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The authors present a Bayesian framework for understanding how adults and children learn the meanings
of words. The theory explains how learners can generalize meaningfully from just one or a few positive
examples of a novel word’s referents, by making rational inductive inferences that integrate prior
knowledge about plausible word meanings with the statistical structure of the observed examples. The
theory addresses shortcomings of the two best known approaches to modeling word learning, based on
deductive hypothesis elimination and associative learning. Three experiments with adults and children
test the Bayesian account’s predictions in the context of learning words for object categories at multiple
levels of a taxonomic hierarchy. Results provide strong support for the Bayesian account over competing
accounts, in terms of both quantitative model fits and the ability to explain important qualitative
phenomena. Several extensions of the basic theory are discussed, illustrating the broader potential for
Bayesian models of word learning.
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Learning even the simplest names for object categories presents
a difficult induction problem (Quine, 1960). Consider a typical
dilemma faced by a child learning English. Upon observing a
competent adult speaker use the word dog in reference to Max, a
particular Dalmatian running by, what can the child infer about the
meaning of the word dog? The potential hypotheses appear end-
less. The word could refer to all (and only) dogs, all mammals, all
animals, all Dalmatians, this individual Max, all dogs plus the
Lone Ranger’s horse, all dogs except Labradors, all spotted things,
all running things, the front half of a dog, undetached dog parts,
things that are dogs if first observed before next Monday but cats
if first observed thereafter, and on and on. Yet despite this severe

underdetermination, even 2- or 3-year-olds seem to be remarkably
successful at learning the meanings of words from examples. In
particular, children or adults can often infer the approximate ex-
tensions of words such as dog given only a few relevant examples
of how the word can be used and no systematic evidence of how
words are not to be used (Bloom, 2000; Carey, 1978; Markman,
1989; Regier, 1996). How do they do it?

Two broad classes of proposals for how word learning works
have been dominant in the literature: hypothesis elimination and
associative learning. Under the hypothesis elimination approach,
the learner effectively considers a hypothesis space of possible
concepts onto which words will map and (leaving aside for now
the problem of homonyms and polysemy) assumes that each word
maps onto exactly one of these concepts. The act of learning
consists of eliminating incorrect hypotheses about word meaning,
on the basis of a combination of a priori knowledge and observa-
tions of how words are used to refer to aspects of experience, until
the learner converges on a single consistent hypothesis. Some
logically possible hypotheses may be ruled out a priori because
they do not correspond to any natural concepts that the learner
possesses—for example, the hypothesis that dog refers to things
that are dogs if first observed before next Monday but cats if first
observed thereafter. Other hypotheses may be ruled out because
they are inconsistent with examples of how the word is used—for
example, one can rule out the hypothesis that dog refers to all and
only cats, or all and only terriers, upon seeing the example of Max
the Dalmatian.

Settling on one hypothesis by eliminating all others as incorrect
amounts to taking a deductive approach to the logical problem of
word learning, and we sometimes refer to these approaches as
deductive approaches. Hypothesis elimination has its roots in early
accounts of human and machine concept learning (Bruner, Good-
now, & Austin, 1956; Mitchell, 1982), and it corresponds to one of
the standard paradigms considered in formal analyses of natural
language syntax acquisition (Gold, 1967; Pinker, 1979). It is also
related to classic inferential frameworks that have been considered
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Review: Bayes’ rule for updating 
beliefs in light of data

Data (D): John is coughing

h1 = John has a cold
h2 = John has emphysema
h3 = John has a stomach flu

Hypotheses:
priorlikelihoodposterior

P (hi|D) =
P (D|hi)P (hi)P
j P (D|hj)P (hj)

“Bayes’ rule”

Prior favors h1 and h3, over h2

Likelihood favors h1 and h2, over h3

Posterior favors h1, over h2 and h3



Bayesian concept learning

P(h |X) = P(X |h)P(h)
P(X)

h ∈ H : hypothesis about meaning of word (e.g., node in tree structure)
X : data (often just labels of positive examples)

�tufa� �tufa� 

�tufa� 

Modeling word learning (Tenenbaum & Xu) 

h1

h2 h3 …

X

Posterior over word meanings

P(X |h) = [ 1
size(h) ]n

Likelihood

(“the size principle”, uniform random sample from appropriate set)

Prior

P(h)
could be uniform over nodes tree, 

or favor more distinctive nodes,


or favor nodes at a certain level….

n : number of examples



Xu and Tenenbaum Exp 1: Adults

feps from the test set of 24 objects, by clicking on-screen with the
computer mouse. The test items were laid out in a 4 ! 6 array,
with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
across participants. On each trial, the participants were asked to
choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.
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Helping Mr. Frog who speaks a different language pick out the objects he wants.

“Here is a fep”

ents dropped off more steeply at the basic level, with a soft
threshold: Most test items from the same basic-level category were
chosen, but relatively few superordinate matches were chosen.
With three examples, adults’ generalizations sharpened into a
much more all-or-none pattern. Generalizations from three exam-
ples were almost always restricted to the most specific level that
was consistent with the examples: For instance, given three Dal-
matians as examples of feps, adults generalized only to other
Dalmatians; given three different dogs (or three different animals),
adults generalized to all and only the other dogs (or other animals).

With the above overview in mind, we turn to statistical analyses
that quantify these effects. Later we present a formal computa-
tional model of this word-learning task and compare it with the

data from this experiment in more quantitative detail. All analyses
in this section were based on one-tailed t tests with planned
comparisons based on the model’s predictions. Data were col-
lapsed over the three different superordinate categories and over
the different test items within a given level of generalization
(subordinate, basic, and superordinate). For each of the four kinds
of example sets (one, three subordinate, three basic-level, three
superordinate) and each of the three levels of generalization, each
participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
given that kind of example set. The means of these scores across
participants are shown in Figure 5. Because participants almost
never (less than 0.1% of the time) chose any distractors (test items
outside of an example’s superordinate category), subsequent anal-
yses did not include these scores.

Two questions were addressed with planned t tests. First, did
participants generalize further in the one-example trials compared
with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
did participants restrict their generalization to the most specific
level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants

Figure 4. The test set of 24 objects used to probe generalization of word meanings in Experiment 1. For each
training set in Figure 3, this test set contains two subordinate matches, two basic-level matches, and four
superordinate matches. The circled number underneath each object is used to index that object’s location in the
hierarchical clustering shown in Figure 7.

