles, or anteaters?

In this task you will be helping us to find out more about this type
of reasoning. You will be handed a set of 45 cards. On each card
will be written the name of the three mammals. For each card, you
are to accept it as given that the mammals listed require biotin for
hemoglobin synthesis. On the basis of this evidence, you are to
determine how likely it is that all mammals require biotin for he-
moglobin synthesis. Each card is to be evaluated entirely indepen-
dently of the others.

Some of the mammals may seem to provide stronger evidence than
others, \four task is to arrange the 45 cards in order of increasing
strength of evidence.

The mechanics of a ranking procedure were then explained,
and it was made explicit that no ties in the ranking were per-
mitted.

The ranks assigned by the 20 subjects were averaged and di-
vided by 45. Each argument thus received an "obtained con-
firmation score," namely, a number between 0 and 1, where 1
represents high assessed confirmation and 0 represents low as-
sessed confirmation. These obtained confirmation scores are
presented in Table 4.

Consider now the predicted confirmation scores. According
to the similarity-coverage model, the strength of each of the
arguments is given by

«SIM(X Y, Z; MAMMAL)

+ (1 - aJSIMfX, y, 2; (X, Y, Z, MAMMAL]).

Because X, Y, and Z are mammals, [X, Y, Z, MAMMAL] = MAM-
MAL, so the foregoing expression reduces to SIM(X, Y, Z; MAM-
MAL). For each triple X, Y, Z of mammals figuring in the experi-
ment, an approximation to SIM(.Y, Y, Z; MAMMAL) was com-
puted by first determining the maximum similarity of each
mammal in the base set to X, Y, Z, and then taking the average
of these maximum similarities. The correlation between pre-

Argument template:

weak

strong

Results: Similarity-
coverage model 
correlates r=0.87 with 
confirmation scores

Experiment: a set of arguments were 
written on cards and ranked for 
strength



Limitations of Osherson et al. approach

• Model is very successful at predicting phenomena in 
category-based induction (this paper is always cited)

• But the model doesn’t do well when predicting meaningful 
predicates (non-blank; Heit & Rubinstein, 1994)

(11) Given that tuna/rabbits have blood that contains between 
2% and 3% potassium, how likely are whales to have blood that 
contains between 2% and 3% potassium?”
(12) Given that tuna/rabbits usually gather a large amount of 
food at once, how likely are whales to usually gather a large 
amount of food at once?”

Induction is greater for rabbit-whale for biological properties, and 
tuna-whale in behavioral properties, so the predicate makes a 
difference. Oops!



Structured Statistical Models of Inductive Reasoning
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Everyday inductive inferences are often guided by rich background knowledge. Formal models of
induction should aim to incorporate this knowledge and should explain how different kinds of knowledge
lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a
Bayesian framework that attempts to meet both goals and describe 4 applications of the framework: a
taxonomic model, a spatial model, a threshold model, and a causal model. Each model makes probabi-
listic inferences about the extensions of novel properties, but the priors for the 4 models are defined over
different kinds of structures that capture different relationships between the categories in a domain. The
framework therefore shows how statistical inference can operate over structured background knowledge,
and the authors argue that this interaction between structure and statistics is critical for explaining the
power and flexibility of human reasoning.

Keywords: inductive reasoning, property induction, knowledge representation, Bayesian inference

Humans are adept at making inferences that take them beyond
the limits of their direct experience. Even young children can learn
the meaning of a novel word from a single labeled example
(Heibeck & Markman, 1987), predict the trajectory of a moving
object when it passes behind an occluder (Spelke, 1990), and
choose a gait that allows them to walk over terrain they have never
before encountered. Inferences like these may differ in many
respects, but common to them all is the need to go beyond the
information given (Bruner, 1973).

Two different ways of going beyond the available information
can be distinguished. Deductive inferences draw out conclusions
that may have been previously unstated but were implicit in the
data provided. Inductive inferences go beyond the available data in
a more fundamental way and arrive at conclusions that are likely
but not certain given the available evidence. Both kinds of infer-
ences are of psychological interest, but inductive inferences appear
to play a more central role in everyday cognition. We have already
seen examples related to language, vision, and motor control, and
many other inductive problems have been described in the litera-
ture (Anderson, 1990; Holland, Holyoak, Nisbett, & Thagard,
1986).

This article describes a formal approach to inductive inference
that should apply to many different problems, but we focus on the
problem of property induction (Sloman & Lagnado, 2005). In
particular, we consider cases where one or more categories in a
domain are observed to have a novel property and the inductive
task is to predict how the property is distributed over the remaining
categories in the domain. For instance, given that bears have
sesamoid bones, which species is more likely to share this prop-
erty: moose or salmon (Osherson, Smith, Wilkie, Lopez, & Shafir,
1990; Rips, 1975)? Moose may seem like the better choice because
they are more similar biologically to bears, but different properties
can lead to different patterns of inference. For example, given that
a certain disease is found in bears, it may seem more likely that the
disease is found in salmon than in moose—perhaps the bears
picked up the disease from something they ate.

As these examples suggest, inferences about different properties
can draw on very different kinds of knowledge. A psychological
account of induction should answer at least two questions—what is
the nature of the background knowledge that supports induction,
and how is that knowledge combined with evidence to yield a
conclusion? The first challenge is to handle the diverse forms of
knowledge that are relevant to different problems. For instance,
inferences about an anatomical property like sesamoid bones may
be guided by knowledge about the taxonomic relationships be-
tween biological species, but inferences about a novel disease may
be guided by ecological relationships between species, such as
predator–prey relations. The second challenge is to explain how
this knowledge guides induction. For instance, we need to explain
how knowledge about ecological relationships (“bears eat
salmon”) is combined with evidence (“salmon have a disease”) to
arrive at a conclusion (“bears are likely to carry the disease”).

Existing accounts of property induction usually emphasize just
one of the questions we have identified. Theory-based approaches
(Carey, 1985; Murphy & Medin, 1985) focus on the first question
and attempt to characterize the knowledge that supports induction.
Studies in this tradition have established that induction often draws
on intuitive theories, or systems of rich conceptual knowledge, and
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Structured statistical models of inductive 
reasoning

• Everyday inductive inferences are guided by rich 
background knowledge

• Different kinds of knowledge leads to distinct patterns 
of reasoning

• Theory-based approaches and “the knowledge view” 
explain how knowledge matters, but rarely attempt to 
formalize the content of intuitive theories

• Kemp and Tenenbaum present a “Bayesian property 
induction” framework that can capture different types 
of knowledge as different structures and stochastic 
processes operating over these structures



Review: Examples of Intuitive Theories or General 
Knowledge Relevant to Concept Learning

• biological knowledge

• naive physics

• naive psychology


beliefs, desires, goals

psychological effects of different events

different personality types


• causal mechanics of various machines and artifacts

Most relevant to Kemp and Tenenbaum…

• biological knowledge

• geographical knowledge

• commonsense knowledge, physical knowledge 

• causal, ecological knowledge



that different properties can invoke different intuitive theories.
Theory-based approaches, however, rarely attempt to formalize the
content of intuitive theories and are therefore unable to explain
precisely how these theories are used for inductive inference.
Statistical or similarity-based approaches (Heit, 1998; Osherson et
al., 1990; Rips, 1975) offer complementary strengths—they often
provide formal models of inductive inference, but they usually
work with very limited kinds of knowledge. Similarity-based ap-
proaches, for instance, typically assume that the knowledge re-
quired for property induction can be captured by a single pairwise
relation between the categories in a domain. We argue that each of
these traditions needs the other. Theory-based approaches need
statistical inference to explain how theories are acquired and used,
and statistical approaches will remain limited in scope unless they
can incorporate the content of intuitive theories.

This article develops a modeling framework that attempts to
combine the strengths of the theory-based and statistical traditions.
The problem of property induction can be modeled as a statistical
inference about the probability of the conclusion given the ob-
served premises. A Bayesian approach to this problem incorpo-
rates a prior distribution, and we suggest that this prior distribution
is often generated by intuitive theories. Bayesian models are crit-
icized in some contexts for relying on prior distributions (Edwards,
1972), but sensitivity to prior knowledge is a distinct advantage
when modeling inductive reasoning. The prior distribution used by
a Bayesian model can capture background knowledge of arbitrary
sophistication, and different prior distributions can account for
different patterns of reasoning in different inductive contexts.

To turn these ideas into a computational framework, we develop
a general method for capturing some of the rich background
knowledge embedded in intuitive theories. Our approach is sum-
marized by Figure 1. For any given problem, the starting point is
a structure representing the key relationships between categories in
a domain. For example, the tree structure in Figure 1a captures
knowledge about the taxonomic relationships among a group of
biological species, the one-dimensional spaces in Figures 1b and
1c capture knowledge about the body weights of these species, and
the directed graph in Figure 1d captures knowledge about
predator–prey relationships.

In addition to knowledge about relationships between catego-
ries, a reasoner must also know how the distribution of a given
property is likely to depend on these relationships. For example, a
biological property like “has enzyme X132” is likely to respect
taxonomic boundaries and will probably be shared by the species
belonging to some subtree of the taxonomy in Figure 1a. Species
which “ideally consume around 15 g of sodium per week in the
wild” will probably have roughly similar weights and will fall
within some subinterval of the one-dimensional space in Figure 1b.
Two properties may depend on the same underlying structure in
different ways—for example, a species will be “heavy enough to
trigger an average pit trap” if its weight exceeds some threshold
along the dimension in Figure 1c. Finally, a reasoner might know
that properties like “carries leptospirosis” are likely to be trans-
mitted along the links in the food web in Figure 1d but could also
arise from other sources outside the web.
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Figure 1. Structured statistical models for reasoning about four kinds of properties. The models rely on
structures of three different forms, and each model combines a structure S and a stochastic process T to generate
a prior distribution, p(f |S,T), on properties. The bottom row shows properties with high prior probability
according to each model. Each column represents the extension of a property—for example, property f 1 in the
taxonomic data set is shared only by cheetahs and lions. The prior distribution p(f |S,T) specified by each model
can be used to make inferences about a partially observed property, f new. For instance, a diffusion process over
a tree captures the intuition that animals nearby in the tree are likely to have similar properties and predicts that
lions are likely to have enzyme X132 if cheetahs are known to have this property.
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Taxonomic model Spatial model Threshold model Causal model

Four different intuitive theories to support inductive 
reasoning, unified as Bayesian property induction



that different properties can invoke different intuitive theories.
Theory-based approaches, however, rarely attempt to formalize the
content of intuitive theories and are therefore unable to explain
precisely how these theories are used for inductive inference.
Statistical or similarity-based approaches (Heit, 1998; Osherson et
al., 1990; Rips, 1975) offer complementary strengths—they often
provide formal models of inductive inference, but they usually
work with very limited kinds of knowledge. Similarity-based ap-
proaches, for instance, typically assume that the knowledge re-
quired for property induction can be captured by a single pairwise
relation between the categories in a domain. We argue that each of
these traditions needs the other. Theory-based approaches need
statistical inference to explain how theories are acquired and used,
and statistical approaches will remain limited in scope unless they
can incorporate the content of intuitive theories.

This article develops a modeling framework that attempts to
combine the strengths of the theory-based and statistical traditions.
The problem of property induction can be modeled as a statistical
inference about the probability of the conclusion given the ob-
served premises. A Bayesian approach to this problem incorpo-
rates a prior distribution, and we suggest that this prior distribution
is often generated by intuitive theories. Bayesian models are crit-
icized in some contexts for relying on prior distributions (Edwards,
1972), but sensitivity to prior knowledge is a distinct advantage
when modeling inductive reasoning. The prior distribution used by
a Bayesian model can capture background knowledge of arbitrary
sophistication, and different prior distributions can account for
different patterns of reasoning in different inductive contexts.

To turn these ideas into a computational framework, we develop
a general method for capturing some of the rich background
knowledge embedded in intuitive theories. Our approach is sum-
marized by Figure 1. For any given problem, the starting point is
a structure representing the key relationships between categories in
a domain. For example, the tree structure in Figure 1a captures
knowledge about the taxonomic relationships among a group of
biological species, the one-dimensional spaces in Figures 1b and
1c capture knowledge about the body weights of these species, and
the directed graph in Figure 1d captures knowledge about
predator–prey relationships.

In addition to knowledge about relationships between catego-
ries, a reasoner must also know how the distribution of a given
property is likely to depend on these relationships. For example, a
biological property like “has enzyme X132” is likely to respect
taxonomic boundaries and will probably be shared by the species
belonging to some subtree of the taxonomy in Figure 1a. Species
which “ideally consume around 15 g of sodium per week in the
wild” will probably have roughly similar weights and will fall
within some subinterval of the one-dimensional space in Figure 1b.
Two properties may depend on the same underlying structure in
different ways—for example, a species will be “heavy enough to
trigger an average pit trap” if its weight exceeds some threshold
along the dimension in Figure 1c. Finally, a reasoner might know
that properties like “carries leptospirosis” are likely to be trans-
mitted along the links in the food web in Figure 1d but could also
arise from other sources outside the web.
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Figure 1. Structured statistical models for reasoning about four kinds of properties. The models rely on
structures of three different forms, and each model combines a structure S and a stochastic process T to generate
a prior distribution, p(f |S,T), on properties. The bottom row shows properties with high prior probability
according to each model. Each column represents the extension of a property—for example, property f 1 in the
taxonomic data set is shared only by cheetahs and lions. The prior distribution p(f |S,T) specified by each model
can be used to make inferences about a partially observed property, f new. For instance, a diffusion process over
a tree captures the intuition that animals nearby in the tree are likely to have similar properties and predicts that
lions are likely to have enzyme X132 if cheetahs are known to have this property.
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that different properties can invoke different intuitive theories.
Theory-based approaches, however, rarely attempt to formalize the
content of intuitive theories and are therefore unable to explain
precisely how these theories are used for inductive inference.
Statistical or similarity-based approaches (Heit, 1998; Osherson et
al., 1990; Rips, 1975) offer complementary strengths—they often
provide formal models of inductive inference, but they usually
work with very limited kinds of knowledge. Similarity-based ap-
proaches, for instance, typically assume that the knowledge re-
quired for property induction can be captured by a single pairwise
relation between the categories in a domain. We argue that each of
these traditions needs the other. Theory-based approaches need
statistical inference to explain how theories are acquired and used,
and statistical approaches will remain limited in scope unless they
can incorporate the content of intuitive theories.

This article develops a modeling framework that attempts to
combine the strengths of the theory-based and statistical traditions.
The problem of property induction can be modeled as a statistical
inference about the probability of the conclusion given the ob-
served premises. A Bayesian approach to this problem incorpo-
rates a prior distribution, and we suggest that this prior distribution
is often generated by intuitive theories. Bayesian models are crit-
icized in some contexts for relying on prior distributions (Edwards,
1972), but sensitivity to prior knowledge is a distinct advantage
when modeling inductive reasoning. The prior distribution used by
a Bayesian model can capture background knowledge of arbitrary
sophistication, and different prior distributions can account for
different patterns of reasoning in different inductive contexts.

To turn these ideas into a computational framework, we develop
a general method for capturing some of the rich background
knowledge embedded in intuitive theories. Our approach is sum-
marized by Figure 1. For any given problem, the starting point is
a structure representing the key relationships between categories in
a domain. For example, the tree structure in Figure 1a captures
knowledge about the taxonomic relationships among a group of
biological species, the one-dimensional spaces in Figures 1b and
1c capture knowledge about the body weights of these species, and
the directed graph in Figure 1d captures knowledge about
predator–prey relationships.

In addition to knowledge about relationships between catego-
ries, a reasoner must also know how the distribution of a given
property is likely to depend on these relationships. For example, a
biological property like “has enzyme X132” is likely to respect
taxonomic boundaries and will probably be shared by the species
belonging to some subtree of the taxonomy in Figure 1a. Species
which “ideally consume around 15 g of sodium per week in the
wild” will probably have roughly similar weights and will fall
within some subinterval of the one-dimensional space in Figure 1b.
Two properties may depend on the same underlying structure in
different ways—for example, a species will be “heavy enough to
trigger an average pit trap” if its weight exceeds some threshold
along the dimension in Figure 1c. Finally, a reasoner might know
that properties like “carries leptospirosis” are likely to be trans-
mitted along the links in the food web in Figure 1d but could also
arise from other sources outside the web.
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Figure 1. Structured statistical models for reasoning about four kinds of properties. The models rely on
structures of three different forms, and each model combines a structure S and a stochastic process T to generate
a prior distribution, p(f |S,T), on properties. The bottom row shows properties with high prior probability
according to each model. Each column represents the extension of a property—for example, property f 1 in the
taxonomic data set is shared only by cheetahs and lions. The prior distribution p(f |S,T) specified by each model
can be used to make inferences about a partially observed property, f new. For instance, a diffusion process over
a tree captures the intuition that animals nearby in the tree are likely to have similar properties and predicts that
lions are likely to have enzyme X132 if cheetahs are known to have this property.
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that different properties can invoke different intuitive theories.
Theory-based approaches, however, rarely attempt to formalize the
content of intuitive theories and are therefore unable to explain
precisely how these theories are used for inductive inference.
Statistical or similarity-based approaches (Heit, 1998; Osherson et
al., 1990; Rips, 1975) offer complementary strengths—they often
provide formal models of inductive inference, but they usually
work with very limited kinds of knowledge. Similarity-based ap-
proaches, for instance, typically assume that the knowledge re-
quired for property induction can be captured by a single pairwise
relation between the categories in a domain. We argue that each of
these traditions needs the other. Theory-based approaches need
statistical inference to explain how theories are acquired and used,
and statistical approaches will remain limited in scope unless they
can incorporate the content of intuitive theories.