Figure 5. Adults’ generalization of word meanings in Experiment 1,
averaged over domain. Results are shown for each of four types of example
set (one example, three subordinate [sub.] examples, three basic-level
examples, and three superordinate [super.] examples). Bar height indicates
the frequency with which participants generalized to new objects at various
levels. Error bars indicate standard errors.
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Xu and Tenenbaum Exp 1

Helping Mr. Frog who speaks a different language pick out the objects he wants.

“Here are three feps”

ents dropped off more steeply at the basic level, with a soft
threshold: Most test items from the same basic-level category were
chosen, but relatively few superordinate matches were chosen.
With three examples, adults’ generalizations sharpened into a
much more all-or-none pattern. Generalizations from three exam-
ples were almost always restricted to the most specific level that
was consistent with the examples: For instance, given three Dal-
matians as examples of feps, adults generalized only to other
Dalmatians; given three different dogs (or three different animals),
adults generalized to all and only the other dogs (or other animals).

With the above overview in mind, we turn to statistical analyses
that quantify these effects. Later we present a formal computa-
tional model of this word-learning task and compare it with the

data from this experiment in more quantitative detail. All analyses
in this section were based on one-tailed t tests with planned
comparisons based on the model’s predictions. Data were col-
lapsed over the three different superordinate categories and over
the different test items within a given level of generalization
(subordinate, basic, and superordinate). For each of the four kinds
of example sets (one, three subordinate, three basic-level, three
superordinate) and each of the three levels of generalization, each
participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
given that kind of example set. The means of these scores across
participants are shown in Figure 5. Because participants almost
never (less than 0.1% of the time) chose any distractors (test items
outside of an example’s superordinate category), subsequent anal-
yses did not include these scores.

Two questions were addressed with planned t tests. First, did
participants generalize further in the one-example trials compared
with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
did participants restrict their generalization to the most specific
level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants

Figure 4. The test set of 24 objects used to probe generalization of word meanings in Experiment 1. For each
training set in Figure 3, this test set contains two subordinate matches, two basic-level matches, and four
superordinate matches. The circled number underneath each object is used to index that object’s location in the
hierarchical clustering shown in Figure 7.

Figure 5. Adults’ generalization of word meanings in Experiment 1,
averaged over domain. Results are shown for each of four types of example
set (one example, three subordinate [sub.] examples, three basic-level
examples, and three superordinate [super.] examples). Bar height indicates
the frequency with which participants generalized to new objects at various
levels. Error bars indicate standard errors.
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feps from the test set of 24 objects, by clicking on-screen with the
computer mouse. The test items were laid out in a 4 ! 6 array,
with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
across participants. On each trial, the participants were asked to
choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.
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feps from the test set of 24 objects, by clicking on-screen with the
computer mouse. The test items were laid out in a 4 ! 6 array,
with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
across participants. On each trial, the participants were asked to
choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.
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feps from the test set of 24 objects, by clicking on-screen with the
computer mouse. The test items were laid out in a 4 ! 6 array,
with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
across participants. On each trial, the participants were asked to
choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.
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Xu and Tenenbaum Exp 1: Training set

feps from the test set of 24 objects, by clicking on-screen with the
computer mouse. The test items were laid out in a 4 ! 6 array,
with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
across participants. On each trial, the participants were asked to
choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.

254 XU AND TENENBAUM



Xu and Tenenbaum Exp 1: Test set

ents dropped off more steeply at the basic level, with a soft
threshold: Most test items from the same basic-level category were
chosen, but relatively few superordinate matches were chosen.
With three examples, adults’ generalizations sharpened into a
much more all-or-none pattern. Generalizations from three exam-
ples were almost always restricted to the most specific level that
was consistent with the examples: For instance, given three Dal-
matians as examples of feps, adults generalized only to other
Dalmatians; given three different dogs (or three different animals),
adults generalized to all and only the other dogs (or other animals).

With the above overview in mind, we turn to statistical analyses
that quantify these effects. Later we present a formal computa-
tional model of this word-learning task and compare it with the

data from this experiment in more quantitative detail. All analyses
in this section were based on one-tailed t tests with planned
comparisons based on the model’s predictions. Data were col-
lapsed over the three different superordinate categories and over
the different test items within a given level of generalization
(subordinate, basic, and superordinate). For each of the four kinds
of example sets (one, three subordinate, three basic-level, three
superordinate) and each of the three levels of generalization, each
participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
given that kind of example set. The means of these scores across
participants are shown in Figure 5. Because participants almost
never (less than 0.1% of the time) chose any distractors (test items
outside of an example’s superordinate category), subsequent anal-
yses did not include these scores.

Two questions were addressed with planned t tests. First, did
participants generalize further in the one-example trials compared
with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
did participants restrict their generalization to the most specific
level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants

Figure 4. The test set of 24 objects used to probe generalization of word meanings in Experiment 1. For each
training set in Figure 3, this test set contains two subordinate matches, two basic-level matches, and four
superordinate matches. The circled number underneath each object is used to index that object’s location in the
hierarchical clustering shown in Figure 7.

Figure 5. Adults’ generalization of word meanings in Experiment 1,
averaged over domain. Results are shown for each of four types of example
set (one example, three subordinate [sub.] examples, three basic-level
examples, and three superordinate [super.] examples). Bar height indicates
the frequency with which participants generalized to new objects at various
levels. Error bars indicate standard errors.
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feps from the test set of 24 objects, by clicking on-screen with the
computer mouse. The test items were laid out in a 4 ! 6 array,
with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
across participants. On each trial, the participants were asked to
choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.
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Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-
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Results
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ents dropped off more steeply at the basic level, with a soft
threshold: Most test items from the same basic-level category were
chosen, but relatively few superordinate matches were chosen.
With three examples, adults’ generalizations sharpened into a
much more all-or-none pattern. Generalizations from three exam-
ples were almost always restricted to the most specific level that
was consistent with the examples: For instance, given three Dal-
matians as examples of feps, adults generalized only to other
Dalmatians; given three different dogs (or three different animals),
adults generalized to all and only the other dogs (or other animals).

With the above overview in mind, we turn to statistical analyses
that quantify these effects. Later we present a formal computa-
tional model of this word-learning task and compare it with the

data from this experiment in more quantitative detail. All analyses
in this section were based on one-tailed t tests with planned
comparisons based on the model’s predictions. Data were col-
lapsed over the three different superordinate categories and over
the different test items within a given level of generalization
(subordinate, basic, and superordinate). For each of the four kinds
of example sets (one, three subordinate, three basic-level, three
superordinate) and each of the three levels of generalization, each
participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
given that kind of example set. The means of these scores across
participants are shown in Figure 5. Because participants almost
never (less than 0.1% of the time) chose any distractors (test items
outside of an example’s superordinate category), subsequent anal-
yses did not include these scores.

Two questions were addressed with planned t tests. First, did
participants generalize further in the one-example trials compared
with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
did participants restrict their generalization to the most specific
level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants

Figure 4. The test set of 24 objects used to probe generalization of word meanings in Experiment 1. For each
training set in Figure 3, this test set contains two subordinate matches, two basic-level matches, and four
superordinate matches. The circled number underneath each object is used to index that object’s location in the
hierarchical clustering shown in Figure 7.

Figure 5. Adults’ generalization of word meanings in Experiment 1,
averaged over domain. Results are shown for each of four types of example
set (one example, three subordinate [sub.] examples, three basic-level
examples, and three superordinate [super.] examples). Bar height indicates
the frequency with which participants generalized to new objects at various
levels. Error bars indicate standard errors.
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• Graded generalization with one subordinate example, and rule-like generalization 
with 3 examples


• Rapid learning from only sparse, positive examples



Xu and Tenenbaum Exp 3: Children

feps from the test set of 24 objects, by clicking on-screen with the
computer mouse. The test items were laid out in a 4 ! 6 array,
with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
across participants. On each trial, the participants were asked to
choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
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and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
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Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.

254 XU AND TENENBAUM

Helping Mr. Frog who speaks a different language pick out the objects he wants.

“Here is a fep”

ents dropped off more steeply at the basic level, with a soft
threshold: Most test items from the same basic-level category were
chosen, but relatively few superordinate matches were chosen.
With three examples, adults’ generalizations sharpened into a
much more all-or-none pattern. Generalizations from three exam-
ples were almost always restricted to the most specific level that
was consistent with the examples: For instance, given three Dal-
matians as examples of feps, adults generalized only to other
Dalmatians; given three different dogs (or three different animals),
adults generalized to all and only the other dogs (or other animals).

With the above overview in mind, we turn to statistical analyses
that quantify these effects. Later we present a formal computa-
tional model of this word-learning task and compare it with the

data from this experiment in more quantitative detail. All analyses
in this section were based on one-tailed t tests with planned
comparisons based on the model’s predictions. Data were col-
lapsed over the three different superordinate categories and over
the different test items within a given level of generalization
(subordinate, basic, and superordinate). For each of the four kinds
of example sets (one, three subordinate, three basic-level, three
superordinate) and each of the three levels of generalization, each
participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
given that kind of example set. The means of these scores across
participants are shown in Figure 5. Because participants almost
never (less than 0.1% of the time) chose any distractors (test items
outside of an example’s superordinate category), subsequent anal-
yses did not include these scores.

Two questions were addressed with planned t tests. First, did
participants generalize further in the one-example trials compared
with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
did participants restrict their generalization to the most specific
level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants

Figure 4. The test set of 24 objects used to probe generalization of word meanings in Experiment 1. For each
training set in Figure 3, this test set contains two subordinate matches, two basic-level matches, and four
superordinate matches. The circled number underneath each object is used to index that object’s location in the
hierarchical clustering shown in Figure 7.

Figure 5. Adults’ generalization of word meanings in Experiment 1,
averaged over domain. Results are shown for each of four types of example
set (one example, three subordinate [sub.] examples, three basic-level
examples, and three superordinate [super.] examples). Bar height indicates
the frequency with which participants generalized to new objects at various
levels. Error bars indicate standard errors.
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feps from the test set of 24 objects, by clicking on-screen with the
computer mouse. The test items were laid out in a 4 ! 6 array,
with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
across participants. On each trial, the participants were asked to
choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.
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ents dropped off more steeply at the basic level, with a soft
threshold: Most test items from the same basic-level category were
chosen, but relatively few superordinate matches were chosen.
With three examples, adults’ generalizations sharpened into a
much more all-or-none pattern. Generalizations from three exam-
ples were almost always restricted to the most specific level that
was consistent with the examples: For instance, given three Dal-
matians as examples of feps, adults generalized only to other
Dalmatians; given three different dogs (or three different animals),
adults generalized to all and only the other dogs (or other animals).

With the above overview in mind, we turn to statistical analyses
that quantify these effects. Later we present a formal computa-
tional model of this word-learning task and compare it with the

data from this experiment in more quantitative detail. All analyses
in this section were based on one-tailed t tests with planned
comparisons based on the model’s predictions. Data were col-
lapsed over the three different superordinate categories and over
the different test items within a given level of generalization
(subordinate, basic, and superordinate). For each of the four kinds
of example sets (one, three subordinate, three basic-level, three
superordinate) and each of the three levels of generalization, each
participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
given that kind of example set. The means of these scores across
participants are shown in Figure 5. Because participants almost
never (less than 0.1% of the time) chose any distractors (test items
outside of an example’s superordinate category), subsequent anal-
yses did not include these scores.

Two questions were addressed with planned t tests. First, did
participants generalize further in the one-example trials compared
with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
did participants restrict their generalization to the most specific
level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants

Figure 4. The test set of 24 objects used to probe generalization of word meanings in Experiment 1. For each
training set in Figure 3, this test set contains two subordinate matches, two basic-level matches, and four
superordinate matches. The circled number underneath each object is used to index that object’s location in the
hierarchical clustering shown in Figure 7.

Figure 5. Adults’ generalization of word meanings in Experiment 1,
averaged over domain. Results are shown for each of four types of example
set (one example, three subordinate [sub.] examples, three basic-level
examples, and three superordinate [super.] examples). Bar height indicates
the frequency with which participants generalized to new objects at various
levels. Error bars indicate standard errors.
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pick out the others like the ones he has picked out, okay? [Child says
“Okay.”]

Three novel words were used: blick, fep, and dax.
One-example condition. On each trial, the experimenter

picked out an object from the array (e.g., a green pepper) and
labeled it: “See? A blick.” Then the child was told that Mr. Frog
is very picky. The experimenter said to the child, “Now, Mr. Frog
wants you to pick out all the blicks from his toys, but he doesn’t
want anything that is not a blick. Remember that Mr. Frog wants
all the blicks and nothing else. Can you pick out the other blicks
from his toys?” The child was then allowed to choose among the
24 test objects to find the blicks and put them in front of Mr. Frog.
If a child picked out only one object, the experimenter reminded
him or her, “Remember Mr. Frog wants all the blicks. Are there
more blicks?” If a child picked out more than one object, nothing
more was said to encourage him or her to pick out more toys. At
the end of each trial, the experimenter said to the child, “Now, let’s
put all the blicks back and play the game again. Mr. Frog is going
to pick out some more toys, and he would like you to help him pick
out others like the ones he picks, okay?” Then another novel word
was introduced as before.