This article develops a modeling framework that attempts to
combine the strengths of the theory-based and statistical traditions.
The problem of property induction can be modeled as a statistical
inference about the probability of the conclusion given the ob-
served premises. A Bayesian approach to this problem incorpo-
rates a prior distribution, and we suggest that this prior distribution
is often generated by intuitive theories. Bayesian models are crit-
icized in some contexts for relying on prior distributions (Edwards,
1972), but sensitivity to prior knowledge is a distinct advantage
when modeling inductive reasoning. The prior distribution used by
a Bayesian model can capture background knowledge of arbitrary
sophistication, and different prior distributions can account for
different patterns of reasoning in different inductive contexts.

To turn these ideas into a computational framework, we develop
a general method for capturing some of the rich background
knowledge embedded in intuitive theories. Our approach is sum-
marized by Figure 1. For any given problem, the starting point is
a structure representing the key relationships between categories in
a domain. For example, the tree structure in Figure 1a captures
knowledge about the taxonomic relationships among a group of
biological species, the one-dimensional spaces in Figures 1b and
1c capture knowledge about the body weights of these species, and
the directed graph in Figure 1d captures knowledge about
predator–prey relationships.

In addition to knowledge about relationships between catego-
ries, a reasoner must also know how the distribution of a given
property is likely to depend on these relationships. For example, a
biological property like “has enzyme X132” is likely to respect
taxonomic boundaries and will probably be shared by the species
belonging to some subtree of the taxonomy in Figure 1a. Species
which “ideally consume around 15 g of sodium per week in the
wild” will probably have roughly similar weights and will fall
within some subinterval of the one-dimensional space in Figure 1b.
Two properties may depend on the same underlying structure in
different ways—for example, a species will be “heavy enough to
trigger an average pit trap” if its weight exceeds some threshold
along the dimension in Figure 1c. Finally, a reasoner might know
that properties like “carries leptospirosis” are likely to be trans-
mitted along the links in the food web in Figure 1d but could also
arise from other sources outside the web.
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Figure 1. Structured statistical models for reasoning about four kinds of properties. The models rely on
structures of three different forms, and each model combines a structure S and a stochastic process T to generate
a prior distribution, p(f |S,T), on properties. The bottom row shows properties with high prior probability
according to each model. Each column represents the extension of a property—for example, property f 1 in the
taxonomic data set is shared only by cheetahs and lions. The prior distribution p(f |S,T) specified by each model
can be used to make inferences about a partially observed property, f new. For instance, a diffusion process over
a tree captures the intuition that animals nearby in the tree are likely to have similar properties and predicts that
lions are likely to have enzyme X132 if cheetahs are known to have this property.
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that different properties can invoke different intuitive theories.
Theory-based approaches, however, rarely attempt to formalize the
content of intuitive theories and are therefore unable to explain
precisely how these theories are used for inductive inference.
Statistical or similarity-based approaches (Heit, 1998; Osherson et
al., 1990; Rips, 1975) offer complementary strengths—they often
provide formal models of inductive inference, but they usually
work with very limited kinds of knowledge. Similarity-based ap-
proaches, for instance, typically assume that the knowledge re-
quired for property induction can be captured by a single pairwise
relation between the categories in a domain. We argue that each of
these traditions needs the other. Theory-based approaches need
statistical inference to explain how theories are acquired and used,
and statistical approaches will remain limited in scope unless they
can incorporate the content of intuitive theories.

This article develops a modeling framework that attempts to
combine the strengths of the theory-based and statistical traditions.
The problem of property induction can be modeled as a statistical
inference about the probability of the conclusion given the ob-
served premises. A Bayesian approach to this problem incorpo-
rates a prior distribution, and we suggest that this prior distribution
is often generated by intuitive theories. Bayesian models are crit-
icized in some contexts for relying on prior distributions (Edwards,
1972), but sensitivity to prior knowledge is a distinct advantage
when modeling inductive reasoning. The prior distribution used by
a Bayesian model can capture background knowledge of arbitrary
sophistication, and different prior distributions can account for
different patterns of reasoning in different inductive contexts.

To turn these ideas into a computational framework, we develop
a general method for capturing some of the rich background
knowledge embedded in intuitive theories. Our approach is sum-
marized by Figure 1. For any given problem, the starting point is
a structure representing the key relationships between categories in
a domain. For example, the tree structure in Figure 1a captures
knowledge about the taxonomic relationships among a group of
biological species, the one-dimensional spaces in Figures 1b and
1c capture knowledge about the body weights of these species, and
the directed graph in Figure 1d captures knowledge about
predator–prey relationships.

In addition to knowledge about relationships between catego-
ries, a reasoner must also know how the distribution of a given
property is likely to depend on these relationships. For example, a
biological property like “has enzyme X132” is likely to respect
taxonomic boundaries and will probably be shared by the species
belonging to some subtree of the taxonomy in Figure 1a. Species
which “ideally consume around 15 g of sodium per week in the
wild” will probably have roughly similar weights and will fall
within some subinterval of the one-dimensional space in Figure 1b.
Two properties may depend on the same underlying structure in
different ways—for example, a species will be “heavy enough to
trigger an average pit trap” if its weight exceeds some threshold
along the dimension in Figure 1c. Finally, a reasoner might know
that properties like “carries leptospirosis” are likely to be trans-
mitted along the links in the food web in Figure 1d but could also
arise from other sources outside the web.
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structures of three different forms, and each model combines a structure S and a stochastic process T to generate
a prior distribution, p(f |S,T), on properties. The bottom row shows properties with high prior probability
according to each model. Each column represents the extension of a property—for example, property f 1 in the
taxonomic data set is shared only by cheetahs and lions. The prior distribution p(f |S,T) specified by each model
can be used to make inferences about a partially observed property, f new. For instance, a diffusion process over
a tree captures the intuition that animals nearby in the tree are likely to have similar properties and predicts that
lions are likely to have enzyme X132 if cheetahs are known to have this property.

21STRUCTURED STATISTICAL MODELSthat different properties can invoke different intuitive theories.
Theory-based approaches, however, rarely attempt to formalize the
content of intuitive theories and are therefore unable to explain
precisely how these theories are used for inductive inference.
Statistical or similarity-based approaches (Heit, 1998; Osherson et
al., 1990; Rips, 1975) offer complementary strengths—they often
provide formal models of inductive inference, but they usually
work with very limited kinds of knowledge. Similarity-based ap-
proaches, for instance, typically assume that the knowledge re-
quired for property induction can be captured by a single pairwise
relation between the categories in a domain. We argue that each of
these traditions needs the other. Theory-based approaches need
statistical inference to explain how theories are acquired and used,
and statistical approaches will remain limited in scope unless they
can incorporate the content of intuitive theories.

This article develops a modeling framework that attempts to
combine the strengths of the theory-based and statistical traditions.
The problem of property induction can be modeled as a statistical
inference about the probability of the conclusion given the ob-
served premises. A Bayesian approach to this problem incorpo-
rates a prior distribution, and we suggest that this prior distribution
is often generated by intuitive theories. Bayesian models are crit-
icized in some contexts for relying on prior distributions (Edwards,
1972), but sensitivity to prior knowledge is a distinct advantage
when modeling inductive reasoning. The prior distribution used by
a Bayesian model can capture background knowledge of arbitrary
sophistication, and different prior distributions can account for
different patterns of reasoning in different inductive contexts.

To turn these ideas into a computational framework, we develop
a general method for capturing some of the rich background
knowledge embedded in intuitive theories. Our approach is sum-
marized by Figure 1. For any given problem, the starting point is
a structure representing the key relationships between categories in
a domain. For example, the tree structure in Figure 1a captures
knowledge about the taxonomic relationships among a group of
biological species, the one-dimensional spaces in Figures 1b and
1c capture knowledge about the body weights of these species, and
the directed graph in Figure 1d captures knowledge about
predator–prey relationships.

In addition to knowledge about relationships between catego-
ries, a reasoner must also know how the distribution of a given
property is likely to depend on these relationships. For example, a
biological property like “has enzyme X132” is likely to respect
taxonomic boundaries and will probably be shared by the species
belonging to some subtree of the taxonomy in Figure 1a. Species
which “ideally consume around 15 g of sodium per week in the
wild” will probably have roughly similar weights and will fall
within some subinterval of the one-dimensional space in Figure 1b.
Two properties may depend on the same underlying structure in
different ways—for example, a species will be “heavy enough to
trigger an average pit trap” if its weight exceeds some threshold
along the dimension in Figure 1c. Finally, a reasoner might know
that properties like “carries leptospirosis” are likely to be trans-
mitted along the links in the food web in Figure 1d but could also
arise from other sources outside the web.
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Figure 1. Structured statistical models for reasoning about four kinds of properties. The models rely on
structures of three different forms, and each model combines a structure S and a stochastic process T to generate
a prior distribution, p(f |S,T), on properties. The bottom row shows properties with high prior probability
according to each model. Each column represents the extension of a property—for example, property f 1 in the
taxonomic data set is shared only by cheetahs and lions. The prior distribution p(f |S,T) specified by each model
can be used to make inferences about a partially observed property, f new. For instance, a diffusion process over
a tree captures the intuition that animals nearby in the tree are likely to have similar properties and predicts that
lions are likely to have enzyme X132 if cheetahs are known to have this property.
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Bayesian property induction
f ∈ F : feature in set of all possible features
X = {cheetah, monkey} : set of premise categories
Y = {lion, gorilla} : conclusion categories
lX = {1,0} : feature labels for premise categories

P( f | lX) = P(lX | f )P( f )
∑f′ 

P(lX | f′ )P( f′ )

Posterior over features given evidence

Likelihood

P(lX | f )

returns to this issue, but for now we make two generic assump-
tions—we assume that X is sampled at random from all subsets
of the domain and that the labels lX are generated without noise.
It follows that:

p!lX|f " # ! 1, if fX ! lX

0, otherwise (2)

where fX specifies the values assigned to set X by feature vector f.
Equation 2 indicates that label vectors lX that are inconsistent with
the true feature vector f are never observed and that all remaining
label vectors are equally likely to be observed. The distribution in
Equation 2 is specified up to a normalizing constant that depends
on the number of observation sets X, which in turn depends on the
size of the domain.

Given our assumptions about the likelihood p(lX| f ), Equation 1
is equivalent to

p!f |lX" ! ! p!f ""f:fX$lX p!f "
, if fX ! lX

0, otherwise
(3)

where the sum in the denominator is over the set {f : fX $ lX} of
all feature vectors f that are consistent with the label vector lX.
Intuitively, Equation 3 is the result of renormalizing the prior
distribution p(f ) to account for the fact that some feature vectors f
are inconsistent with the observations in lX and therefore now have
zero posterior probability. The posterior distribution for our run-
ning example is shown in Figure 2b.

Given the posterior distribution p(f |lX), we can compute p(fi $
1|lX), or the posterior probability that category i has the novel
feature:

p!fi ! 1|lX" ! "
f:fi$1

p!f |lX" (4)

!
" f:fi$1, fX$lX"f:fX$lX p!f "

(5)

where Equation 5 follows from Equation 3. Intuitively, Equation 5
states that the posterior probability p(fi $ 1|lX) is equal to the propor-
tion of feature vectors consistent with lX that also set fi $ 1, where
each feature vector is weighted by its prior probability p(f). The
prediction vector in Figure 2b shows predictions p(fi $ 1|lX) for our
running example. For example, the posterior probability that lions
have the novel feature given that cheetahs have the feature but that

monkeys do not is
0.08 " 0.05

0.05 " 0.01 " 0.08 " 0.05
! 0.68.

Other inferences can be formulated similarly. For example, after
observing lX, we can compute p(fY $ 1|lX), or the posterior prob-
ability that all categories in set Y have the novel feature:

p!fY ! 1|lX" !
"f:fY$1, fX$lX p!f "

"f:fX$lX p!f "
(6)

Intuitively, Equation 5 states that the posterior probability p(fY $
1|lX) is equal to the proportion of feature vectors consistent with
lX that also set fY $ 1, where each feature vector is weighted by
its prior probability p(f). In Figure 2b, for instance, the posterior
probability that lions and gorillas have the novel feature given
that cheetahs have the feature but that monkeys do not is

0.05
0.05 " 0.01 " 0.08 " 0.05

! 0.26. To compute the probabil-

ity that all members of a superordinate category (e.g., “mammals”)
have a certain feature, we use Equation 6 where set Y includes all
members of the superordinate category in the data set under
consideration. In Figure 2, “all mammals” includes only 4 species,
but each of the animal data sets we consider later includes between
6 and 10 mammal species.

Equations 5 and 6 form part of a computational theory of
property induction. If a reasoning system starts with a prior dis-
tribution p(f) and knows that the categories in X and the label
vector lX were generated according to the process described by
Equation 2, then the probabilities produced by Equations 5 and 6
will be normatively correct. Our working assumption is that human
inductive reasoning can be explained as an approximation to
Bayesian inference, and we expect that the probabilities produced
by these equations will approximate the generalizations made by
human reasoners. We make no claim, however, that the equations
capture the mechanisms that support human reasoning. For exam-
ple, each equation includes a sum that can range over many
different feature vectors f, and we do not suggest that people
explicitly consider a large set of possible feature vectors when
ranking the strength of an argument. Although we do not attempt
to provide a process model, a complete account of inductive
reasoning should provide explanations at each of the three levels
described by Marr (1982), and future work can explore how the
computations in Equations 5 and 6 can be approximated by psy-
chologically plausible processes.

Generating a Prior

The prior distribution p(f) should capture expectations about the
property or feature of interest. In Figure 2, for instance, the feature
vectors with high prior probability should indicate either that
cheetahs and lions both have the property or that neither species
has the novel property. Formalizing the relevant prior knowledge
may initially seem like a difficult problem—if there are n species,
somehow we need to generate 2n numbers, one for each possible
feature vector. Simply listing these numbers provides little in-
sight—for instance, it does not seem helpful to propose that human
knowledge about a set of 50 species is faithfully represented by a
list of 250 numbers. Instead, we develop an approach where the
prior p(f) is generated by two kinds of background knowledge:
knowledge about relationships between the categories in a domain
and knowledge about how the property of interest depends on
these relationships. These two aspects of background knowledge
can be formalized as a structure S and a stochastic process T
defined over this structure (Figure 1). By combining different
structures and stochastic processes, we can capture different kinds
of knowledge and account for inductive inferences in many dif-
ferent contexts.

Relationships between categories can be captured by many
kinds of structures. One prominent approach focuses on represen-
tations expressed as sentences in a compositional language, such as
predicate logic (Fodor & Pylyshyn, 1988; Gentner, 1983). Here we
take a more inclusive approach, and allow any representation that
captures relationships between categories to qualify as a structure.
A central theme of our work is that different kinds of structures can
capture different kinds of relationships between categories. Tree
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Prior over features

P( f )

categories observed to have the feature are positive examples and
categories observed not to have the feature are negative examples.
Based on this evidence, the learner updates his or her distribution
over the space of possible feature vectors, and the updated distri-
bution (also known as the posterior distribution) can be used to
predict the probability that any given category has the feature of
interest.

We formalize this Bayesian approach by specifying a frame-
work with two components: a recipe for specifying prior distribu-
tions and an engine for inductive inference. The inference engine
implements domain-general statistical inference and remains the
same regardless of the inductive context. Different priors, how-
ever, are needed for different inductive contexts. Even though
different inductive problems may draw on very different kinds of
knowledge, we suggest that this knowledge can often be formal-
ized using stochastic processes (e.g., diffusion, drift, or transmis-
sion) defined over structures that capture relationships between the
categories in a domain (Figure 1).

The Bayesian Inference Engine

The Bayesian approach to induction is extremely general and
can be applied to problems which appear quite different on the
surface. We describe an engine for Bayesian inference that has
previously been used to develop algorithms for machine learning
(Haussler, Kearns, & Schapire, 1994) and to model concept learn-
ing (Shepard, 1987; Tenenbaum & Griffiths, 2001) and inductive
reasoning (Heit, 1998) in humans.

Assume that we are working within a finite domain contain-
ing n categories. We will use a running example from the
biological domain where the categories are four species: chee-

tahs, lions, gorillas and monkeys. Suppose that we are inter-
ested in a novel property or feature (we use these terms inter-
changeably). Our framework can handle continuous-valued
features, but we focus on the case where the novel feature can
be represented as an n-place vector f that assigns 1 to each
category that has the feature and 0 to all remaining categories.
Because there are n categories, the number of distinct feature
vectors f is 2n, and the 16 possible feature vectors for our
running example are shown in Figure 2a. Assume for now that
the prior probability p(f) of each feature vector is known. The
prior in Figure 2a roughly captures the idea that cheetahs and
lions are expected to have similar features and that the same
holds for gorillas and monkeys.

Suppose that we observe lX, a label vector for the categories in
some set X. For instance, the case where X ! {cheetah,monkey}
and lX ! [1, 0] indicates that cheetahs have the novel feature but
that monkeys do not (Figure 2b). The observations in lX can be
treated as a partial specification of the full feature vector f that we
want to infer. Given these observations, Bayes’ rule specifies how
our prior distribution p(f) can be updated to produce a posterior
distribution p(f |lX) on the feature vector f:

p"f |lX# !
p"lX|f #p"f #!f p"lX|f #p"f #

(1)

where the sum in the denominator is over all possible feature
vectors f.