Each child participated in three trials, each with an example
drawn from one of the three superordinate categories: a Dalmatian
(animal), a green pepper (vegetable), or a yellow truck (vehicle).
The order of the trials and the novel words used (blick, fep, and
dax) were counterbalanced across participants.

Three-example condition. On each trial, the procedure was the
same as in the one-example trial with the following important
difference. The experimenter first picked out one object and la-
beled it for the child (e.g., “See? A fep.”). Then she picked out two
more objects, one at a time, and labeled each one for the child (e.g.,
“Look, another fep” or “Look, this is a fep”). Three factors—the
superordinate category (animal, vegetable, and vehicle), the range
spanned by the examples (subordinate, basic, and superordinate),
and the novel word used (blick, fep, and dax)—were crossed
pseudorandomly and counterbalanced across participants. Each
level of each factor appeared equally often in the first, second, and
third trials of the experiment.

Results

The patterns of generalization found were qualitatively similar
to those found with adults in Experiment 1, and the quantitative

analyses followed essentially the same logic. Analyses were based
on one-tailed t tests with planned comparisons. We collapsed
across superordinate categories, novel words, and trial orders. For
each type of example set children were shown, they received a set
of percentage scores measuring how often they had chosen test
items at each of three levels of generalization (subordinate, basic,
and superordinate). The means of these scores across participants
are shown in Figure 6a. Children in the one-example condition
each received just a single set of scores, because their three trials
all featured the same kind of example set. Children in the three-
example condition each received three sets of scores, one for each
trial, because each trial featured a different kind of example set
(three examples clustering at the subordinate, basic, or superordi-
nate level). Because no child chose any distractors, subsequent
analyses did not include these scores.

The same two questions as in Experiment 1 were addressed here
with planned t tests. First, did children generalize differently in the
one-example trials compared with the three-example trials in each
case? Of importance, did they generalize differently given one
versus three virtually identical exemplars? More specifically, did
children show a significant threshold in generalization at the basic
level in the one-example trials, and did they restrict their general-
ization to the subordinate level in the three-example trials? Second,
did the three-example trials differ from each other depending on
the range spanned by the examples? More specifically, did chil-
dren restrict their generalization to the most specific level that was
consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants
chose more subordinate (85%) and basic-level matches (31%) than
superordinate matches (3%) ( p ! .0001 for both comparisons). In
contrast, when presented with three very similar exemplars from
the same subordinate category, participants chose more subordi-
nate matches (83%) than either basic-level (13%) or superordinate
matches (3%) ( p ! .0001 for both comparisons). Similar compar-
isons were made between one example and three basic-level or
three superordinate-level examples. When presented with three
examples from the same basic-level category, participants did not
generalize more to the basic level as compared with the one-
example trials (31% vs. 47%, ns). When presented with three
examples from the same superordinate category, participants gen-

Figure 6. Children’s generalization of word meanings in Experiments 2 and 3, averaged over domain. Results
are shown for each of four types of example set (one example, three subordinate [sub.] examples, three
basic-level examples, and three superordinate [super.] examples). Bar height indicates the frequency with which
participants generalized to new objects at various levels. Error bars indicate standard errors.
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Bayesian concept learning

p(h |X) = P(X |h)P(h)
P(X)

h ∈ H : hypothesis about the meaning of word (node in tree structure)

X : 1 or 3 positive examples

Posterior over word meanings

P(X |h) = [ 1
size(h) ]n ≈ [ 1

height(h) + ϵ
]n

Likelihood

(height is the average within-node distance between examples)

Prior
P(h) ∝ height(parent[h])) − height(h)

 favors more distinctive nodes,

or favor nodes at a certain level….

node of the tree corresponds to a cluster of objects that are on
average more similar to each other than to other nearby objects.
The height of each node represents the average pairwise dis-
similarity of the objects in the corresponding cluster. The length
of the branch above each node measures how much more
similar on average are that cluster’s members to each other than
to objects in the next nearest cluster—that is, how distinctive
that cluster is.

Each of the main classes underlying the choice of stimuli
corresponds to a node in the tree: vegetable (EE), vehicle (HH),
animal (JJ), pepper (J), truck (T), dog (R), green pepper (F),
yellow truck (G), and Dalmatian (D). Most of these clusters are
highly distinctive (i.e., well separated from other clusters by
long branches), as one would expect for the targets of kind
terms.2 Other easily describable nodes include Cluster U, con-
taining all and only the construction vehicles (tractor, bull-
dozer, and crane), and Cluster II, containing all and only the

mammals. The only clusters that do not appear to correspond to
conceivably lexicalizable concepts are two that are defined only
by subtle perceptual variation below the subordinate level:
Cluster A, including two of the three Dalmatians, and Cluster B,
including two of the three green peppers. We take each cluster
to correspond to one hypothesis in H, with the exception of
these two clusters below the subordinate level. In so doing, we
are assuming that each learner maintains only a single hypoth-
esis space and that its structure does not change as new words

2 A notable exception is the cluster corresponding to trucks (T), which is
barely separated from the next highest cluster (V), which contains the
trucks plus a long yellow school bus. Cluster V itself is fairly well
separated from the next highest cluster, suggesting that the perceptually
basic category here is not quite trucks but something more like “truck-
shaped motor vehicles.”

Figure 7. Hierarchical clustering of similarity judgments yields a taxonomic hypothesis space for Bayesian
word learning. Letter codes refer to specific clusters (hypotheses for word meaning): vegetable (EE), vehicle
(HH), animal (JJ), pepper (J), truck (T), dog (R), green pepper (F), yellow truck (G), and Dalmatian (D). The
clusters labeled by other letter codes are given in the text as needed. Numbers indicate the objects located at each leaf
node of the hierarchy, keyed to the object numbers shown in Figures 3 and 4. The height of a cluster, as given by the
vertical axis on the left, represents the average within-cluster dissimiliarity of objects within that cluster.
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ents dropped off more steeply at the basic level, with a soft
threshold: Most test items from the same basic-level category were
chosen, but relatively few superordinate matches were chosen.
With three examples, adults’ generalizations sharpened into a
much more all-or-none pattern. Generalizations from three exam-
ples were almost always restricted to the most specific level that
was consistent with the examples: For instance, given three Dal-
matians as examples of feps, adults generalized only to other
Dalmatians; given three different dogs (or three different animals),
adults generalized to all and only the other dogs (or other animals).

With the above overview in mind, we turn to statistical analyses
that quantify these effects. Later we present a formal computa-
tional model of this word-learning task and compare it with the

data from this experiment in more quantitative detail. All analyses
in this section were based on one-tailed t tests with planned
comparisons based on the model’s predictions. Data were col-
lapsed over the three different superordinate categories and over
the different test items within a given level of generalization
(subordinate, basic, and superordinate). For each of the four kinds
of example sets (one, three subordinate, three basic-level, three
superordinate) and each of the three levels of generalization, each
participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
given that kind of example set. The means of these scores across
participants are shown in Figure 5. Because participants almost
never (less than 0.1% of the time) chose any distractors (test items
outside of an example’s superordinate category), subsequent anal-
yses did not include these scores.

Two questions were addressed with planned t tests. First, did
participants generalize further in the one-example trials compared
with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
did participants restrict their generalization to the most specific
level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants

Figure 4. The test set of 24 objects used to probe generalization of word meanings in Experiment 1. For each
training set in Figure 3, this test set contains two subordinate matches, two basic-level matches, and four
superordinate matches. The circled number underneath each object is used to index that object’s location in the
hierarchical clustering shown in Figure 7.

Figure 5. Adults’ generalization of word meanings in Experiment 1,
averaged over domain. Results are shown for each of four types of example
set (one example, three subordinate [sub.] examples, three basic-level
examples, and three superordinate [super.] examples). Bar height indicates
the frequency with which participants generalized to new objects at various
levels. Error bars indicate standard errors.
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feps from the test set of 24 objects, by clicking on-screen with the
computer mouse. The test items were laid out in a 4 ! 6 array,
with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
across participants. On each trial, the participants were asked to
choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.
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and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.
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ents dropped off more steeply at the basic level, with a soft
threshold: Most test items from the same basic-level category were
chosen, but relatively few superordinate matches were chosen.
With three examples, adults’ generalizations sharpened into a
much more all-or-none pattern. Generalizations from three exam-
ples were almost always restricted to the most specific level that
was consistent with the examples: For instance, given three Dal-
matians as examples of feps, adults generalized only to other
Dalmatians; given three different dogs (or three different animals),
adults generalized to all and only the other dogs (or other animals).

With the above overview in mind, we turn to statistical analyses
that quantify these effects. Later we present a formal computa-
tional model of this word-learning task and compare it with the

data from this experiment in more quantitative detail. All analyses
in this section were based on one-tailed t tests with planned
comparisons based on the model’s predictions. Data were col-
lapsed over the three different superordinate categories and over
the different test items within a given level of generalization
(subordinate, basic, and superordinate). For each of the four kinds
of example sets (one, three subordinate, three basic-level, three
superordinate) and each of the three levels of generalization, each
participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
given that kind of example set. The means of these scores across
participants are shown in Figure 5. Because participants almost
never (less than 0.1% of the time) chose any distractors (test items
outside of an example’s superordinate category), subsequent anal-
yses did not include these scores.

Two questions were addressed with planned t tests. First, did
participants generalize further in the one-example trials compared
with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
did participants restrict their generalization to the most specific
level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants

Figure 4. The test set of 24 objects used to probe generalization of word meanings in Experiment 1. For each
training set in Figure 3, this test set contains two subordinate matches, two basic-level matches, and four
superordinate matches. The circled number underneath each object is used to index that object’s location in the
hierarchical clustering shown in Figure 7.

Figure 5. Adults’ generalization of word meanings in Experiment 1,
averaged over domain. Results are shown for each of four types of example
set (one example, three subordinate [sub.] examples, three basic-level
examples, and three superordinate [super.] examples). Bar height indicates
the frequency with which participants generalized to new objects at various
levels. Error bars indicate standard errors.
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adults generalized to all and only the other dogs (or other animals).

With the above overview in mind, we turn to statistical analyses
that quantify these effects. Later we present a formal computa-
tional model of this word-learning task and compare it with the

data from this experiment in more quantitative detail. All analyses
in this section were based on one-tailed t tests with planned
comparisons based on the model’s predictions. Data were col-
lapsed over the three different superordinate categories and over
the different test items within a given level of generalization
(subordinate, basic, and superordinate). For each of the four kinds
of example sets (one, three subordinate, three basic-level, three
superordinate) and each of the three levels of generalization, each
participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
given that kind of example set. The means of these scores across
participants are shown in Figure 5. Because participants almost
never (less than 0.1% of the time) chose any distractors (test items
outside of an example’s superordinate category), subsequent anal-
yses did not include these scores.

Two questions were addressed with planned t tests. First, did
participants generalize further in the one-example trials compared
with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
did participants restrict their generalization to the most specific
level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants

Figure 4. The test set of 24 objects used to probe generalization of word meanings in Experiment 1. For each
training set in Figure 3, this test set contains two subordinate matches, two basic-level matches, and four
superordinate matches. The circled number underneath each object is used to index that object’s location in the
hierarchical clustering shown in Figure 7.

Figure 5. Adults’ generalization of word meanings in Experiment 1,
averaged over domain. Results are shown for each of four types of example
set (one example, three subordinate [sub.] examples, three basic-level
examples, and three superordinate [super.] examples). Bar height indicates
the frequency with which participants generalized to new objects at various
levels. Error bars indicate standard errors.

255WORD LEARNING AS BAYESIAN INFERENCE

ents dropped off more steeply at the basic level, with a soft
threshold: Most test items from the same basic-level category were
chosen, but relatively few superordinate matches were chosen.
With three examples, adults’ generalizations sharpened into a
much more all-or-none pattern. Generalizations from three exam-
ples were almost always restricted to the most specific level that
was consistent with the examples: For instance, given three Dal-
matians as examples of feps, adults generalized only to other
Dalmatians; given three different dogs (or three different animals),
adults generalized to all and only the other dogs (or other animals).