The likelihood term p(lX|f ) may vary from setting to setting
depending on the process by which the categories in the obser-
vation set X are generated and the process by which the labels
lX are generated for those examples. The general discussion
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Figure 2. (a) Given a domain with four categories, there are 16 distinct hypotheses about the extension of a
novel feature. The bottom row of the table shows a prior distribution p(f) over the 16 possible feature vectors.
The grayscale vector on the far right shows predictions about individual categories computed by summing
over the space of hypotheses. Based on the prior alone, the probability that cheetahs have the novel feature is
0.5, and the 3 remaining entries in the prediction vector are also 0.5. (b) Bayesian property induction. After
observing a label vector lX that indicates that cheetahs have the novel feature but monkeys do not, 12 feature
vectors are no longer possible and have been grayed out. The posterior distribution p(f |lX) can be computed by
renormalizing the prior distribution p(f) on the 4 feature vectors that remain. The prediction vector now indicates
that cheetahs definitely have the feature, that monkeys definitely do not have the feature, and that lions (0.68)
are more likely to have the feature than gorillas (0.32).
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categories observed to have the feature are positive examples and
categories observed not to have the feature are negative examples.
Based on this evidence, the learner updates his or her distribution
over the space of possible feature vectors, and the updated distri-
bution (also known as the posterior distribution) can be used to
predict the probability that any given category has the feature of
interest.

We formalize this Bayesian approach by specifying a frame-
work with two components: a recipe for specifying prior distribu-
tions and an engine for inductive inference. The inference engine
implements domain-general statistical inference and remains the
same regardless of the inductive context. Different priors, how-
ever, are needed for different inductive contexts. Even though
different inductive problems may draw on very different kinds of
knowledge, we suggest that this knowledge can often be formal-
ized using stochastic processes (e.g., diffusion, drift, or transmis-
sion) defined over structures that capture relationships between the
categories in a domain (Figure 1).

The Bayesian Inference Engine

The Bayesian approach to induction is extremely general and
can be applied to problems which appear quite different on the
surface. We describe an engine for Bayesian inference that has
previously been used to develop algorithms for machine learning
(Haussler, Kearns, & Schapire, 1994) and to model concept learn-
ing (Shepard, 1987; Tenenbaum & Griffiths, 2001) and inductive
reasoning (Heit, 1998) in humans.

Assume that we are working within a finite domain contain-
ing n categories. We will use a running example from the
biological domain where the categories are four species: chee-

tahs, lions, gorillas and monkeys. Suppose that we are inter-
ested in a novel property or feature (we use these terms inter-
changeably). Our framework can handle continuous-valued
features, but we focus on the case where the novel feature can
be represented as an n-place vector f that assigns 1 to each
category that has the feature and 0 to all remaining categories.
Because there are n categories, the number of distinct feature
vectors f is 2n, and the 16 possible feature vectors for our
running example are shown in Figure 2a. Assume for now that
the prior probability p(f) of each feature vector is known. The
prior in Figure 2a roughly captures the idea that cheetahs and
lions are expected to have similar features and that the same
holds for gorillas and monkeys.

Suppose that we observe lX, a label vector for the categories in
some set X. For instance, the case where X ! {cheetah,monkey}
and lX ! [1, 0] indicates that cheetahs have the novel feature but
that monkeys do not (Figure 2b). The observations in lX can be
treated as a partial specification of the full feature vector f that we
want to infer. Given these observations, Bayes’ rule specifies how
our prior distribution p(f) can be updated to produce a posterior
distribution p(f |lX) on the feature vector f:

p"f |lX# !
p"lX|f #p"f #!f p"lX|f #p"f #

(1)

where the sum in the denominator is over all possible feature
vectors f.

The likelihood term p(lX|f ) may vary from setting to setting
depending on the process by which the categories in the obser-
vation set X are generated and the process by which the labels
lX are generated for those examples. The general discussion
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Figure 2. (a) Given a domain with four categories, there are 16 distinct hypotheses about the extension of a
novel feature. The bottom row of the table shows a prior distribution p(f) over the 16 possible feature vectors.
The grayscale vector on the far right shows predictions about individual categories computed by summing
over the space of hypotheses. Based on the prior alone, the probability that cheetahs have the novel feature is
0.5, and the 3 remaining entries in the prediction vector are also 0.5. (b) Bayesian property induction. After
observing a label vector lX that indicates that cheetahs have the novel feature but monkeys do not, 12 feature
vectors are no longer possible and have been grayed out. The posterior distribution p(f |lX) can be computed by
renormalizing the prior distribution p(f) on the 4 feature vectors that remain. The prediction vector now indicates
that cheetahs definitely have the feature, that monkeys definitely do not have the feature, and that lions (0.68)
are more likely to have the feature than gorillas (0.32).
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Making Bayesian predictions

categories observed to have the feature are positive examples and
categories observed not to have the feature are negative examples.
Based on this evidence, the learner updates his or her distribution
over the space of possible feature vectors, and the updated distri-
bution (also known as the posterior distribution) can be used to
predict the probability that any given category has the feature of
interest.

We formalize this Bayesian approach by specifying a frame-
work with two components: a recipe for specifying prior distribu-
tions and an engine for inductive inference. The inference engine
implements domain-general statistical inference and remains the
same regardless of the inductive context. Different priors, how-
ever, are needed for different inductive contexts. Even though
different inductive problems may draw on very different kinds of
knowledge, we suggest that this knowledge can often be formal-
ized using stochastic processes (e.g., diffusion, drift, or transmis-
sion) defined over structures that capture relationships between the
categories in a domain (Figure 1).

The Bayesian Inference Engine

The Bayesian approach to induction is extremely general and
can be applied to problems which appear quite different on the
surface. We describe an engine for Bayesian inference that has
previously been used to develop algorithms for machine learning
(Haussler, Kearns, & Schapire, 1994) and to model concept learn-
ing (Shepard, 1987; Tenenbaum & Griffiths, 2001) and inductive
reasoning (Heit, 1998) in humans.

Assume that we are working within a finite domain contain-
ing n categories. We will use a running example from the
biological domain where the categories are four species: chee-

tahs, lions, gorillas and monkeys. Suppose that we are inter-
ested in a novel property or feature (we use these terms inter-
changeably). Our framework can handle continuous-valued
features, but we focus on the case where the novel feature can
be represented as an n-place vector f that assigns 1 to each
category that has the feature and 0 to all remaining categories.
Because there are n categories, the number of distinct feature
vectors f is 2n, and the 16 possible feature vectors for our
running example are shown in Figure 2a. Assume for now that
the prior probability p(f) of each feature vector is known. The
prior in Figure 2a roughly captures the idea that cheetahs and
lions are expected to have similar features and that the same
holds for gorillas and monkeys.

Suppose that we observe lX, a label vector for the categories in
some set X. For instance, the case where X ! {cheetah,monkey}
and lX ! [1, 0] indicates that cheetahs have the novel feature but
that monkeys do not (Figure 2b). The observations in lX can be
treated as a partial specification of the full feature vector f that we
want to infer. Given these observations, Bayes’ rule specifies how
our prior distribution p(f) can be updated to produce a posterior
distribution p(f |lX) on the feature vector f:

p"f |lX# !
p"lX|f #p"f #!f p"lX|f #p"f #

(1)

where the sum in the denominator is over all possible feature
vectors f.

The likelihood term p(lX|f ) may vary from setting to setting
depending on the process by which the categories in the obser-
vation set X are generated and the process by which the labels
lX are generated for those examples. The general discussion
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Figure 2. (a) Given a domain with four categories, there are 16 distinct hypotheses about the extension of a
novel feature. The bottom row of the table shows a prior distribution p(f) over the 16 possible feature vectors.
The grayscale vector on the far right shows predictions about individual categories computed by summing
over the space of hypotheses. Based on the prior alone, the probability that cheetahs have the novel feature is
0.5, and the 3 remaining entries in the prediction vector are also 0.5. (b) Bayesian property induction. After
observing a label vector lX that indicates that cheetahs have the novel feature but monkeys do not, 12 feature
vectors are no longer possible and have been grayed out. The posterior distribution p(f |lX) can be computed by
renormalizing the prior distribution p(f) on the 4 feature vectors that remain. The prediction vector now indicates
that cheetahs definitely have the feature, that monkeys definitely do not have the feature, and that lions (0.68)
are more likely to have the feature than gorillas (0.32).
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P( fY = 1 | lX) = ∑
f:fY=1

P( f | lX)
Posterior predictive distribution

f ∈ F : feature in set of all possible features
X = {cheetah, monkey} : set of premise categories
Y = {lion, gorilla} : conclusion categories
lX = {1,0} : feature labels for premise categories

         cheetahs have sesamoid bones.
   monkeys DO NOT have sesamoid bones.
   Do lions have sesamoid bones?

          Do gorilla have sesamoid bones?

(weighted average across rows)

(weighted average across rows)



dolphin

squirrel

seal

elephant

rhino

chimp

gorilla

mouse

dolphin

squirrel

seal

elephant

rhino

chimp

gorilla

mouse

on
off

High probability Low probability

Taxonomic intuitive theory

graph represents a category. The bottom panel shows a feature
vector f that assigns a value (1 or 0) to each node in the graph. To
generate this feature, we first generate a continuous feature vector
y that is expected to vary smoothly over the graph. We then
threshold the y vector at 0 to produce a binary feature f. The same
basic approach can be used to generate features over any undi-
rected graph, including a graph that takes the form of a tree.

Intuitively, the diffusion process is most likely to generate features
f that assign the same value to neighboring nodes in the underlying
graph.

Consider now the case where the underlying structure is a tree
rather than a linear graph. More formally, suppose that we are
working with a set of n species and that we have a tree structure S
where the species are located at the leaves of the tree. To generate
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Figure 3. (a) A tree and (b) a two-dimensional representation learned from a matrix D of human feature ratings
that includes 50 species and 85 features.
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that different properties can invoke different intuitive theories.
Theory-based approaches, however, rarely attempt to formalize the
content of intuitive theories and are therefore unable to explain
precisely how these theories are used for inductive inference.
Statistical or similarity-based approaches (Heit, 1998; Osherson et
al., 1990; Rips, 1975) offer complementary strengths—they often
provide formal models of inductive inference, but they usually
work with very limited kinds of knowledge. Similarity-based ap-
proaches, for instance, typically assume that the knowledge re-
quired for property induction can be captured by a single pairwise
relation between the categories in a domain. We argue that each of
these traditions needs the other. Theory-based approaches need
statistical inference to explain how theories are acquired and used,
and statistical approaches will remain limited in scope unless they
can incorporate the content of intuitive theories.

This article develops a modeling framework that attempts to
combine the strengths of the theory-based and statistical traditions.
The problem of property induction can be modeled as a statistical
inference about the probability of the conclusion given the ob-
served premises. A Bayesian approach to this problem incorpo-
rates a prior distribution, and we suggest that this prior distribution
is often generated by intuitive theories. Bayesian models are crit-
icized in some contexts for relying on prior distributions (Edwards,
1972), but sensitivity to prior knowledge is a distinct advantage
when modeling inductive reasoning. The prior distribution used by
a Bayesian model can capture background knowledge of arbitrary
sophistication, and different prior distributions can account for
different patterns of reasoning in different inductive contexts.

To turn these ideas into a computational framework, we develop
a general method for capturing some of the rich background
knowledge embedded in intuitive theories. Our approach is sum-
marized by Figure 1. For any given problem, the starting point is
a structure representing the key relationships between categories in
a domain. For example, the tree structure in Figure 1a captures
knowledge about the taxonomic relationships among a group of
biological species, the one-dimensional spaces in Figures 1b and
1c capture knowledge about the body weights of these species, and
the directed graph in Figure 1d captures knowledge about
predator–prey relationships.

In addition to knowledge about relationships between catego-
ries, a reasoner must also know how the distribution of a given
property is likely to depend on these relationships. For example, a
biological property like “has enzyme X132” is likely to respect
taxonomic boundaries and will probably be shared by the species
belonging to some subtree of the taxonomy in Figure 1a. Species
which “ideally consume around 15 g of sodium per week in the
wild” will probably have roughly similar weights and will fall
within some subinterval of the one-dimensional space in Figure 1b.
Two properties may depend on the same underlying structure in
different ways—for example, a species will be “heavy enough to
trigger an average pit trap” if its weight exceeds some threshold
along the dimension in Figure 1c. Finally, a reasoner might know
that properties like “carries leptospirosis” are likely to be trans-
mitted along the links in the food web in Figure 1d but could also
arise from other sources outside the web.
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Figure 1. Structured statistical models for reasoning about four kinds of properties. The models rely on
structures of three different forms, and each model combines a structure S and a stochastic process T to generate
a prior distribution, p(f |S,T), on properties. The bottom row shows properties with high prior probability
according to each model. Each column represents the extension of a property—for example, property f 1 in the
taxonomic data set is shared only by cheetahs and lions. The prior distribution p(f |S,T) specified by each model
can be used to make inferences about a partially observed property, f new. For instance, a diffusion process over
a tree captures the intuition that animals nearby in the tree are likely to have similar properties and predicts that
lions are likely to have enzyme X132 if cheetahs are known to have this property.
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that different properties can invoke different intuitive theories.
Theory-based approaches, however, rarely attempt to formalize the
content of intuitive theories and are therefore unable to explain
precisely how these theories are used for inductive inference.
Statistical or similarity-based approaches (Heit, 1998; Osherson et
al., 1990; Rips, 1975) offer complementary strengths—they often
provide formal models of inductive inference, but they usually
work with very limited kinds of knowledge. Similarity-based ap-
proaches, for instance, typically assume that the knowledge re-
quired for property induction can be captured by a single pairwise
relation between the categories in a domain. We argue that each of
these traditions needs the other. Theory-based approaches need
statistical inference to explain how theories are acquired and used,
and statistical approaches will remain limited in scope unless they
can incorporate the content of intuitive theories.

This article develops a modeling framework that attempts to
combine the strengths of the theory-based and statistical traditions.
The problem of property induction can be modeled as a statistical
inference about the probability of the conclusion given the ob-
served premises. A Bayesian approach to this problem incorpo-
rates a prior distribution, and we suggest that this prior distribution
is often generated by intuitive theories. Bayesian models are crit-
icized in some contexts for relying on prior distributions (Edwards,
1972), but sensitivity to prior knowledge is a distinct advantage
when modeling inductive reasoning. The prior distribution used by
a Bayesian model can capture background knowledge of arbitrary
sophistication, and different prior distributions can account for
different patterns of reasoning in different inductive contexts.

To turn these ideas into a computational framework, we develop
a general method for capturing some of the rich background
knowledge embedded in intuitive theories. Our approach is sum-
marized by Figure 1. For any given problem, the starting point is
a structure representing the key relationships between categories in
a domain. For example, the tree structure in Figure 1a captures
knowledge about the taxonomic relationships among a group of
biological species, the one-dimensional spaces in Figures 1b and
1c capture knowledge about the body weights of these species, and
the directed graph in Figure 1d captures knowledge about
predator–prey relationships.

In addition to knowledge about relationships between catego-
ries, a reasoner must also know how the distribution of a given
property is likely to depend on these relationships. For example, a
biological property like “has enzyme X132” is likely to respect
taxonomic boundaries and will probably be shared by the species
belonging to some subtree of the taxonomy in Figure 1a. Species
which “ideally consume around 15 g of sodium per week in the
wild” will probably have roughly similar weights and will fall
within some subinterval of the one-dimensional space in Figure 1b.
Two properties may depend on the same underlying structure in
different ways—for example, a species will be “heavy enough to
trigger an average pit trap” if its weight exceeds some threshold
along the dimension in Figure 1c. Finally, a reasoner might know
that properties like “carries leptospirosis” are likely to be trans-
mitted along the links in the food web in Figure 1d but could also
arise from other sources outside the web.
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Figure 1. Structured statistical models for reasoning about four kinds of properties. The models rely on
structures of three different forms, and each model combines a structure S and a stochastic process T to generate
a prior distribution, p(f |S,T), on properties. The bottom row shows properties with high prior probability
according to each model. Each column represents the extension of a property—for example, property f 1 in the
taxonomic data set is shared only by cheetahs and lions. The prior distribution p(f |S,T) specified by each model
can be used to make inferences about a partially observed property, f new. For instance, a diffusion process over
a tree captures the intuition that animals nearby in the tree are likely to have similar properties and predicts that
lions are likely to have enzyme X132 if cheetahs are known to have this property.
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that different properties can invoke different intuitive theories.
Theory-based approaches, however, rarely attempt to formalize the
content of intuitive theories and are therefore unable to explain
precisely how these theories are used for inductive inference.
Statistical or similarity-based approaches (Heit, 1998; Osherson et
al., 1990; Rips, 1975) offer complementary strengths—they often
provide formal models of inductive inference, but they usually
work with very limited kinds of knowledge. Similarity-based ap-
proaches, for instance, typically assume that the knowledge re-
quired for property induction can be captured by a single pairwise
relation between the categories in a domain. We argue that each of
these traditions needs the other. Theory-based approaches need
statistical inference to explain how theories are acquired and used,
and statistical approaches will remain limited in scope unless they
can incorporate the content of intuitive theories.

This article develops a modeling framework that attempts to
combine the strengths of the theory-based and statistical traditions.
The problem of property induction can be modeled as a statistical
inference about the probability of the conclusion given the ob-
served premises. A Bayesian approach to this problem incorpo-
rates a prior distribution, and we suggest that this prior distribution
is often generated by intuitive theories. Bayesian models are crit-
icized in some contexts for relying on prior distributions (Edwards,
1972), but sensitivity to prior knowledge is a distinct advantage
when modeling inductive reasoning. The prior distribution used by
a Bayesian model can capture background knowledge of arbitrary
sophistication, and different prior distributions can account for
different patterns of reasoning in different inductive contexts.