With the above overview in mind, we turn to statistical analyses
that quantify these effects. Later we present a formal computa-
tional model of this word-learning task and compare it with the

data from this experiment in more quantitative detail. All analyses
in this section were based on one-tailed t tests with planned
comparisons based on the model’s predictions. Data were col-
lapsed over the three different superordinate categories and over
the different test items within a given level of generalization
(subordinate, basic, and superordinate). For each of the four kinds
of example sets (one, three subordinate, three basic-level, three
superordinate) and each of the three levels of generalization, each
participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
given that kind of example set. The means of these scores across
participants are shown in Figure 5. Because participants almost
never (less than 0.1% of the time) chose any distractors (test items
outside of an example’s superordinate category), subsequent anal-
yses did not include these scores.

Two questions were addressed with planned t tests. First, did
participants generalize further in the one-example trials compared
with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
did participants restrict their generalization to the most specific
level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants

Figure 4. The test set of 24 objects used to probe generalization of word meanings in Experiment 1. For each
training set in Figure 3, this test set contains two subordinate matches, two basic-level matches, and four
superordinate matches. The circled number underneath each object is used to index that object’s location in the
hierarchical clustering shown in Figure 7.

Figure 5. Adults’ generalization of word meanings in Experiment 1,
averaged over domain. Results are shown for each of four types of example
set (one example, three subordinate [sub.] examples, three basic-level
examples, and three superordinate [super.] examples). Bar height indicates
the frequency with which participants generalized to new objects at various
levels. Error bars indicate standard errors.
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Model Results

We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the

basic-level bias, r ! .89 with the basic-level bias). Because the
additional parameter " does not contribute significantly to the
variance accounted for and leads to a fit that is qualitatively worse
in some ways, these results suggest that child word learners may
not have the strong basic-level bias that adults exhibit. Their
tendency to extend new words to basic-level matches is much
weaker than that of adults and may be explained simply as the
combination of Bayesian hypothesis averaging (Equation 3) with a
general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.

Comparison With Other Models

Figure 9 illustrates respectively the complementary roles played
by the size principle (Equations 5 and 6) and hypothesis averaging
(Equation 3) in the Bayesian framework. If instead of the size
principle we weight all hypotheses strictly by their prior (including
the basic-level bias), Bayes reduces to a similarity-like feature-
matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) !
1 if the examples X are consistent with the hypothesis h (i.e., xi !
h for all i) and p(X|h) ! 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-

4 All correlation (r) values in this section were computed using only
judgments for test items within the same superordinate class as the ob-
served examples. Participants almost never chose test items that crossed
superordinate boundaries, and most models give these test items zero or
near-zero probability of generalization.

Figure 8. Predictions of the Bayesian model, both with and without a basic-level bias, compared with the data
from adults in Experiment 1 and those from children in Experiment 3. Sub. ! subordinate; super. !
superordinate.
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Alternative Bayesian models

posed by Mitchell (1997), Haussler, Kearns, and Schapire (1994),
and Shepard (1987).

If instead of averaging the predictions of all consistent hypoth-
eses we base generalization on just the single most probable
hypothesis, Bayes reduces to an all-or-none rulelike computation.
Priors (again including the basic-level bias) and likelihoods coop-
erate to rank hypotheses, but only the highest ranking hypothesis—
rather than a probability distribution over hypotheses—is used in
generalization. Mathematically, this corresponds to replacing hy-
pothesis averaging in Equation 3 with a simpler decision rule:
p(y ! C|X) ! 1 if y ! h*, and 0 otherwise, where h* is the
hypothesis with maximal posterior probability p(h|X) (in Equation
2). This approach is called maximum a posteriori Bayes, or MAP
Bayes for short. As Figure 9b shows, MAP Bayes captures the
qualitative trends in how adults and children generalize from
multiple examples, including the restriction of generalization after
three subordinate examples have been observed.5 However, it does
not capture the graded nature of generalization from a single
example. It also does not capture the increasing confidence in
basic-level generalization that comes from seeing three basic-level
examples; unlike both adults and children, MAP Bayes makes
exactly the same generalizations from three basic-level examples
as it does from just a single example.

Figure 10 shows the predictions of four alternative learning
models. None of these models have been specifically proposed for
word learning, but they are generic approaches from the literature
on computational models of learning and generalization, and they
are representative of previous suggestions for how word learning
might be viewed computationally. None are explicitly Bayesian,
but to varying degrees they correspond to the two special cases of
Bayesian learning shown above. Figure 10a presents the predic-
tions of a simple exemplar-similarity model, in which p(y ! C|X)
is computed by averaging the similarity of y to each exemplar in X.
(We use the mean similarity judgments of the adult participants in
Experiment 1, normalized to a 0–1 scale.) For each set of exam-
ples, the generalization function is scaled linearly to have a max-
imum at 1.

Figure 10b shows the predictions of an alternative approach to
exemplar similarity, inspired by proposals of Goldstone (1994) and
Osherson, Smith, Wilkie, Lopez, and Shafir (1990), in which
p(y ! C|X) is computed by taking the maximum similarity of y to
all exemplars in X. Like weak Bayes, the pure hypothesis-
averaging version of the Bayesian model shown in Figure 9a, both
exemplar-similarity models give a soft gradient of generalization

from one example but fail to sharpen generalization to the appro-
priate level given three examples.

More flexible similarity-based models of category learning that
incorporate selective attention to different stimulus attributes (e.g.,
Kruschke, 1992) might be better able to accommodate our data,
but not without major modification. These models typically rely on
error-driven learning algorithms, which are not designed to learn
how broadly they should generalize from just one or a few positive
examples without any negative examples, and low-dimensional
spatial representations of stimuli, which are not suited to repre-
senting a broad taxonomy of object kinds.

Several authors have suggested that associative or correlational
learning algorithms, perhaps instantiated in neural networks, can
explain how children learn the meanings of words (Colunga &
Smith, 2005; Gasser & Smith, 1998; Regier, 1996, 2003). It is not
possible here to evaluate all extant correlational learning algo-
rithms, but we do consider the standard approach of Hebbian
learning (Hertz, Krogh, & Palmer, 1991). Figure 10c shows the
predictions of a Hebbian learning network that is matched as
closely as possible in structure to our Bayesian models. The
Hebbian model uses input features corresponding to the same
hypotheses used in our Bayesian models, but instead of evaluating
and averaging those hypotheses with the machinery of Bayesian
inference, it uses the Hebb rule to compute associative weights
between each input feature unit and an output unit representing the
occurrence of the novel word to be learned (e.g., fep). This net-
work produces generalization patterns very much like those pro-
duced by the exemplar-similarity models (Figure 10a, 10b) or
weak Bayes (Figure 9a), capturing something of the graded char-
acter of one-shot generalization but failing to account for how
generalization sharpens to the appropriate level after three exam-
ples are seen.

The similar predictions of these various models reflect two
underlying computational commonalities. First, learning in the
Hebbian network is strictly based on the frequency with which
input features occur in the observed examples: Each exemplar
leaves a trace of its feature values in the weights connecting input
features to the output unit, and the final pattern of generalization is

5 Figure 9b shows the median pattern of generalization over the three
superordinate categories rather than the mean because the MAP generali-
zations are always either 0 or 1, and thus the mean is sometimes not
representative of the model’s all-or-none predictions.

Figure 9. Predictions of two variants of the Bayesian model. (a) Without the size principle, Bayesian
generalization behaves like an exemplar-similarity computation. (b) Without hypothesis averaging, Bayesian
generalization follows an all-or-none, rulelike pattern. MAP Bayes ! maximum a posteriori Bayes approach;
sub. ! subordinate; super. ! superordinate.
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Model Results
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tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
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and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.
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The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
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predictions without the basic-level bias, particularly in the shift
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in some ways, these results suggest that child word learners may
not have the strong basic-level bias that adults exhibit. Their
tendency to extend new words to basic-level matches is much
weaker than that of adults and may be explained simply as the
combination of Bayesian hypothesis averaging (Equation 3) with a
general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.

Comparison With Other Models

Figure 9 illustrates respectively the complementary roles played
by the size principle (Equations 5 and 6) and hypothesis averaging
(Equation 3) in the Bayesian framework. If instead of the size
principle we weight all hypotheses strictly by their prior (including
the basic-level bias), Bayes reduces to a similarity-like feature-
matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) !
1 if the examples X are consistent with the hypothesis h (i.e., xi !
h for all i) and p(X|h) ! 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-
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is computed by averaging the similarity of y to each exemplar in X.
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spatial representations of stimuli, which are not suited to repre-
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learning algorithms, perhaps instantiated in neural networks, can
explain how children learn the meanings of words (Colunga &
Smith, 2005; Gasser & Smith, 1998; Regier, 1996, 2003). It is not
possible here to evaluate all extant correlational learning algo-
rithms, but we do consider the standard approach of Hebbian
learning (Hertz, Krogh, & Palmer, 1991). Figure 10c shows the
predictions of a Hebbian learning network that is matched as
closely as possible in structure to our Bayesian models. The
Hebbian model uses input features corresponding to the same
hypotheses used in our Bayesian models, but instead of evaluating
and averaging those hypotheses with the machinery of Bayesian
inference, it uses the Hebb rule to compute associative weights
between each input feature unit and an output unit representing the
occurrence of the novel word to be learned (e.g., fep). This net-
work produces generalization patterns very much like those pro-
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acter of one-shot generalization but failing to account for how
generalization sharpens to the appropriate level after three exam-
ples are seen.

The similar predictions of these various models reflect two
underlying computational commonalities. First, learning in the
Hebbian network is strictly based on the frequency with which
input features occur in the observed examples: Each exemplar
leaves a trace of its feature values in the weights connecting input
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feps from the test set of 24 objects, by clicking on-screen with the
computer mouse. The test items were laid out in a 4 ! 6 array,
with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
across participants. On each trial, the participants were asked to
choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.
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proportional to the average of the generalization (or “similarity”)
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these models fail to converge to the appropriate level of specificity
given multiple examples, because they all lack the size principle
for reweighting multiple consistent hypotheses to prefer the hy-
pothesis most likely to have produced the observed examples.
When the Hebbian learning network is presented with multiple
examples in the same subordinate category (e.g., three Dalma-
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accounts for why MAP Bayes generalizes differently than the
subset principle on one example—to all basic-level matches rather
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Figure 10. Predictions of four alternative, non-Bayesian models. Max ! maximum; Sim ! similarity; sub. !
subordinate; super. ! superordinate.
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with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
across participants. On each trial, the participants were asked to
choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-
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object’s location in the hierarchical clustering shown in Figure 7.
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Model Results

We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the

basic-level bias, r ! .89 with the basic-level bias). Because the
additional parameter " does not contribute significantly to the
variance accounted for and leads to a fit that is qualitatively worse
in some ways, these results suggest that child word learners may
not have the strong basic-level bias that adults exhibit. Their
tendency to extend new words to basic-level matches is much
weaker than that of adults and may be explained simply as the
combination of Bayesian hypothesis averaging (Equation 3) with a
general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.

Comparison With Other Models

Figure 9 illustrates respectively the complementary roles played
by the size principle (Equations 5 and 6) and hypothesis averaging
(Equation 3) in the Bayesian framework. If instead of the size
principle we weight all hypotheses strictly by their prior (including
the basic-level bias), Bayes reduces to a similarity-like feature-
matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) !
1 if the examples X are consistent with the hypothesis h (i.e., xi !
h for all i) and p(X|h) ! 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-

4 All correlation (r) values in this section were computed using only
judgments for test items within the same superordinate class as the ob-
served examples. Participants almost never chose test items that crossed
superordinate boundaries, and most models give these test items zero or
near-zero probability of generalization.

Figure 8. Predictions of the Bayesian model, both with and without a basic-level bias, compared with the data
from adults in Experiment 1 and those from children in Experiment 3. Sub. ! subordinate; super. !
superordinate.
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feps from the test set of 24 objects, by clicking on-screen with the
computer mouse. The test items were laid out in a 4 ! 6 array,
with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
across participants. On each trial, the participants were asked to
choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.
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They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.
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Full Bayesian model

Exemplar model

sim(y, C) = 1
|C | ∑

x∈C
sim(y, x)

ents dropped off more steeply at the basic level, with a soft
threshold: Most test items from the same basic-level category were
chosen, but relatively few superordinate matches were chosen.
With three examples, adults’ generalizations sharpened into a
much more all-or-none pattern. Generalizations from three exam-
ples were almost always restricted to the most specific level that
was consistent with the examples: For instance, given three Dal-
matians as examples of feps, adults generalized only to other
Dalmatians; given three different dogs (or three different animals),
adults generalized to all and only the other dogs (or other animals).