To turn these ideas into a computational framework, we develop
a general method for capturing some of the rich background
knowledge embedded in intuitive theories. Our approach is sum-
marized by Figure 1. For any given problem, the starting point is
a structure representing the key relationships between categories in
a domain. For example, the tree structure in Figure 1a captures
knowledge about the taxonomic relationships among a group of
biological species, the one-dimensional spaces in Figures 1b and
1c capture knowledge about the body weights of these species, and
the directed graph in Figure 1d captures knowledge about
predator–prey relationships.

In addition to knowledge about relationships between catego-
ries, a reasoner must also know how the distribution of a given
property is likely to depend on these relationships. For example, a
biological property like “has enzyme X132” is likely to respect
taxonomic boundaries and will probably be shared by the species
belonging to some subtree of the taxonomy in Figure 1a. Species
which “ideally consume around 15 g of sodium per week in the
wild” will probably have roughly similar weights and will fall
within some subinterval of the one-dimensional space in Figure 1b.
Two properties may depend on the same underlying structure in
different ways—for example, a species will be “heavy enough to
trigger an average pit trap” if its weight exceeds some threshold
along the dimension in Figure 1c. Finally, a reasoner might know
that properties like “carries leptospirosis” are likely to be trans-
mitted along the links in the food web in Figure 1d but could also
arise from other sources outside the web.
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Figure 1. Structured statistical models for reasoning about four kinds of properties. The models rely on
structures of three different forms, and each model combines a structure S and a stochastic process T to generate
a prior distribution, p(f |S,T), on properties. The bottom row shows properties with high prior probability
according to each model. Each column represents the extension of a property—for example, property f 1 in the
taxonomic data set is shared only by cheetahs and lions. The prior distribution p(f |S,T) specified by each model
can be used to make inferences about a partially observed property, f new. For instance, a diffusion process over
a tree captures the intuition that animals nearby in the tree are likely to have similar properties and predicts that
lions are likely to have enzyme X132 if cheetahs are known to have this property.
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that different properties can invoke different intuitive theories.
Theory-based approaches, however, rarely attempt to formalize the
content of intuitive theories and are therefore unable to explain
precisely how these theories are used for inductive inference.
Statistical or similarity-based approaches (Heit, 1998; Osherson et
al., 1990; Rips, 1975) offer complementary strengths—they often
provide formal models of inductive inference, but they usually
work with very limited kinds of knowledge. Similarity-based ap-
proaches, for instance, typically assume that the knowledge re-
quired for property induction can be captured by a single pairwise
relation between the categories in a domain. We argue that each of
these traditions needs the other. Theory-based approaches need
statistical inference to explain how theories are acquired and used,
and statistical approaches will remain limited in scope unless they
can incorporate the content of intuitive theories.

This article develops a modeling framework that attempts to
combine the strengths of the theory-based and statistical traditions.
The problem of property induction can be modeled as a statistical
inference about the probability of the conclusion given the ob-
served premises. A Bayesian approach to this problem incorpo-
rates a prior distribution, and we suggest that this prior distribution
is often generated by intuitive theories. Bayesian models are crit-
icized in some contexts for relying on prior distributions (Edwards,
1972), but sensitivity to prior knowledge is a distinct advantage
when modeling inductive reasoning. The prior distribution used by
a Bayesian model can capture background knowledge of arbitrary
sophistication, and different prior distributions can account for
different patterns of reasoning in different inductive contexts.

To turn these ideas into a computational framework, we develop
a general method for capturing some of the rich background
knowledge embedded in intuitive theories. Our approach is sum-
marized by Figure 1. For any given problem, the starting point is
a structure representing the key relationships between categories in
a domain. For example, the tree structure in Figure 1a captures
knowledge about the taxonomic relationships among a group of
biological species, the one-dimensional spaces in Figures 1b and
1c capture knowledge about the body weights of these species, and
the directed graph in Figure 1d captures knowledge about
predator–prey relationships.

In addition to knowledge about relationships between catego-
ries, a reasoner must also know how the distribution of a given
property is likely to depend on these relationships. For example, a
biological property like “has enzyme X132” is likely to respect
taxonomic boundaries and will probably be shared by the species
belonging to some subtree of the taxonomy in Figure 1a. Species
which “ideally consume around 15 g of sodium per week in the
wild” will probably have roughly similar weights and will fall
within some subinterval of the one-dimensional space in Figure 1b.
Two properties may depend on the same underlying structure in
different ways—for example, a species will be “heavy enough to
trigger an average pit trap” if its weight exceeds some threshold
along the dimension in Figure 1c. Finally, a reasoner might know
that properties like “carries leptospirosis” are likely to be trans-
mitted along the links in the food web in Figure 1d but could also
arise from other sources outside the web.
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Figure 1. Structured statistical models for reasoning about four kinds of properties. The models rely on
structures of three different forms, and each model combines a structure S and a stochastic process T to generate
a prior distribution, p(f |S,T), on properties. The bottom row shows properties with high prior probability
according to each model. Each column represents the extension of a property—for example, property f 1 in the
taxonomic data set is shared only by cheetahs and lions. The prior distribution p(f |S,T) specified by each model
can be used to make inferences about a partially observed property, f new. For instance, a diffusion process over
a tree captures the intuition that animals nearby in the tree are likely to have similar properties and predicts that
lions are likely to have enzyme X132 if cheetahs are known to have this property.
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10-species tree in Figure 5a. If we sample continuous features y
using this covariance matrix, pairs with high covariance (e.g.,
chimps and gorillas) will tend to have similar feature values. For
instance, if chimps have a value on some dimension that exceeds
the mean, the feature value for gorillas on the same dimension is
also expected to be higher than normal. Appendix A describes in
detail how a covariance matrix can be defined over any graph
structure, but the basic intuition is that large entries in the covari-
ance matrix will correspond to pairs of nodes that are nearby in the
underlying structure.

After generating a continuous feature y, we convert it to a binary
vector f by thresholding at zero. The complete generative model
can be written as:

y ! N!0, K" (7)

fi ! #!yi" (8)

where fi is the feature value for category i, and #(yi) is 1 if yi "
0 and 0 otherwise. Equation 7 indicates that y is drawn from a
zero-mean Gaussian distribution with covariance matrix K, and
Equation 8 indicates that f is generated by thresholding the con-
tinuous vector y. This generative process will assign nonzero
probability to all of the 2n possible binary features, but the features
with high prior probability will tend to be consistent with the
covariance matrix K. As described in Appendix B the definition of
K uses a single free parameter, $, which captures the extent to
which feature values are expected to depart from the mean of the
Gaussian distribution in Equation 7. We set $ % 5 throughout this
article.

The Bayesian model with a prior p(f) defined by a diffusion
process over a tree can be called the tree & diffusion model, but we
will also refer to it as the taxonomic model. The first column of
Figure 6 shows generalization curves predicted by this model. The
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Figure 6. Generalization curves for four models: a diffusion process defined over a tree, a diffusion process
defined over a one-dimensional space, a drift process defined over a one-dimensional space, and a transmission
process defined over a food chain. (a): Projections from a category (x!) located at the asterisk. The category is
observed to have a novel property (fx!

% 1, white curve) or observed not to have a novel property (fx!
% 0, black

curve), and predictions are made about categories located elsewhere in the structure. In the taxonomic case,
observing that x! has a property supports the prediction that nearby categories in the tree will also have the
property (white curve). The gray curve shows predictions before any positive or negative examples have been
observed. (b): Projections to category x! after a single positive example (white curve) or a single negative
example (black curve) is observed elsewhere in the structure. In the case of the threshold model, observing that
a category at the far left of the dimension has a property (white curve) provides good evidence that x! will also
have the property. The gray line shows the prior probability that category x! has the novel property.
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have the property. The gray line shows the prior probability that category x! has the novel property.
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detail how a covariance matrix can be defined over any graph
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ance matrix will correspond to pairs of nodes that are nearby in the
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Equation 8 indicates that f is generated by thresholding the con-
tinuous vector y. This generative process will assign nonzero
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white: if * is observed to be true
black: if * is observed to be false
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“Osherson horse” dataset

“Osherson 
mammals” 
dataset

Reminder:
Osheron’s 
Similiarity-
coverage model  
achieved r=0.96 
and r=0.87, 
respectively





Reminder: Rips’s (1975) model was spatial

• Subjects’ answers seem to rely on two factors:
• Similarity of the premise to conclusion category (smaller 

distance is stronger argument)
• Typicality of premise category (smaller distance in MDS space 

from premise to superordinate category leads to strong 
argument)

“If pigs have a disease, what proportion of deer 
would be likely to get the disease?” 

666 LANCE J. RIPS 

To study inductive decisions about natural 
categories, we must incorporate these cate- 
gories directly in our experimental paradigm. 
All inductive situations, however, require at 
least three components: (a) a set of instances, 
(b) some property which could consistently be 
possessed by the instances, and (c) an initial 
specification of those instances known to 
have the property. We can then require a 
subject to make some judgment about those 
instances not already known to have the 
property. To these minimal requirements, we 
can add a further restriction. We limit our- 
selves to cases in which the set mentioned in 
(a) is composed of natural kinds (e.g., birds, 
fruit, .furniture). Some thought must also be 
given to the type of property in (b). If the 
property is some well-known feature of the 
instances, then subjects' inductive judgments 
may reflect little more than their real world 
knowledge about this specific case. An 
alternative is to invent a nonsense property 
about which the subject can have no knowl- 
edge at all. However, it may prove difficult to 
convince subjects to accept the task and to 
use what they know about the structure of 
the category in making their decisions. The 
property we require should force subjects to 
consider the nature of the category without, 
so to speak, giving away the answer. 

Towards these ends, the experiments pre- 
sented below made use of the following 
procedure. Subjects read a problem concern- 

ing animal species inhabiting a small island. 
The problem listed the names of the species 
(e.g., robins, geese, and hawks), together with 
the fact that the number of animals in each 
was approximately the same. The problem 
then stated that all of the animals in one of 
the species (e.g., all of the robins) had a 
new type of communicable disease. Subjects 
were then asked to estimate, for each of the 
other species, the proportion of animals that 
also had the disease. We can let the Given 
Instance denote that species said to have the 
disease, and the Target Instances those 
species about which estimates must be 
made. 

With the exceptions noted below, the 
species were chosen from the Rips et al. 
(1973) scaling solutions for bird and mammal 
instances. These configurations had been 
derived by having subjects rate the similarities 
of each of the pairwise combinations of 
instances, together with the similarity of each 
instance to its superordinate categories (mam- 
mal and animal for the mammal instances, 
and bird and animal for the bird instances). 
These similarity ratings were then submitted 
to Carroll and Chang's (1970) INDSCAL 
program, producing the two-dimensional 
solutions shown in Fig. 1,. In Experiment I 
most of the instances were taken from the 
solution for birds in Panel a, while in Experi- 
ments II-III,  most of the instances were 
mammals drawn from Panel b. 
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FIG. 1. Multidimensional scaling solutions for birds (panel a) and mammals (panel b). 



Σ, using distances in a 2D space

Rij ¼
1

2p
expð# 1

r
jjxi # xjjjÞ; ð4Þ

where xi is the 2D location of object i and ||xi # xj|| is the Euclidean distance
between two objects.

• Raw covariance. The raw covariance model was either identical to the similarity
matrix or R ¼ 1

mDD
T where D is the rescaled feature matrix.

5.3. Data sets for property induction

The property induction data concerning mammals, including the Osherson horse and
Osherson mammals tasks, were reported in Osherson et al. (1990). Judgments concerned
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pants were shown arguments of the form “Cows and chimps require biotin for hemoglo-
bin synthesis. Therefore, horses require biotin for hemoglobin synthesis.” The Osherson
horse set contains 36 two-premise arguments with the conclusion “horse,” and the
mammals set contains 45 three-premise arguments with the conclusion “all mammals.”
Participants ranked each set of arguments in increasing strength by sorting cards.
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Important caveat: Do we need special purpose knowledge 
structures to explain these inferences?

spatial reasoningbiological reasoning

model vs. human 
judgments

Lake et al. (2018; Cognitive Science) show that learning more generic, sparse 
structures can account for both taxonomic and spatial reasoning 



that different properties can invoke different intuitive theories.
Theory-based approaches, however, rarely attempt to formalize the
content of intuitive theories and are therefore unable to explain
precisely how these theories are used for inductive inference.
Statistical or similarity-based approaches (Heit, 1998; Osherson et
al., 1990; Rips, 1975) offer complementary strengths—they often
provide formal models of inductive inference, but they usually
work with very limited kinds of knowledge. Similarity-based ap-
proaches, for instance, typically assume that the knowledge re-
quired for property induction can be captured by a single pairwise
relation between the categories in a domain. We argue that each of
these traditions needs the other. Theory-based approaches need
statistical inference to explain how theories are acquired and used,
and statistical approaches will remain limited in scope unless they
can incorporate the content of intuitive theories.

This article develops a modeling framework that attempts to
combine the strengths of the theory-based and statistical traditions.
The problem of property induction can be modeled as a statistical
inference about the probability of the conclusion given the ob-
served premises. A Bayesian approach to this problem incorpo-
rates a prior distribution, and we suggest that this prior distribution
is often generated by intuitive theories. Bayesian models are crit-
icized in some contexts for relying on prior distributions (Edwards,
1972), but sensitivity to prior knowledge is a distinct advantage
when modeling inductive reasoning. The prior distribution used by
a Bayesian model can capture background knowledge of arbitrary
sophistication, and different prior distributions can account for
different patterns of reasoning in different inductive contexts.

To turn these ideas into a computational framework, we develop
a general method for capturing some of the rich background
knowledge embedded in intuitive theories. Our approach is sum-
marized by Figure 1. For any given problem, the starting point is
a structure representing the key relationships between categories in
a domain. For example, the tree structure in Figure 1a captures
knowledge about the taxonomic relationships among a group of
biological species, the one-dimensional spaces in Figures 1b and
1c capture knowledge about the body weights of these species, and
the directed graph in Figure 1d captures knowledge about
predator–prey relationships.

In addition to knowledge about relationships between catego-
ries, a reasoner must also know how the distribution of a given
property is likely to depend on these relationships. For example, a
biological property like “has enzyme X132” is likely to respect
taxonomic boundaries and will probably be shared by the species
belonging to some subtree of the taxonomy in Figure 1a. Species
which “ideally consume around 15 g of sodium per week in the
wild” will probably have roughly similar weights and will fall
within some subinterval of the one-dimensional space in Figure 1b.
Two properties may depend on the same underlying structure in
different ways—for example, a species will be “heavy enough to
trigger an average pit trap” if its weight exceeds some threshold
along the dimension in Figure 1c. Finally, a reasoner might know
that properties like “carries leptospirosis” are likely to be trans-
mitted along the links in the food web in Figure 1d but could also
arise from other sources outside the web.
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Figure 1. Structured statistical models for reasoning about four kinds of properties. The models rely on
structures of three different forms, and each model combines a structure S and a stochastic process T to generate
a prior distribution, p(f |S,T), on properties. The bottom row shows properties with high prior probability
according to each model. Each column represents the extension of a property—for example, property f 1 in the
taxonomic data set is shared only by cheetahs and lions. The prior distribution p(f |S,T) specified by each model
can be used to make inferences about a partially observed property, f new. For instance, a diffusion process over
a tree captures the intuition that animals nearby in the tree are likely to have similar properties and predicts that
lions are likely to have enzyme X132 if cheetahs are known to have this property.
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a general method for capturing some of the rich background
knowledge embedded in intuitive theories. Our approach is sum-
marized by Figure 1. For any given problem, the starting point is
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a domain. For example, the tree structure in Figure 1a captures
knowledge about the taxonomic relationships among a group of
biological species, the one-dimensional spaces in Figures 1b and
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ries, a reasoner must also know how the distribution of a given
property is likely to depend on these relationships. For example, a
biological property like “has enzyme X132” is likely to respect
taxonomic boundaries and will probably be shared by the species
belonging to some subtree of the taxonomy in Figure 1a. Species
which “ideally consume around 15 g of sodium per week in the
wild” will probably have roughly similar weights and will fall
within some subinterval of the one-dimensional space in Figure 1b.
Two properties may depend on the same underlying structure in
different ways—for example, a species will be “heavy enough to
trigger an average pit trap” if its weight exceeds some threshold
along the dimension in Figure 1c. Finally, a reasoner might know
that properties like “carries leptospirosis” are likely to be trans-
mitted along the links in the food web in Figure 1d but could also
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along the dimension in Figure 1c. Finally, a reasoner might know
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Figure 1. Structured statistical models for reasoning about four kinds of properties. The models rely on
structures of three different forms, and each model combines a structure S and a stochastic process T to generate
a prior distribution, p(f |S,T), on properties. The bottom row shows properties with high prior probability
according to each model. Each column represents the extension of a property—for example, property f 1 in the
taxonomic data set is shared only by cheetahs and lions. The prior distribution p(f |S,T) specified by each model
can be used to make inferences about a partially observed property, f new. For instance, a diffusion process over
a tree captures the intuition that animals nearby in the tree are likely to have similar properties and predicts that
lions are likely to have enzyme X132 if cheetahs are known to have this property.
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that different properties can invoke different intuitive theories.
Theory-based approaches, however, rarely attempt to formalize the
content of intuitive theories and are therefore unable to explain
precisely how these theories are used for inductive inference.
Statistical or similarity-based approaches (Heit, 1998; Osherson et
al., 1990; Rips, 1975) offer complementary strengths—they often
provide formal models of inductive inference, but they usually
work with very limited kinds of knowledge. Similarity-based ap-
proaches, for instance, typically assume that the knowledge re-
quired for property induction can be captured by a single pairwise
relation between the categories in a domain. We argue that each of
these traditions needs the other. Theory-based approaches need
statistical inference to explain how theories are acquired and used,
and statistical approaches will remain limited in scope unless they
can incorporate the content of intuitive theories.

This article develops a modeling framework that attempts to
combine the strengths of the theory-based and statistical traditions.
The problem of property induction can be modeled as a statistical
inference about the probability of the conclusion given the ob-
served premises. A Bayesian approach to this problem incorpo-
rates a prior distribution, and we suggest that this prior distribution
is often generated by intuitive theories. Bayesian models are crit-
icized in some contexts for relying on prior distributions (Edwards,
1972), but sensitivity to prior knowledge is a distinct advantage
when modeling inductive reasoning. The prior distribution used by
a Bayesian model can capture background knowledge of arbitrary
sophistication, and different prior distributions can account for
different patterns of reasoning in different inductive contexts.

To turn these ideas into a computational framework, we develop
a general method for capturing some of the rich background
knowledge embedded in intuitive theories. Our approach is sum-
marized by Figure 1. For any given problem, the starting point is
a structure representing the key relationships between categories in
a domain. For example, the tree structure in Figure 1a captures
knowledge about the taxonomic relationships among a group of
biological species, the one-dimensional spaces in Figures 1b and
1c capture knowledge about the body weights of these species, and
the directed graph in Figure 1d captures knowledge about
predator–prey relationships.

In addition to knowledge about relationships between catego-
ries, a reasoner must also know how the distribution of a given
property is likely to depend on these relationships. For example, a
biological property like “has enzyme X132” is likely to respect
taxonomic boundaries and will probably be shared by the species
belonging to some subtree of the taxonomy in Figure 1a. Species
which “ideally consume around 15 g of sodium per week in the
wild” will probably have roughly similar weights and will fall
within some subinterval of the one-dimensional space in Figure 1b.
Two properties may depend on the same underlying structure in
different ways—for example, a species will be “heavy enough to
trigger an average pit trap” if its weight exceeds some threshold
along the dimension in Figure 1c. Finally, a reasoner might know
that properties like “carries leptospirosis” are likely to be trans-
mitted along the links in the food web in Figure 1d but could also
arise from other sources outside the web.
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taxonomic data set is shared only by cheetahs and lions. The prior distribution p(f |S,T) specified by each model
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provide formal models of inductive inference, but they usually
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and statistical approaches will remain limited in scope unless they
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The problem of property induction can be modeled as a statistical
inference about the probability of the conclusion given the ob-
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rates a prior distribution, and we suggest that this prior distribution
is often generated by intuitive theories. Bayesian models are crit-
icized in some contexts for relying on prior distributions (Edwards,
1972), but sensitivity to prior knowledge is a distinct advantage
when modeling inductive reasoning. The prior distribution used by
a Bayesian model can capture background knowledge of arbitrary
sophistication, and different prior distributions can account for
different patterns of reasoning in different inductive contexts.

To turn these ideas into a computational framework, we develop
a general method for capturing some of the rich background
knowledge embedded in intuitive theories. Our approach is sum-
marized by Figure 1. For any given problem, the starting point is
a structure representing the key relationships between categories in
a domain. For example, the tree structure in Figure 1a captures
knowledge about the taxonomic relationships among a group of
biological species, the one-dimensional spaces in Figures 1b and
1c capture knowledge about the body weights of these species, and
the directed graph in Figure 1d captures knowledge about
predator–prey relationships.

In addition to knowledge about relationships between catego-
ries, a reasoner must also know how the distribution of a given
property is likely to depend on these relationships. For example, a
biological property like “has enzyme X132” is likely to respect
taxonomic boundaries and will probably be shared by the species
belonging to some subtree of the taxonomy in Figure 1a. Species
which “ideally consume around 15 g of sodium per week in the
wild” will probably have roughly similar weights and will fall
within some subinterval of the one-dimensional space in Figure 1b.
Two properties may depend on the same underlying structure in
different ways—for example, a species will be “heavy enough to
trigger an average pit trap” if its weight exceeds some threshold
along the dimension in Figure 1c. Finally, a reasoner might know
that properties like “carries leptospirosis” are likely to be trans-
mitted along the links in the food web in Figure 1d but could also
arise from other sources outside the web.
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structures of three different forms, and each model combines a structure S and a stochastic process T to generate
a prior distribution, p(f |S,T), on properties. The bottom row shows properties with high prior probability
according to each model. Each column represents the extension of a property—for example, property f 1 in the
taxonomic data set is shared only by cheetahs and lions. The prior distribution p(f |S,T) specified by each model
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Spatial model Threshold model

Making Bayesian predictions P( fY = 1 | lX) = ∑
f:fY=1

P( f | lX)

10-species tree in Figure 5a. If we sample continuous features y
using this covariance matrix, pairs with high covariance (e.g.,
chimps and gorillas) will tend to have similar feature values. For
instance, if chimps have a value on some dimension that exceeds
the mean, the feature value for gorillas on the same dimension is
also expected to be higher than normal. Appendix A describes in
detail how a covariance matrix can be defined over any graph
structure, but the basic intuition is that large entries in the covari-
ance matrix will correspond to pairs of nodes that are nearby in the
underlying structure.

After generating a continuous feature y, we convert it to a binary
vector f by thresholding at zero. The complete generative model
can be written as:

y ! N!0, K" (7)

fi ! #!yi" (8)

where fi is the feature value for category i, and #(yi) is 1 if yi "
0 and 0 otherwise. Equation 7 indicates that y is drawn from a
zero-mean Gaussian distribution with covariance matrix K, and
Equation 8 indicates that f is generated by thresholding the con-
tinuous vector y. This generative process will assign nonzero
probability to all of the 2n possible binary features, but the features
with high prior probability will tend to be consistent with the
covariance matrix K. As described in Appendix B the definition of
K uses a single free parameter, $, which captures the extent to
which feature values are expected to depart from the mean of the
Gaussian distribution in Equation 7. We set $ % 5 throughout this
article.

The Bayesian model with a prior p(f) defined by a diffusion
process over a tree can be called the tree & diffusion model, but we
will also refer to it as the taxonomic model. The first column of
Figure 6 shows generalization curves predicted by this model. The
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Figure 6. Generalization curves for four models: a diffusion process defined over a tree, a diffusion process
defined over a one-dimensional space, a drift process defined over a one-dimensional space, and a transmission
process defined over a food chain. (a): Projections from a category (x!) located at the asterisk. The category is
observed to have a novel property (fx!

% 1, white curve) or observed not to have a novel property (fx!
% 0, black

curve), and predictions are made about categories located elsewhere in the structure. In the taxonomic case,
observing that x! has a property supports the prediction that nearby categories in the tree will also have the
property (white curve). The gray curve shows predictions before any positive or negative examples have been
observed. (b): Projections to category x! after a single positive example (white curve) or a single negative
example (black curve) is observed elsewhere in the structure. In the case of the threshold model, observing that
a category at the far left of the dimension has a property (white curve) provides good evidence that x! will also
have the property. The gray line shows the prior probability that category x! has the novel property.
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also expected to be higher than normal. Appendix A describes in
detail how a covariance matrix can be defined over any graph
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ance matrix will correspond to pairs of nodes that are nearby in the
underlying structure.

After generating a continuous feature y, we convert it to a binary
vector f by thresholding at zero. The complete generative model
can be written as:
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where fi is the feature value for category i, and #(yi) is 1 if yi "
0 and 0 otherwise. Equation 7 indicates that y is drawn from a
zero-mean Gaussian distribution with covariance matrix K, and
Equation 8 indicates that f is generated by thresholding the con-
tinuous vector y. This generative process will assign nonzero
probability to all of the 2n possible binary features, but the features
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covariance matrix K. As described in Appendix B the definition of
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Figure 11, there is no good evidence that similarity ratings con-
tribute any information that is not already present in the prior
probabilities R, and the threshold model may therefore be preferred
to the other two models. Compared to SimProb, the threshold
model may also be preferred because it is an instance of the
general framework developed in this article—a probabilistic
framework that uses the same inference engine to handle many
different kinds of reasoning.

Because each of the data sets in Figure 11 includes single
premise arguments, we can explore whether the qualitative phe-
nomena in Table 1 are present in the human data. Figure 12 shows
that asymmetry is clearly present—for all pairs (a,b) where p(a) !
p(b), participants report that a 3 b is stronger than b 3 a. The
second row shows that the results for the college data closely
match the predictions of the threshold model—increased proximity
leads to increased argument strength only for inferences that move
from a probable premise to a less probable conclusion. The results
for the Smith data match the predictions of the threshold model for

all distance comparisons except comparison D2. Taken together,
the results in Figure 12 provide further evidence that the threshold
model accounts for the human data better than the spatial model.

Causal Reasoning

Our threshold model captures one kind of reasoning that cannot
be explained by similarity alone, but many other examples can be
found in the literature (S.A. Gelman & Markman, 1986; Heit &
Rubinstein, 1994; Medin et al., 2005; Shafto & Coley, 2003). One
class of examples focuses on causal relations: for example, ga-
zelles 3 lions (babesiosis) is stronger than lions 3 gazelles
(babesiosis), where babesiosis is an infectious disease. Here we
demonstrate how inferences like these can be captured by a causal
model (Shafto et al., 2008) that formalizes a simple theory of
disease transmission over a food web.

Like all of our models, the causal model relies on a structure and
a stochastic process. The structure captures knowledge about
predator–prey relationships among a group of species. This knowl-
edge can be represented as a food web or a directed graph with an
edge from B to A if B is eaten by A. The stochastic process captures
knowledge about how diseases are transmitted over a food web. In
particular, this transmission process captures the common sense
idea that diseases tend to spread up a food web, and that a prey
animal is more likely to transmit the disease to a predator than vice
versa. As before, we describe this process by explaining how to
generate a single feature. If we draw a large sample of properties
by repeating this procedure many times, the prior probability of a
property will be proportional to the number of times it appears in
the sample.

The transmission process has two parameters: b, the background
rate, and t, the transmission probability. The first parameter cap-
tures the knowledge that species can contract diseases from causes
external to the food web. For each species in the web, we toss a
coin with bias b to decide whether that species develops the
disease as a result of an external cause. The second parameter is
used to capture the knowledge that diseases can spread from prey
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Figure 11. Model performance for four tasks involving judgments about
threshold categories. The seven models are summarized in Table 3.

Table 3
Models for Reasoning About Threshold Properties

Model Bayesian Description

Threshold (1D " drift) Yes Equation 10 with # $ sigm%1(R)
and K defined over a 1D
structure

Spatial (1D " diffusion) Yes Equations 7–8 with K defined
over a 1D structure

Tree " drift Yes Equation 10 with # $ sigm–1(R)
and K defined over a tree

Taxonomic (tree " diffusion) Yes Equations 7–8 with K defined
over a tree

Sim. covariance " drift Yes Equation 10 with # $ sigm%1(R)
and K set by similarity ratings

Sim. covariance " diffusion Yes Equations 7–8 with K set by
similarity ratings

Sim Prob No See Blok et al. (2007)

Note. For a given domain and threshold property, R is a vector indicating
the a priori probability that each category in the domain has the property.
The first six models are structured statistical approaches that rely on
different structures and stochastic processes.
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Figure 11, there is no good evidence that similarity ratings con-
tribute any information that is not already present in the prior
probabilities R, and the threshold model may therefore be preferred
to the other two models. Compared to SimProb, the threshold
model may also be preferred because it is an instance of the
general framework developed in this article—a probabilistic
framework that uses the same inference engine to handle many
different kinds of reasoning.

Because each of the data sets in Figure 11 includes single
premise arguments, we can explore whether the qualitative phe-
nomena in Table 1 are present in the human data. Figure 12 shows
that asymmetry is clearly present—for all pairs (a,b) where p(a) !
p(b), participants report that a 3 b is stronger than b 3 a. The
second row shows that the results for the college data closely
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model accounts for the human data better than the spatial model.
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Our threshold model captures one kind of reasoning that cannot
be explained by similarity alone, but many other examples can be
found in the literature (S.A. Gelman & Markman, 1986; Heit &
Rubinstein, 1994; Medin et al., 2005; Shafto & Coley, 2003). One
class of examples focuses on causal relations: for example, ga-
zelles 3 lions (babesiosis) is stronger than lions 3 gazelles
(babesiosis), where babesiosis is an infectious disease. Here we
demonstrate how inferences like these can be captured by a causal
model (Shafto et al., 2008) that formalizes a simple theory of
disease transmission over a food web.

Like all of our models, the causal model relies on a structure and
a stochastic process. The structure captures knowledge about
predator–prey relationships among a group of species. This knowl-
edge can be represented as a food web or a directed graph with an
edge from B to A if B is eaten by A. The stochastic process captures
knowledge about how diseases are transmitted over a food web. In
particular, this transmission process captures the common sense
idea that diseases tend to spread up a food web, and that a prey
animal is more likely to transmit the disease to a predator than vice
versa. As before, we describe this process by explaining how to
generate a single feature. If we draw a large sample of properties
by repeating this procedure many times, the prior probability of a
property will be proportional to the number of times it appears in
the sample.

The transmission process has two parameters: b, the background
rate, and t, the transmission probability. The first parameter cap-
tures the knowledge that species can contract diseases from causes
external to the food web. For each species in the web, we toss a
coin with bias b to decide whether that species develops the
disease as a result of an external cause. The second parameter is
used to capture the knowledge that diseases can spread from prey
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threshold categories. The seven models are summarized in Table 3.

Table 3
Models for Reasoning About Threshold Properties

Model Bayesian Description

Threshold (1D " drift) Yes Equation 10 with # $ sigm%1(R)
and K defined over a 1D
structure

Spatial (1D " diffusion) Yes Equations 7–8 with K defined
over a 1D structure

Tree " drift Yes Equation 10 with # $ sigm–1(R)
and K defined over a tree

Taxonomic (tree " diffusion) Yes Equations 7–8 with K defined
over a tree

Sim. covariance " drift Yes Equation 10 with # $ sigm%1(R)
and K set by similarity ratings

Sim. covariance " diffusion Yes Equations 7–8 with K set by
similarity ratings

Sim Prob No See Blok et al. (2007)

Note. For a given domain and threshold property, R is a vector indicating
the a priori probability that each category in the domain has the property.
The first six models are structured statistical approaches that rely on
different structures and stochastic processes.
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Figure 11, there is no good evidence that similarity ratings con-
tribute any information that is not already present in the prior
probabilities R, and the threshold model may therefore be preferred
to the other two models. Compared to SimProb, the threshold
model may also be preferred because it is an instance of the
general framework developed in this article—a probabilistic
framework that uses the same inference engine to handle many
different kinds of reasoning.

Because each of the data sets in Figure 11 includes single
premise arguments, we can explore whether the qualitative phe-
nomena in Table 1 are present in the human data. Figure 12 shows
that asymmetry is clearly present—for all pairs (a,b) where p(a) !
p(b), participants report that a 3 b is stronger than b 3 a. The
second row shows that the results for the college data closely
match the predictions of the threshold model—increased proximity
leads to increased argument strength only for inferences that move
from a probable premise to a less probable conclusion. The results
for the Smith data match the predictions of the threshold model for

all distance comparisons except comparison D2. Taken together,
the results in Figure 12 provide further evidence that the threshold
model accounts for the human data better than the spatial model.

Causal Reasoning

Our threshold model captures one kind of reasoning that cannot
be explained by similarity alone, but many other examples can be
found in the literature (S.A. Gelman & Markman, 1986; Heit &
Rubinstein, 1994; Medin et al., 2005; Shafto & Coley, 2003). One
class of examples focuses on causal relations: for example, ga-
zelles 3 lions (babesiosis) is stronger than lions 3 gazelles
(babesiosis), where babesiosis is an infectious disease. Here we
demonstrate how inferences like these can be captured by a causal
model (Shafto et al., 2008) that formalizes a simple theory of
disease transmission over a food web.

Like all of our models, the causal model relies on a structure and
a stochastic process. The structure captures knowledge about
predator–prey relationships among a group of species. This knowl-
edge can be represented as a food web or a directed graph with an
edge from B to A if B is eaten by A. The stochastic process captures
knowledge about how diseases are transmitted over a food web. In
particular, this transmission process captures the common sense
idea that diseases tend to spread up a food web, and that a prey
animal is more likely to transmit the disease to a predator than vice
versa. As before, we describe this process by explaining how to
generate a single feature. If we draw a large sample of properties
by repeating this procedure many times, the prior probability of a
property will be proportional to the number of times it appears in
the sample.

The transmission process has two parameters: b, the background
rate, and t, the transmission probability. The first parameter cap-
tures the knowledge that species can contract diseases from causes
external to the food web. For each species in the web, we toss a
coin with bias b to decide whether that species develops the
disease as a result of an external cause. The second parameter is
used to capture the knowledge that diseases can spread from prey
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Figure 11. Model performance for four tasks involving judgments about
threshold categories. The seven models are summarized in Table 3.

Table 3
Models for Reasoning About Threshold Properties

Model Bayesian Description

Threshold (1D " drift) Yes Equation 10 with # $ sigm%1(R)
and K defined over a 1D
structure

Spatial (1D " diffusion) Yes Equations 7–8 with K defined
over a 1D structure

Tree " drift Yes Equation 10 with # $ sigm–1(R)
and K defined over a tree

Taxonomic (tree " diffusion) Yes Equations 7–8 with K defined
over a tree

Sim. covariance " drift Yes Equation 10 with # $ sigm%1(R)
and K set by similarity ratings

Sim. covariance " diffusion Yes Equations 7–8 with K set by
similarity ratings

Sim Prob No See Blok et al. (2007)

Note. For a given domain and threshold property, R is a vector indicating
the a priori probability that each category in the domain has the property.
The first six models are structured statistical approaches that rely on
different structures and stochastic processes.
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uates from several institutions. Five colleges includes five institu-
tions—Connecticut State, Oklahoma State, Harvard, Arkansas
State, and Yale—and the property used is “over 60% of its grad-
uates earn more than $50,000 a year at their first job.” Four
colleges is similar, and the most notable difference between the
two is that four colleges includes arguments with negative pre-
mises. The remaining data sets were collected by Smith et al.
(1993) and use five animal species: housecats, lions, camels,
hippos, and elephants. Smith dark uses the property “has a visual
system that fully adapts to darkness in less than 5 minutes,” and
Smith skin uses “has skin that is more resistant to penetration than
most synthetic fibers.”

Each data set includes ratings of argument strength, similarity
ratings between all pairs of categories, and R, a vector that spec-
ifies the prior probability that the property of interest applies to
each category. For instance, the Smith dark data indicate that
Rhousecats ! 0.79 where Rhousecats is the mean judgment of the
probability that housecats have a visual system that adapts to
darkness in less than 5 min (Figure 10c). Our threshold model uses
a one-dimensional structure, where the prior probabilities R deter-
mine the location of each category (Figure 10). For the Smith dark
data, housecats are located at sigm"1(Rhousecats) # 1.32 on a
continuous scale where categories with prior probability 0.5 are
located at position 0 (Figure 10c).

The top row of Figure 11 shows that the threshold model
accounts well for all of the data sets. To establish that each
component of the threshold model makes an important contribu-
tion, we compare this model to several closely related alternatives
(Table 3). The spatial model is based on the same one-dimensional

structure as the threshold model but uses the diffusion process
instead of the drift process. The diffusion process led to accurate
predictions for the default biological context (Figure 7) and for the
spatial context (Figure 9), but here we see that a diffusion-based
model performs dramatically worse than a drift-based model. We
therefore conclude that having the right kind of structure is not
enough to account for human judgments and that knowing how
properties are generated over this structure is crucial.

The remaining models in Figure 11 all use the similarity ratings
in some form. Both tree models use a covariance matrix K defined
over a tree learned from similarity data. Both of these models
therefore assume that the novel property is distributed smoothly
over the tree. The tree $ drift model, however, assumes that the
property is more likely to be found in certain regions of the
tree—regions associated with high prior probabilities. To formal-
ize this assumption, we set % ! sigm"1(R) in Equation 10.
Figure 11 shows that the drift process leads to better performance
than the diffusion process regardless of whether the underlying
structure is a one-dimensional representation or a tree.

The two similarity covariance models both use the similarity
ratings as their covariance matrix K. Again we see that using the
drift process instead of the diffusion process leads to a substantial
improvement. Finally, the results for SimProb shows that it per-
forms similarly to the threshold model on three of the four data sets
and a little better on the Smith dark data. There is little reason to
choose between the threshold model, tree $ drift and SimProb on
grounds of performance, but note that tree $ drift and SimProb
both rely on more information than the threshold model, which
does not use the similarity information. For the tasks considered in

–1(R )

(R )

Figure 10. One-dimensional structures for reasoning about two threshold properties: (a) “has skin that is more
resistant to penetration than most synthetic fibers” and (b) “has a visual system that fully adapts to darkness in
less than 5 minutes.” Animals towards the right of each structure are more likely to have the property. The two
structures were determined by human ratings of the prior probability that the property applies to each animal.
The prior probability for each species is passed through the sigmoid function sigm(!) to generate the position of
that species along the one-dimensional structure. Shown in (c) are the prior probabilities for the “darkness”
property (y-axis) and the corresponding positions along the one-dimensional structure (x-axis).
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“Given that animal X has skin that is more 
resistant to penetration than most 
synthetic fibers, how likely does Y?”
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tions—Connecticut State, Oklahoma State, Harvard, Arkansas
State, and Yale—and the property used is “over 60% of its grad-
uates earn more than $50,000 a year at their first job.” Four
colleges is similar, and the most notable difference between the
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mises. The remaining data sets were collected by Smith et al.
(1993) and use five animal species: housecats, lions, camels,
hippos, and elephants. Smith dark uses the property “has a visual
system that fully adapts to darkness in less than 5 minutes,” and
Smith skin uses “has skin that is more resistant to penetration than
most synthetic fibers.”

Each data set includes ratings of argument strength, similarity
ratings between all pairs of categories, and R, a vector that spec-
ifies the prior probability that the property of interest applies to
each category. For instance, the Smith dark data indicate that
Rhousecats ! 0.79 where Rhousecats is the mean judgment of the
probability that housecats have a visual system that adapts to
darkness in less than 5 min (Figure 10c). Our threshold model uses
a one-dimensional structure, where the prior probabilities R deter-
mine the location of each category (Figure 10). For the Smith dark
data, housecats are located at sigm"1(Rhousecats) # 1.32 on a
continuous scale where categories with prior probability 0.5 are
located at position 0 (Figure 10c).

The top row of Figure 11 shows that the threshold model
accounts well for all of the data sets. To establish that each
component of the threshold model makes an important contribu-
tion, we compare this model to several closely related alternatives
(Table 3). The spatial model is based on the same one-dimensional

structure as the threshold model but uses the diffusion process
instead of the drift process. The diffusion process led to accurate
predictions for the default biological context (Figure 7) and for the
spatial context (Figure 9), but here we see that a diffusion-based
model performs dramatically worse than a drift-based model. We
therefore conclude that having the right kind of structure is not
enough to account for human judgments and that knowing how
properties are generated over this structure is crucial.

The remaining models in Figure 11 all use the similarity ratings
in some form. Both tree models use a covariance matrix K defined
over a tree learned from similarity data. Both of these models
therefore assume that the novel property is distributed smoothly
over the tree. The tree $ drift model, however, assumes that the
property is more likely to be found in certain regions of the
tree—regions associated with high prior probabilities. To formal-
ize this assumption, we set % ! sigm"1(R) in Equation 10.
Figure 11 shows that the drift process leads to better performance
than the diffusion process regardless of whether the underlying
structure is a one-dimensional representation or a tree.

The two similarity covariance models both use the similarity
ratings as their covariance matrix K. Again we see that using the
drift process instead of the diffusion process leads to a substantial
improvement. Finally, the results for SimProb shows that it per-
forms similarly to the threshold model on three of the four data sets
and a little better on the Smith dark data. There is little reason to
choose between the threshold model, tree $ drift and SimProb on
grounds of performance, but note that tree $ drift and SimProb
both rely on more information than the threshold model, which
does not use the similarity information. For the tasks considered in
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Figure 10. One-dimensional structures for reasoning about two threshold properties: (a) “has skin that is more
resistant to penetration than most synthetic fibers” and (b) “has a visual system that fully adapts to darkness in
less than 5 minutes.” Animals towards the right of each structure are more likely to have the property. The two
structures were determined by human ratings of the prior probability that the property applies to each animal.
The prior probability for each species is passed through the sigmoid function sigm(!) to generate the position of
that species along the one-dimensional structure. Shown in (c) are the prior probabilities for the “darkness”
property (y-axis) and the corresponding positions along the one-dimensional structure (x-axis).
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Reasoning about threshold properties
A drift process fits better than diffusion



Making Bayesian predictions

that different properties can invoke different intuitive theories.
Theory-based approaches, however, rarely attempt to formalize the
content of intuitive theories and are therefore unable to explain
precisely how these theories are used for inductive inference.
Statistical or similarity-based approaches (Heit, 1998; Osherson et
al., 1990; Rips, 1975) offer complementary strengths—they often
provide formal models of inductive inference, but they usually
work with very limited kinds of knowledge. Similarity-based ap-
proaches, for instance, typically assume that the knowledge re-
quired for property induction can be captured by a single pairwise
relation between the categories in a domain. We argue that each of
these traditions needs the other. Theory-based approaches need
statistical inference to explain how theories are acquired and used,
and statistical approaches will remain limited in scope unless they
can incorporate the content of intuitive theories.

This article develops a modeling framework that attempts to
combine the strengths of the theory-based and statistical traditions.
The problem of property induction can be modeled as a statistical
inference about the probability of the conclusion given the ob-
served premises. A Bayesian approach to this problem incorpo-
rates a prior distribution, and we suggest that this prior distribution
is often generated by intuitive theories. Bayesian models are crit-
icized in some contexts for relying on prior distributions (Edwards,
1972), but sensitivity to prior knowledge is a distinct advantage
when modeling inductive reasoning. The prior distribution used by
a Bayesian model can capture background knowledge of arbitrary
sophistication, and different prior distributions can account for
different patterns of reasoning in different inductive contexts.

To turn these ideas into a computational framework, we develop
a general method for capturing some of the rich background
knowledge embedded in intuitive theories. Our approach is sum-
marized by Figure 1. For any given problem, the starting point is
a structure representing the key relationships between categories in
a domain. For example, the tree structure in Figure 1a captures
knowledge about the taxonomic relationships among a group of
biological species, the one-dimensional spaces in Figures 1b and
1c capture knowledge about the body weights of these species, and
the directed graph in Figure 1d captures knowledge about
predator–prey relationships.

In addition to knowledge about relationships between catego-
ries, a reasoner must also know how the distribution of a given
property is likely to depend on these relationships. For example, a
biological property like “has enzyme X132” is likely to respect
taxonomic boundaries and will probably be shared by the species
belonging to some subtree of the taxonomy in Figure 1a. Species
which “ideally consume around 15 g of sodium per week in the
wild” will probably have roughly similar weights and will fall
within some subinterval of the one-dimensional space in Figure 1b.
Two properties may depend on the same underlying structure in
different ways—for example, a species will be “heavy enough to
trigger an average pit trap” if its weight exceeds some threshold
along the dimension in Figure 1c. Finally, a reasoner might know
that properties like “carries leptospirosis” are likely to be trans-
mitted along the links in the food web in Figure 1d but could also
arise from other sources outside the web.
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Figure 1. Structured statistical models for reasoning about four kinds of properties. The models rely on
structures of three different forms, and each model combines a structure S and a stochastic process T to generate
a prior distribution, p(f |S,T), on properties. The bottom row shows properties with high prior probability
according to each model. Each column represents the extension of a property—for example, property f 1 in the
taxonomic data set is shared only by cheetahs and lions. The prior distribution p(f |S,T) specified by each model
can be used to make inferences about a partially observed property, f new. For instance, a diffusion process over
a tree captures the intuition that animals nearby in the tree are likely to have similar properties and predicts that
lions are likely to have enzyme X132 if cheetahs are known to have this property.
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10-species tree in Figure 5a. If we sample continuous features y
using this covariance matrix, pairs with high covariance (e.g.,
chimps and gorillas) will tend to have similar feature values. For
instance, if chimps have a value on some dimension that exceeds
the mean, the feature value for gorillas on the same dimension is
also expected to be higher than normal. Appendix A describes in
detail how a covariance matrix can be defined over any graph
structure, but the basic intuition is that large entries in the covari-
ance matrix will correspond to pairs of nodes that are nearby in the
underlying structure.

After generating a continuous feature y, we convert it to a binary
vector f by thresholding at zero. The complete generative model
can be written as:

y ! N!0, K" (7)

fi ! #!yi" (8)

where fi is the feature value for category i, and #(yi) is 1 if yi "
0 and 0 otherwise. Equation 7 indicates that y is drawn from a
zero-mean Gaussian distribution with covariance matrix K, and
Equation 8 indicates that f is generated by thresholding the con-
tinuous vector y. This generative process will assign nonzero
probability to all of the 2n possible binary features, but the features
with high prior probability will tend to be consistent with the
covariance matrix K. As described in Appendix B the definition of
K uses a single free parameter, $, which captures the extent to
which feature values are expected to depart from the mean of the
Gaussian distribution in Equation 7. We set $ % 5 throughout this
article.

The Bayesian model with a prior p(f) defined by a diffusion
process over a tree can be called the tree & diffusion model, but we
will also refer to it as the taxonomic model. The first column of
Figure 6 shows generalization curves predicted by this model. The
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Figure 6. Generalization curves for four models: a diffusion process defined over a tree, a diffusion process
defined over a one-dimensional space, a drift process defined over a one-dimensional space, and a transmission
process defined over a food chain. (a): Projections from a category (x!) located at the asterisk. The category is
observed to have a novel property (fx!

% 1, white curve) or observed not to have a novel property (fx!
% 0, black

curve), and predictions are made about categories located elsewhere in the structure. In the taxonomic case,
observing that x! has a property supports the prediction that nearby categories in the tree will also have the
property (white curve). The gray curve shows predictions before any positive or negative examples have been
observed. (b): Projections to category x! after a single positive example (white curve) or a single negative
example (black curve) is observed elsewhere in the structure. In the case of the threshold model, observing that
a category at the far left of the dimension has a property (white curve) provides good evidence that x! will also
have the property. The gray line shows the prior probability that category x! has the novel property.
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white: if * is observed to be true
black: if * is observed to be false

P( fY = 1 | lX) = ∑
f:fY=1

P( f | lX)

10-species tree in Figure 5a. If we sample continuous features y
using this covariance matrix, pairs with high covariance (e.g.,
chimps and gorillas) will tend to have similar feature values. For
instance, if chimps have a value on some dimension that exceeds
the mean, the feature value for gorillas on the same dimension is
also expected to be higher than normal. Appendix A describes in
detail how a covariance matrix can be defined over any graph
structure, but the basic intuition is that large entries in the covari-
ance matrix will correspond to pairs of nodes that are nearby in the
underlying structure.

After generating a continuous feature y, we convert it to a binary
vector f by thresholding at zero. The complete generative model
can be written as:

y ! N!0, K" (7)

fi ! #!yi" (8)

where fi is the feature value for category i, and #(yi) is 1 if yi "
0 and 0 otherwise. Equation 7 indicates that y is drawn from a
zero-mean Gaussian distribution with covariance matrix K, and
Equation 8 indicates that f is generated by thresholding the con-
tinuous vector y. This generative process will assign nonzero
probability to all of the 2n possible binary features, but the features
with high prior probability will tend to be consistent with the
covariance matrix K. As described in Appendix B the definition of
K uses a single free parameter, $, which captures the extent to
which feature values are expected to depart from the mean of the
Gaussian distribution in Equation 7. We set $ % 5 throughout this
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that different properties can invoke different intuitive theories.
Theory-based approaches, however, rarely attempt to formalize the
content of intuitive theories and are therefore unable to explain
precisely how these theories are used for inductive inference.
Statistical or similarity-based approaches (Heit, 1998; Osherson et
al., 1990; Rips, 1975) offer complementary strengths—they often
provide formal models of inductive inference, but they usually
work with very limited kinds of knowledge. Similarity-based ap-
proaches, for instance, typically assume that the knowledge re-
quired for property induction can be captured by a single pairwise
relation between the categories in a domain. We argue that each of
these traditions needs the other. Theory-based approaches need
statistical inference to explain how theories are acquired and used,
and statistical approaches will remain limited in scope unless they
can incorporate the content of intuitive theories.

This article develops a modeling framework that attempts to
combine the strengths of the theory-based and statistical traditions.
The problem of property induction can be modeled as a statistical
inference about the probability of the conclusion given the ob-
served premises. A Bayesian approach to this problem incorpo-
rates a prior distribution, and we suggest that this prior distribution
is often generated by intuitive theories. Bayesian models are crit-
icized in some contexts for relying on prior distributions (Edwards,
1972), but sensitivity to prior knowledge is a distinct advantage
when modeling inductive reasoning. The prior distribution used by
a Bayesian model can capture background knowledge of arbitrary
sophistication, and different prior distributions can account for
different patterns of reasoning in different inductive contexts.

To turn these ideas into a computational framework, we develop
a general method for capturing some of the rich background
knowledge embedded in intuitive theories. Our approach is sum-
marized by Figure 1. For any given problem, the starting point is
a structure representing the key relationships between categories in
a domain. For example, the tree structure in Figure 1a captures
knowledge about the taxonomic relationships among a group of
biological species, the one-dimensional spaces in Figures 1b and
1c capture knowledge about the body weights of these species, and
the directed graph in Figure 1d captures knowledge about
predator–prey relationships.

In addition to knowledge about relationships between catego-
ries, a reasoner must also know how the distribution of a given
property is likely to depend on these relationships. For example, a
biological property like “has enzyme X132” is likely to respect
taxonomic boundaries and will probably be shared by the species
belonging to some subtree of the taxonomy in Figure 1a. Species
which “ideally consume around 15 g of sodium per week in the
wild” will probably have roughly similar weights and will fall
within some subinterval of the one-dimensional space in Figure 1b.
Two properties may depend on the same underlying structure in
different ways—for example, a species will be “heavy enough to
trigger an average pit trap” if its weight exceeds some threshold
along the dimension in Figure 1c. Finally, a reasoner might know
that properties like “carries leptospirosis” are likely to be trans-
mitted along the links in the food web in Figure 1d but could also
arise from other sources outside the web.
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Figure 1. Structured statistical models for reasoning about four kinds of properties. The models rely on
structures of three different forms, and each model combines a structure S and a stochastic process T to generate
a prior distribution, p(f |S,T), on properties. The bottom row shows properties with high prior probability
according to each model. Each column represents the extension of a property—for example, property f 1 in the
taxonomic data set is shared only by cheetahs and lions. The prior distribution p(f |S,T) specified by each model
can be used to make inferences about a partially observed property, f new. For instance, a diffusion process over
a tree captures the intuition that animals nearby in the tree are likely to have similar properties and predicts that
lions are likely to have enzyme X132 if cheetahs are known to have this property.

21STRUCTURED STATISTICAL MODELS

that different properties can invoke different intuitive theories.
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statistical inference to explain how theories are acquired and used,
and statistical approaches will remain limited in scope unless they
can incorporate the content of intuitive theories.

This article develops a modeling framework that attempts to
combine the strengths of the theory-based and statistical traditions.
The problem of property induction can be modeled as a statistical
inference about the probability of the conclusion given the ob-
served premises. A Bayesian approach to this problem incorpo-
rates a prior distribution, and we suggest that this prior distribution
is often generated by intuitive theories. Bayesian models are crit-
icized in some contexts for relying on prior distributions (Edwards,
1972), but sensitivity to prior knowledge is a distinct advantage
when modeling inductive reasoning. The prior distribution used by
a Bayesian model can capture background knowledge of arbitrary
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different patterns of reasoning in different inductive contexts.

To turn these ideas into a computational framework, we develop
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knowledge embedded in intuitive theories. Our approach is sum-
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a domain. For example, the tree structure in Figure 1a captures
knowledge about the taxonomic relationships among a group of
biological species, the one-dimensional spaces in Figures 1b and
1c capture knowledge about the body weights of these species, and
the directed graph in Figure 1d captures knowledge about
predator–prey relationships.
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property is likely to depend on these relationships. For example, a
biological property like “has enzyme X132” is likely to respect
taxonomic boundaries and will probably be shared by the species
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which “ideally consume around 15 g of sodium per week in the
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within some subinterval of the one-dimensional space in Figure 1b.
Two properties may depend on the same underlying structure in
different ways—for example, a species will be “heavy enough to
trigger an average pit trap” if its weight exceeds some threshold
along the dimension in Figure 1c. Finally, a reasoner might know
that properties like “carries leptospirosis” are likely to be trans-
mitted along the links in the food web in Figure 1d but could also
arise from other sources outside the web.
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reveals a double dissociation between models and properties. The
causal model provides a good account of inferences about the
disease property, but not the genetic property, and the taxonomic
model shows the opposite pattern of results. This double dissoci-
ation provides further evidence that different prior distributions are
needed in different inductive contexts and that a Bayesian ap-
proach to property induction can capture very different patterns of
inference when provided with an appropriately structured prior.

We also compared the causal model to an alternative that uses
the diffusion process (Equations 7–8) over the food web graphs.
The web ! diffusion model uses " # 5 and relies on an additional
parameter: the lengths of the edges in the food web graph. To
generate the results in Figure 15, all edge lengths were set to the
mean edge length across the two tree graphs in Figure 14. The
web ! diffusion model assumes that species nearby in the food

web are likely to share properties but does not capture the idea that
disease transmission is asymmetric and that diseases are more
likely to spread from prey to predator than vice versa. Figure 15
shows that the web ! diffusion model performs worse than the
causal model, which suggests that generic Gaussian models will
not be able to account for every inductive context.

Because the data sets in Figure 15 use single-premise argu-
ments, we can directly explore the qualitative phenomena in Table
1. The first row of Figure 16 confirms that asymmetry is charac-
teristic of human inferences about novel diseases but not of infer-
ences about novel genes. The causal model correctly predicts that
inferences about diseases will be asymmetric, and the taxonomic
model correctly predicts that inferences about genes will be sym-
metric. The final two rows indicate that human inferences about
diseases show a causal distance effect and that human inferences
about genes show a taxonomic distance effect. Note, however, that
these distance effects do not clearly distinguish inferences about
diseases and genes—a causal distance effect is also found for
inferences about genes, and a taxonomic distance effect is also
found for inferences about diseases. One explanation for this
finding is that the webs and taxonomic trees in Figure 14 have
some shared characteristics—in the island scenario, for example,
tuna and herring are close to each other in the web and the tree, and
kelp occupies a distinctive position in both structures.

The overall pattern of results in Figures 15 and 16 suggest that
the causal model provides a good account of inferences about
novel diseases, that the taxonomic model provides a good account
of inferences about novel genes, but that neither of these models
accounts well for both inductive contexts. These results provide
additional evidence that our structured statistical framework can
accommodate very different kinds of prior knowledge and suggest
that this framework may be able to handle knowledge effects
across many inductive contexts.

Acquiring Background Knowledge

We have now seen four examples that demonstrate how our
structured statistical framework can capture the background
knowledge that is relevant to different inductive contexts. Each of
our models relies on a structure and a stochastic process, and this
section discusses how these components of background knowledge
can be acquired by a learner. Our approach is consistent with at

Figure 14. Food webs and taxonomic trees for (a) the island scenario and
(b) the mammals scenario. The trees were learned from similarity ratings
provided by participants in the experiments of Shafto et al. (2005).
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Figure 15. Model predictions for inferences about novel diseases and
novel genes. The two scenarios (island and mammals) use the species
shown in Figure 14. The three models are summarized in Table 4.

Table 4
Models for Reasoning About Causal Transmission

Model Bayesian Description

Causal (web ! transmission) Yes Prior generated by causal
transmission over the food
web

Taxonomic (tree ! diffusion) Yes Prior generated by Equations
7–8 with K defined over a
tree

Web ! diffusion Yes Prior generated by Equations
7–8 with K defined over
the food web graph

Note. The causal model is intended to capture inferences about disease
properties, and the taxonomic model is intended to capture inferences about
taxonomic properties.
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disease transmission is asymmetric and that diseases are more
likely to spread from prey to predator than vice versa. Figure 15
shows that the web ! diffusion model performs worse than the
causal model, which suggests that generic Gaussian models will
not be able to account for every inductive context.

Because the data sets in Figure 15 use single-premise argu-
ments, we can directly explore the qualitative phenomena in Table
1. The first row of Figure 16 confirms that asymmetry is charac-
teristic of human inferences about novel diseases but not of infer-
ences about novel genes. The causal model correctly predicts that
inferences about diseases will be asymmetric, and the taxonomic
model correctly predicts that inferences about genes will be sym-
metric. The final two rows indicate that human inferences about
diseases show a causal distance effect and that human inferences
about genes show a taxonomic distance effect. Note, however, that
these distance effects do not clearly distinguish inferences about
diseases and genes—a causal distance effect is also found for
inferences about genes, and a taxonomic distance effect is also
found for inferences about diseases. One explanation for this
finding is that the webs and taxonomic trees in Figure 14 have
some shared characteristics—in the island scenario, for example,
tuna and herring are close to each other in the web and the tree, and
kelp occupies a distinctive position in both structures.

The overall pattern of results in Figures 15 and 16 suggest that
the causal model provides a good account of inferences about
novel diseases, that the taxonomic model provides a good account
of inferences about novel genes, but that neither of these models
accounts well for both inductive contexts. These results provide
additional evidence that our structured statistical framework can
accommodate very different kinds of prior knowledge and suggest
that this framework may be able to handle knowledge effects
across many inductive contexts.

Acquiring Background Knowledge

We have now seen four examples that demonstrate how our
structured statistical framework can capture the background
knowledge that is relevant to different inductive contexts. Each of
our models relies on a structure and a stochastic process, and this
section discusses how these components of background knowledge
can be acquired by a learner. Our approach is consistent with at

Figure 14. Food webs and taxonomic trees for (a) the island scenario and
(b) the mammals scenario. The trees were learned from similarity ratings
provided by participants in the experiments of Shafto et al. (2005).
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novel genes. The two scenarios (island and mammals) use the species
shown in Figure 14. The three models are summarized in Table 4.

Table 4
Models for Reasoning About Causal Transmission

Model Bayesian Description

Causal (web ! transmission) Yes Prior generated by causal
transmission over the food
web

Taxonomic (tree ! diffusion) Yes Prior generated by Equations
7–8 with K defined over a
tree

Web ! diffusion Yes Prior generated by Equations
7–8 with K defined over
the food web graph

Note. The causal model is intended to capture inferences about disease
properties, and the taxonomic model is intended to capture inferences about
taxonomic properties.
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reveals a double dissociation between models and properties. The
causal model provides a good account of inferences about the
disease property, but not the genetic property, and the taxonomic
model shows the opposite pattern of results. This double dissoci-
ation provides further evidence that different prior distributions are
needed in different inductive contexts and that a Bayesian ap-
proach to property induction can capture very different patterns of
inference when provided with an appropriately structured prior.

We also compared the causal model to an alternative that uses
the diffusion process (Equations 7–8) over the food web graphs.
The web ! diffusion model uses " # 5 and relies on an additional
parameter: the lengths of the edges in the food web graph. To
generate the results in Figure 15, all edge lengths were set to the
mean edge length across the two tree graphs in Figure 14. The
web ! diffusion model assumes that species nearby in the food

web are likely to share properties but does not capture the idea that
disease transmission is asymmetric and that diseases are more
likely to spread from prey to predator than vice versa. Figure 15
shows that the web ! diffusion model performs worse than the
causal model, which suggests that generic Gaussian models will
not be able to account for every inductive context.

Because the data sets in Figure 15 use single-premise argu-
ments, we can directly explore the qualitative phenomena in Table
1. The first row of Figure 16 confirms that asymmetry is charac-
teristic of human inferences about novel diseases but not of infer-
ences about novel genes. The causal model correctly predicts that
inferences about diseases will be asymmetric, and the taxonomic
model correctly predicts that inferences about genes will be sym-
metric. The final two rows indicate that human inferences about
diseases show a causal distance effect and that human inferences
about genes show a taxonomic distance effect. Note, however, that
these distance effects do not clearly distinguish inferences about
diseases and genes—a causal distance effect is also found for
inferences about genes, and a taxonomic distance effect is also
found for inferences about diseases. One explanation for this
finding is that the webs and taxonomic trees in Figure 14 have
some shared characteristics—in the island scenario, for example,
tuna and herring are close to each other in the web and the tree, and
kelp occupies a distinctive position in both structures.

The overall pattern of results in Figures 15 and 16 suggest that
the causal model provides a good account of inferences about
novel diseases, that the taxonomic model provides a good account
of inferences about novel genes, but that neither of these models
accounts well for both inductive contexts. These results provide
additional evidence that our structured statistical framework can
accommodate very different kinds of prior knowledge and suggest
that this framework may be able to handle knowledge effects
across many inductive contexts.

Acquiring Background Knowledge

We have now seen four examples that demonstrate how our
structured statistical framework can capture the background
knowledge that is relevant to different inductive contexts. Each of
our models relies on a structure and a stochastic process, and this
section discusses how these components of background knowledge
can be acquired by a learner. Our approach is consistent with at

Figure 14. Food webs and taxonomic trees for (a) the island scenario and
(b) the mammals scenario. The trees were learned from similarity ratings
provided by participants in the experiments of Shafto et al. (2005).
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transmission over the food
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Taxonomic (tree ! diffusion) Yes Prior generated by Equations
7–8 with K defined over a
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Web ! diffusion Yes Prior generated by Equations
7–8 with K defined over
the food web graph

Note. The causal model is intended to capture inferences about disease
properties, and the taxonomic model is intended to capture inferences about
taxonomic properties.
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causal model provides a good account of inferences about the
disease property, but not the genetic property, and the taxonomic
model shows the opposite pattern of results. This double dissoci-
ation provides further evidence that different prior distributions are
needed in different inductive contexts and that a Bayesian ap-
proach to property induction can capture very different patterns of
inference when provided with an appropriately structured prior.

We also compared the causal model to an alternative that uses
the diffusion process (Equations 7–8) over the food web graphs.
The web ! diffusion model uses " # 5 and relies on an additional
parameter: the lengths of the edges in the food web graph. To
generate the results in Figure 15, all edge lengths were set to the
mean edge length across the two tree graphs in Figure 14. The
web ! diffusion model assumes that species nearby in the food

web are likely to share properties but does not capture the idea that
disease transmission is asymmetric and that diseases are more
likely to spread from prey to predator than vice versa. Figure 15
shows that the web ! diffusion model performs worse than the
causal model, which suggests that generic Gaussian models will
not be able to account for every inductive context.

Because the data sets in Figure 15 use single-premise argu-
ments, we can directly explore the qualitative phenomena in Table
1. The first row of Figure 16 confirms that asymmetry is charac-
teristic of human inferences about novel diseases but not of infer-
ences about novel genes. The causal model correctly predicts that
inferences about diseases will be asymmetric, and the taxonomic
model correctly predicts that inferences about genes will be sym-
metric. The final two rows indicate that human inferences about
diseases show a causal distance effect and that human inferences
about genes show a taxonomic distance effect. Note, however, that
these distance effects do not clearly distinguish inferences about
diseases and genes—a causal distance effect is also found for
inferences about genes, and a taxonomic distance effect is also
found for inferences about diseases. One explanation for this
finding is that the webs and taxonomic trees in Figure 14 have
some shared characteristics—in the island scenario, for example,
tuna and herring are close to each other in the web and the tree, and
kelp occupies a distinctive position in both structures.

The overall pattern of results in Figures 15 and 16 suggest that
the causal model provides a good account of inferences about
novel diseases, that the taxonomic model provides a good account
of inferences about novel genes, but that neither of these models
accounts well for both inductive contexts. These results provide
additional evidence that our structured statistical framework can
accommodate very different kinds of prior knowledge and suggest
that this framework may be able to handle knowledge effects
across many inductive contexts.

Acquiring Background Knowledge

We have now seen four examples that demonstrate how our
structured statistical framework can capture the background
knowledge that is relevant to different inductive contexts. Each of
our models relies on a structure and a stochastic process, and this
section discusses how these components of background knowledge
can be acquired by a learner. Our approach is consistent with at

Figure 14. Food webs and taxonomic trees for (a) the island scenario and
(b) the mammals scenario. The trees were learned from similarity ratings
provided by participants in the experiments of Shafto et al. (2005).
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transmission over the food
web

Taxonomic (tree ! diffusion) Yes Prior generated by Equations
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Note. The causal model is intended to capture inferences about disease
properties, and the taxonomic model is intended to capture inferences about
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shows that the web ! diffusion model performs worse than the
causal model, which suggests that generic Gaussian models will
not be able to account for every inductive context.
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ments, we can directly explore the qualitative phenomena in Table
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tuna and herring are close to each other in the web and the tree, and
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that this framework may be able to handle knowledge effects
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knowledge that is relevant to different inductive contexts. Each of
our models relies on a structure and a stochastic process, and this
section discusses how these components of background knowledge
can be acquired by a learner. Our approach is consistent with at

Figure 14. Food webs and taxonomic trees for (a) the island scenario and
(b) the mammals scenario. The trees were learned from similarity ratings
provided by participants in the experiments of Shafto et al. (2005).
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Figure 15. Model predictions for inferences about novel diseases and
novel genes. The two scenarios (island and mammals) use the species
shown in Figure 14. The three models are summarized in Table 4.

Table 4
Models for Reasoning About Causal Transmission

Model Bayesian Description

Causal (web ! transmission) Yes Prior generated by causal
transmission over the food
web

Taxonomic (tree ! diffusion) Yes Prior generated by Equations
7–8 with K defined over a
tree

Web ! diffusion Yes Prior generated by Equations
7–8 with K defined over
the food web graph

Note. The causal model is intended to capture inferences about disease
properties, and the taxonomic model is intended to capture inferences about
taxonomic properties.
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reveals a double dissociation between models and properties. The
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mean edge length across the two tree graphs in Figure 14. The
web ! diffusion model assumes that species nearby in the food
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that this framework may be able to handle knowledge effects
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We have now seen four examples that demonstrate how our
structured statistical framework can capture the background
knowledge that is relevant to different inductive contexts. Each of
our models relies on a structure and a stochastic process, and this
section discusses how these components of background knowledge
can be acquired by a learner. Our approach is consistent with at
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Reason about causal transmission
Another double dissociation: A causal web fits better than a tree for 
diseases, and vice versa for biological properties

“Assuming that animal X 
has disease D, how likely 
is animal Y?”

“Assuming that animal X 
has Gene XR-23, how 
likely is animal Y?”



Summary: Structured statistical models of 
inductive reasoning

• Everyday inductive inferences are guided by rich 
background knowledge and intuitive theories, but 
rarely do models attempt to formalize the content of 
intuitive theories

• Kemp and Tenenbaum present a “Bayesian property 
induction” framework that can capture different types 
of knowledge as different structures and stochastic 
processes operating over these structures

• Having the right structure AND the right process are 
crucial to make good inferences



Anderson’s (1991) Bayesian Proposal for Predictions with 
Uncertain Categorization



Feature 1

Feature 2
(“class label”)

2 categories
(“boat” vs. “buoy”)

5 clusters

Stimuli plotted in feature space

Reminder: Anderson’s Rational model



The Rational model’s formula for predictions with uncertain 
categorization

P(X is sweet) = ∑
C

P(sweet |C)P(C |X)

Suppose X is an unknown fruit (with some observed properties), and you want to 
predict whether or not it is sweet:

is the proper Bayesian thing to do, if you don’t know the right category C

X

P( fY = 1 | lX) = ∑
f:fY=1

P( f | lX) f ∈ F : feature in set of all possible features
Y = {lion, gorilla} : conclusion categories
lX = {1,0} : feature labels for premise categories

Also, note the connection with how predictions are made in Kemp & Tenenbaum



P(apple|X)=.70	    P(sweet|apple)=.50

P(pear|X)=.30	    P(sweet|pear)=.90

Note that if you had only used the figure for apples, ignoring that uncertainty of 
categorization,  you would have estimated a .50 probability that X is sweet. 


P(X is sweet) = ∑
C

P(sweet |C)P(C |X)

= P(sweet |apple)P(apple |X) + P(sweet |pear)P(pear |X)

= .50(.70) + .90(.30) = .62

X

conditional probabilities

making a Bayesian prediction

The Rational model’s formula for predictions with uncertain 
categorization



• Will people actually use multiple categories in making 
these inductive predictions?

• Murphy & Ross (1994) were skeptical that people are 
doing this… and a similar experiment from Murphy & 
Ross (2010) is on the next slide 

Questions arising from Anderson’s model

P(X is sweet) = ∑
C

P(sweet |C)P(C |X)

X



Consider a new red drawing.
Who most likely drew it?
Probability?
What shape is it likely to have?

(Murphy & Ross, 2010)

P(shape = heart |color = red) =

∑
C

P(shape = heart |C)P(C |color = red)

Normative answer for: What 
shape is it likely to have?

= P(shape = heart |George)P(George |color = red)
+P(shape = heart |Tony)P(Tony |color = red)



Murphy and Ross (2010) Results

• We can classify individual subjects by strategy in this design
‣ Only 30% of responses used multiple categories
‣ 22 subjects consistently focused on single category 

(answer: triangle)
‣ 7 always used multiple categories, as the rational model 

predicts (answer: heart)
‣ Others were mixed

P(shape = heart |color = red) =

∑
C

P(shape = heart |C)P(C |color = red)

Normative answer for: What 
shape is it likely to have?



ents dropped off more steeply at the basic level, with a soft
threshold: Most test items from the same basic-level category were
chosen, but relatively few superordinate matches were chosen.
With three examples, adults’ generalizations sharpened into a
much more all-or-none pattern. Generalizations from three exam-
ples were almost always restricted to the most specific level that
was consistent with the examples: For instance, given three Dal-
matians as examples of feps, adults generalized only to other
Dalmatians; given three different dogs (or three different animals),
adults generalized to all and only the other dogs (or other animals).

With the above overview in mind, we turn to statistical analyses
that quantify these effects. Later we present a formal computa-
tional model of this word-learning task and compare it with the

data from this experiment in more quantitative detail. All analyses
in this section were based on one-tailed t tests with planned
comparisons based on the model’s predictions. Data were col-
lapsed over the three different superordinate categories and over
the different test items within a given level of generalization
(subordinate, basic, and superordinate). For each of the four kinds
of example sets (one, three subordinate, three basic-level, three
superordinate) and each of the three levels of generalization, each
participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
given that kind of example set. The means of these scores across
participants are shown in Figure 5. Because participants almost
never (less than 0.1% of the time) chose any distractors (test items
outside of an example’s superordinate category), subsequent anal-
yses did not include these scores.

Two questions were addressed with planned t tests. First, did
participants generalize further in the one-example trials compared
with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
did participants restrict their generalization to the most specific
level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants

Figure 4. The test set of 24 objects used to probe generalization of word meanings in Experiment 1. For each
training set in Figure 3, this test set contains two subordinate matches, two basic-level matches, and four
superordinate matches. The circled number underneath each object is used to index that object’s location in the
hierarchical clustering shown in Figure 7.

Figure 5. Adults’ generalization of word meanings in Experiment 1,
averaged over domain. Results are shown for each of four types of example
set (one example, three subordinate [sub.] examples, three basic-level
examples, and three superordinate [super.] examples). Bar height indicates
the frequency with which participants generalized to new objects at various
levels. Error bars indicate standard errors.
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feps from the test set of 24 objects, by clicking on-screen with the
computer mouse. The test items were laid out in a 4 ! 6 array,
with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
across participants. On each trial, the participants were asked to
choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.
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Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.

254 XU AND TENENBAUM

feps from the test set of 24 objects, by clicking on-screen with the
computer mouse. The test items were laid out in a 4 ! 6 array,
with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
across participants. On each trial, the participants were asked to
choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.

254 XU AND TENENBAUM

feps from the test set of 24 objects, by clicking on-screen with the
computer mouse. The test items were laid out in a 4 ! 6 array,
with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
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choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
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Results
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ents dropped off more steeply at the basic level, with a soft
threshold: Most test items from the same basic-level category were
chosen, but relatively few superordinate matches were chosen.
With three examples, adults’ generalizations sharpened into a
much more all-or-none pattern. Generalizations from three exam-
ples were almost always restricted to the most specific level that
was consistent with the examples: For instance, given three Dal-
matians as examples of feps, adults generalized only to other
Dalmatians; given three different dogs (or three different animals),
adults generalized to all and only the other dogs (or other animals).

With the above overview in mind, we turn to statistical analyses
that quantify these effects. Later we present a formal computa-
tional model of this word-learning task and compare it with the

data from this experiment in more quantitative detail. All analyses
in this section were based on one-tailed t tests with planned
comparisons based on the model’s predictions. Data were col-
lapsed over the three different superordinate categories and over
the different test items within a given level of generalization
(subordinate, basic, and superordinate). For each of the four kinds
of example sets (one, three subordinate, three basic-level, three
superordinate) and each of the three levels of generalization, each
participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
given that kind of example set. The means of these scores across
participants are shown in Figure 5. Because participants almost
never (less than 0.1% of the time) chose any distractors (test items
outside of an example’s superordinate category), subsequent anal-
yses did not include these scores.

Two questions were addressed with planned t tests. First, did
participants generalize further in the one-example trials compared
with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
did participants restrict their generalization to the most specific
level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants

Figure 4. The test set of 24 objects used to probe generalization of word meanings in Experiment 1. For each
training set in Figure 3, this test set contains two subordinate matches, two basic-level matches, and four
superordinate matches. The circled number underneath each object is used to index that object’s location in the
hierarchical clustering shown in Figure 7.

Figure 5. Adults’ generalization of word meanings in Experiment 1,
averaged over domain. Results are shown for each of four types of example
set (one example, three subordinate [sub.] examples, three basic-level
examples, and three superordinate [super.] examples). Bar height indicates
the frequency with which participants generalized to new objects at various
levels. Error bars indicate standard errors.
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participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
given that kind of example set. The means of these scores across
participants are shown in Figure 5. Because participants almost
never (less than 0.1% of the time) chose any distractors (test items
outside of an example’s superordinate category), subsequent anal-
yses did not include these scores.

Two questions were addressed with planned t tests. First, did
participants generalize further in the one-example trials compared
with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
did participants restrict their generalization to the most specific
level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants

Figure 4. The test set of 24 objects used to probe generalization of word meanings in Experiment 1. For each
training set in Figure 3, this test set contains two subordinate matches, two basic-level matches, and four
superordinate matches. The circled number underneath each object is used to index that object’s location in the
hierarchical clustering shown in Figure 7.

Figure 5. Adults’ generalization of word meanings in Experiment 1,
averaged over domain. Results are shown for each of four types of example
set (one example, three subordinate [sub.] examples, three basic-level
examples, and three superordinate [super.] examples). Bar height indicates
the frequency with which participants generalized to new objects at various
levels. Error bars indicate standard errors.
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Murphy and Ross find that people aren’t Bayesian. But if 
people only consider the most likely category, how do we 
explain success of other Bayesian categorization models?

Adults

Bayesian model

Model Results

We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the

basic-level bias, r ! .89 with the basic-level bias). Because the
additional parameter " does not contribute significantly to the
variance accounted for and leads to a fit that is qualitatively worse
in some ways, these results suggest that child word learners may
not have the strong basic-level bias that adults exhibit. Their
tendency to extend new words to basic-level matches is much
weaker than that of adults and may be explained simply as the
combination of Bayesian hypothesis averaging (Equation 3) with a
general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.

Comparison With Other Models

Figure 9 illustrates respectively the complementary roles played
by the size principle (Equations 5 and 6) and hypothesis averaging
(Equation 3) in the Bayesian framework. If instead of the size
principle we weight all hypotheses strictly by their prior (including
the basic-level bias), Bayes reduces to a similarity-like feature-
matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) !
1 if the examples X are consistent with the hypothesis h (i.e., xi !
h for all i) and p(X|h) ! 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-

4 All correlation (r) values in this section were computed using only
judgments for test items within the same superordinate class as the ob-
served examples. Participants almost never chose test items that crossed
superordinate boundaries, and most models give these test items zero or
near-zero probability of generalization.

Figure 8. Predictions of the Bayesian model, both with and without a basic-level bias, compared with the data
from adults in Experiment 1 and those from children in Experiment 3. Sub. ! subordinate; super. !
superordinate.
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Review: Most likely hypothesis doesn’t cut it
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posed by Mitchell (1997), Haussler, Kearns, and Schapire (1994),
and Shepard (1987).

If instead of averaging the predictions of all consistent hypoth-
eses we base generalization on just the single most probable
hypothesis, Bayes reduces to an all-or-none rulelike computation.
Priors (again including the basic-level bias) and likelihoods coop-
erate to rank hypotheses, but only the highest ranking hypothesis—
rather than a probability distribution over hypotheses—is used in
generalization. Mathematically, this corresponds to replacing hy-
pothesis averaging in Equation 3 with a simpler decision rule:
p(y ! C|X) ! 1 if y ! h*, and 0 otherwise, where h* is the
hypothesis with maximal posterior probability p(h|X) (in Equation
2). This approach is called maximum a posteriori Bayes, or MAP
Bayes for short. As Figure 9b shows, MAP Bayes captures the
qualitative trends in how adults and children generalize from
multiple examples, including the restriction of generalization after
three subordinate examples have been observed.5 However, it does
not capture the graded nature of generalization from a single
example. It also does not capture the increasing confidence in
basic-level generalization that comes from seeing three basic-level
examples; unlike both adults and children, MAP Bayes makes
exactly the same generalizations from three basic-level examples
as it does from just a single example.

Figure 10 shows the predictions of four alternative learning
models. None of these models have been specifically proposed for
word learning, but they are generic approaches from the literature
on computational models of learning and generalization, and they
are representative of previous suggestions for how word learning
might be viewed computationally. None are explicitly Bayesian,
but to varying degrees they correspond to the two special cases of
Bayesian learning shown above. Figure 10a presents the predic-
tions of a simple exemplar-similarity model, in which p(y ! C|X)
is computed by averaging the similarity of y to each exemplar in X.
(We use the mean similarity judgments of the adult participants in
Experiment 1, normalized to a 0–1 scale.) For each set of exam-
ples, the generalization function is scaled linearly to have a max-
imum at 1.

Figure 10b shows the predictions of an alternative approach to
exemplar similarity, inspired by proposals of Goldstone (1994) and
Osherson, Smith, Wilkie, Lopez, and Shafir (1990), in which
p(y ! C|X) is computed by taking the maximum similarity of y to
all exemplars in X. Like weak Bayes, the pure hypothesis-
averaging version of the Bayesian model shown in Figure 9a, both
exemplar-similarity models give a soft gradient of generalization

from one example but fail to sharpen generalization to the appro-
priate level given three examples.

More flexible similarity-based models of category learning that
incorporate selective attention to different stimulus attributes (e.g.,
Kruschke, 1992) might be better able to accommodate our data,
but not without major modification. These models typically rely on
error-driven learning algorithms, which are not designed to learn
how broadly they should generalize from just one or a few positive
examples without any negative examples, and low-dimensional
spatial representations of stimuli, which are not suited to repre-
senting a broad taxonomy of object kinds.

Several authors have suggested that associative or correlational
learning algorithms, perhaps instantiated in neural networks, can
explain how children learn the meanings of words (Colunga &
Smith, 2005; Gasser & Smith, 1998; Regier, 1996, 2003). It is not
possible here to evaluate all extant correlational learning algo-
rithms, but we do consider the standard approach of Hebbian
learning (Hertz, Krogh, & Palmer, 1991). Figure 10c shows the
predictions of a Hebbian learning network that is matched as
closely as possible in structure to our Bayesian models. The
Hebbian model uses input features corresponding to the same
hypotheses used in our Bayesian models, but instead of evaluating
and averaging those hypotheses with the machinery of Bayesian
inference, it uses the Hebb rule to compute associative weights
between each input feature unit and an output unit representing the
occurrence of the novel word to be learned (e.g., fep). This net-
work produces generalization patterns very much like those pro-
duced by the exemplar-similarity models (Figure 10a, 10b) or
weak Bayes (Figure 9a), capturing something of the graded char-
acter of one-shot generalization but failing to account for how
generalization sharpens to the appropriate level after three exam-
ples are seen.

The similar predictions of these various models reflect two
underlying computational commonalities. First, learning in the
Hebbian network is strictly based on the frequency with which
input features occur in the observed examples: Each exemplar
leaves a trace of its feature values in the weights connecting input
features to the output unit, and the final pattern of generalization is

5 Figure 9b shows the median pattern of generalization over the three
superordinate categories rather than the mean because the MAP generali-
zations are always either 0 or 1, and thus the mean is sometimes not
representative of the model’s all-or-none predictions.

Figure 9. Predictions of two variants of the Bayesian model. (a) Without the size principle, Bayesian
generalization behaves like an exemplar-similarity computation. (b) Without hypothesis averaging, Bayesian
generalization follows an all-or-none, rulelike pattern. MAP Bayes ! maximum a posteriori Bayes approach;
sub. ! subordinate; super. ! superordinate.
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feps from the test set of 24 objects, by clicking on-screen with the
computer mouse. The test items were laid out in a 4 ! 6 array,
with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
across participants. On each trial, the participants were asked to
choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.
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stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.
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Full Bayesian model

Most likely hypothesis only

generalization is too sharp

Generalizing to a new example y

p(y ∈ C |X) = ∑
h∈H

P(y ∈ C |h)p(h |X)

p(y ∈ C |X) = P(y ∈ C |h*)

h * = argmaxh∈H P(h |X)
Generalizing to a new example y
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categories observed to have the feature are positive examples and
categories observed not to have the feature are negative examples.
Based on this evidence, the learner updates his or her distribution
over the space of possible feature vectors, and the updated distri-
bution (also known as the posterior distribution) can be used to
predict the probability that any given category has the feature of
interest.

We formalize this Bayesian approach by specifying a frame-
work with two components: a recipe for specifying prior distribu-
tions and an engine for inductive inference. The inference engine
implements domain-general statistical inference and remains the
same regardless of the inductive context. Different priors, how-
ever, are needed for different inductive contexts. Even though
different inductive problems may draw on very different kinds of
knowledge, we suggest that this knowledge can often be formal-
ized using stochastic processes (e.g., diffusion, drift, or transmis-
sion) defined over structures that capture relationships between the
categories in a domain (Figure 1).

The Bayesian Inference Engine

The Bayesian approach to induction is extremely general and
can be applied to problems which appear quite different on the
surface. We describe an engine for Bayesian inference that has
previously been used to develop algorithms for machine learning
(Haussler, Kearns, & Schapire, 1994) and to model concept learn-
ing (Shepard, 1987; Tenenbaum & Griffiths, 2001) and inductive
reasoning (Heit, 1998) in humans.

Assume that we are working within a finite domain contain-
ing n categories. We will use a running example from the
biological domain where the categories are four species: chee-

tahs, lions, gorillas and monkeys. Suppose that we are inter-
ested in a novel property or feature (we use these terms inter-
changeably). Our framework can handle continuous-valued
features, but we focus on the case where the novel feature can
be represented as an n-place vector f that assigns 1 to each
category that has the feature and 0 to all remaining categories.
Because there are n categories, the number of distinct feature
vectors f is 2n, and the 16 possible feature vectors for our
running example are shown in Figure 2a. Assume for now that
the prior probability p(f) of each feature vector is known. The
prior in Figure 2a roughly captures the idea that cheetahs and
lions are expected to have similar features and that the same
holds for gorillas and monkeys.

Suppose that we observe lX, a label vector for the categories in
some set X. For instance, the case where X ! {cheetah,monkey}
and lX ! [1, 0] indicates that cheetahs have the novel feature but
that monkeys do not (Figure 2b). The observations in lX can be
treated as a partial specification of the full feature vector f that we
want to infer. Given these observations, Bayes’ rule specifies how
our prior distribution p(f) can be updated to produce a posterior
distribution p(f |lX) on the feature vector f:

p"f |lX# !
p"lX|f #p"f #!f p"lX|f #p"f #

(1)

where the sum in the denominator is over all possible feature
vectors f.

The likelihood term p(lX|f ) may vary from setting to setting
depending on the process by which the categories in the obser-
vation set X are generated and the process by which the labels
lX are generated for those examples. The general discussion
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Figure 2. (a) Given a domain with four categories, there are 16 distinct hypotheses about the extension of a
novel feature. The bottom row of the table shows a prior distribution p(f) over the 16 possible feature vectors.
The grayscale vector on the far right shows predictions about individual categories computed by summing
over the space of hypotheses. Based on the prior alone, the probability that cheetahs have the novel feature is
0.5, and the 3 remaining entries in the prediction vector are also 0.5. (b) Bayesian property induction. After
observing a label vector lX that indicates that cheetahs have the novel feature but monkeys do not, 12 feature
vectors are no longer possible and have been grayed out. The posterior distribution p(f |lX) can be computed by
renormalizing the prior distribution p(f) on the 4 feature vectors that remain. The prediction vector now indicates
that cheetahs definitely have the feature, that monkeys definitely do not have the feature, and that lions (0.68)
are more likely to have the feature than gorillas (0.32).
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P( fY = 1 | lX) = ∑
f:fY=1

P( f | lX)
Posterior predictive distribution

f ∈ F : feature in set of all possible features
X = {cheetah, monkey} : set of premise categories
Y = {lion, gorilla} : conclusion categories
lX = {1,0} : feature labels for premise categories

         cheetahs have sesamoid bones.
   monkeys DO NOT have sesamoid bones.
   Do lions have sesamoid bones?

          Do gorilla have sesamoid bones?

(weighted average across rows)

(weighted average across rows)



Conclusions

Categories are important in induction:
• Even when the question is about a specific category, 

typicality to a general category is important (Rips; 
Osherson)

• When people choose a category, they base their 
induction on it even if they aren’t sure it’s the right 
category (Murphy & Ross)

Knowledge is also very important in induction, and Kemp 
and Tenenbaum provide a model that shows how 
knowledge and statistics can combine to make inferences
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