With the above overview in mind, we turn to statistical analyses
that quantify these effects. Later we present a formal computa-
tional model of this word-learning task and compare it with the

data from this experiment in more quantitative detail. All analyses
in this section were based on one-tailed t tests with planned
comparisons based on the model’s predictions. Data were col-
lapsed over the three different superordinate categories and over
the different test items within a given level of generalization
(subordinate, basic, and superordinate). For each of the four kinds
of example sets (one, three subordinate, three basic-level, three
superordinate) and each of the three levels of generalization, each
participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
given that kind of example set. The means of these scores across
participants are shown in Figure 5. Because participants almost
never (less than 0.1% of the time) chose any distractors (test items
outside of an example’s superordinate category), subsequent anal-
yses did not include these scores.

Two questions were addressed with planned t tests. First, did
participants generalize further in the one-example trials compared
with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
did participants restrict their generalization to the most specific
level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants

Figure 4. The test set of 24 objects used to probe generalization of word meanings in Experiment 1. For each
training set in Figure 3, this test set contains two subordinate matches, two basic-level matches, and four
superordinate matches. The circled number underneath each object is used to index that object’s location in the
hierarchical clustering shown in Figure 7.

Figure 5. Adults’ generalization of word meanings in Experiment 1,
averaged over domain. Results are shown for each of four types of example
set (one example, three subordinate [sub.] examples, three basic-level
examples, and three superordinate [super.] examples). Bar height indicates
the frequency with which participants generalized to new objects at various
levels. Error bars indicate standard errors.
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tional model of this word-learning task and compare it with the
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in this section were based on one-tailed t tests with planned
comparisons based on the model’s predictions. Data were col-
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(subordinate, basic, and superordinate). For each of the four kinds
of example sets (one, three subordinate, three basic-level, three
superordinate) and each of the three levels of generalization, each
participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
given that kind of example set. The means of these scores across
participants are shown in Figure 5. Because participants almost
never (less than 0.1% of the time) chose any distractors (test items
outside of an example’s superordinate category), subsequent anal-
yses did not include these scores.

Two questions were addressed with planned t tests. First, did
participants generalize further in the one-example trials compared
with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
did participants restrict their generalization to the most specific
level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants
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feps from the test set of 24 objects, by clicking on-screen with the
computer mouse. The test items were laid out in a 4 ! 6 array,
with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
across participants. On each trial, the participants were asked to
choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 ! 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.
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Key point: 

Exemplar model 
doesn’t care 
between 1 example 
and 3 examples



Conclusions

• Children can learn new concepts from just one or a few positive 
examples, and seem to entertain very structured hypothesis spaces

• Bayesian models of concept learning provide an explicit model of 
sampling assumptions, and can learn concepts from just one or a few 
examples

• "Only a combination of sophisticated mental representations and 
sophisticated statistical inference machinery will be able to explain 
how adults and children can learn so many words so fast so 
accurately” (Xu & Tenenbaum)

Implication: neural network models and exemplar models (e.g., 
ALCOVE) are not up to the challenge
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Abstract

 

We report a new study testing our proposal that word learning may be best explained as an approximate form of Bayesian
inference (Xu & Tenenbaum, in press). Children are capable of learning word meanings across a wide range of communicative
contexts. In different contexts, learners may encounter different sampling processes generating the examples of word–object
pairings they observe. An ideal Bayesian word learner could take into account these differences in the sampling process and
adjust his/her inferences about word meaning accordingly. We tested how children and adults learned words for novel object
kinds in two sampling contexts, in which the objects to be labeled were sampled either by a knowledgeable teacher or by the
learners themselves. Both adults and children generalized more conservatively in the former context; that is, they restricted the
label to just those objects most similar to the labeled examples when the exemplars were chosen by a knowledgeable teacher,
but not when chosen by the learners themselves. We discuss how this result follows naturally from a Bayesian analysis, but not
from other statistical approaches such as associative word-learning models.

 

Introduction

 

Models for how children learn the meanings of words
traditionally fall into two classes. One class of models
treats the process as inferential in nature, akin to reason-
ing. Although the child presumably is not consciously
working out each step of the reasoning process and the
computations may be done implicitly, the child learner is
assumed to draw on a set of hypotheses about candidate
word meanings and to evaluate these hypotheses based
on observed input using one or more principles of rational
inference (e.g. Bloom, 2000; Carey, 1978; Markman, 1989;
Siskind, 1996). In contrast, associative models assume
that the learner represents a matrix of graded word–object
mappings, and the strengths of these mappings are incre-
mentally increased or decreased over time given repeated
exposures (e.g. Colunga & Smith, 2005; Gasser & Smith,
1998; Regier, 2003, 2005).

We will argue for an alternative view that combines
aspects of  both approaches: the basic architecture is
a form of rational hypothesis-driven inference, but the
inferential logic is Bayesian and hence shows something
of the graded statistical character of associative models
(Tenenbaum & Xu, 2000; Xu & Tenenbaum 2005, in press).

Confronted with a novel word, the learner constructs a
hypothesis space of candidate word meanings (i.e. lexi-
calizable concepts) and a prior probability distribution
over that hypothesis space. Given one or more examples
of objects labeled by the new word, the learner updates the
prior to a posterior distribution of beliefs based on the
likelihood of observing these examples under each candi-
date hypothesis. The prior represents any knowledge
(due to previous learning or innate endowment) about
which meanings are more or less likely to be the target
of the new word, independent of the observed examples.
The likelihood is based on the sampling process pre-
sumed to have generated the observed object–label pairs.

Recent studies of  word learning with adults and
children provide some initial evidence for this account.
These studies test generalization: participants are shown
one or more examples of a novel word (e.g. ‘blicket’) and
are asked to judge which objects from a test set the word
also applies to. Xu and Tenenbaum (in press) demon-
strated that in learning object kind labels at different
levels of the hierarchy (i.e. subordinate, basic level, and
superordinate), both the generalization patterns of adults
and 4-year-old children were sensitive to the number and
the span of the examples, in the ways predicted by a
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is shown a positive example, the label is generated first
(depending on what the speaker wants to communicate
in a particular context), and then an object is chosen
from the set of stimuli with that label. This causal order
is reversed in weak sampling: the learner first picks an
object to be labeled out of the total set of stimuli, and
then the teacher responds with either a positive or
negative label depending on whether the object chosen
falls inside the word’s positive extension.

This difference in causal order affects the inferences
that the learner is licensed to draw under strong or weak
sampling. Under strong sampling, the fact that a particular
example is positive is not informative about the meaning
of the word – only that the example is being generated
by a knowledgeable speaker who either intends to pro-

vide positive examples in an ostensive teaching context,
or is merely using words correctly (to refer to their
positive instances) in the course of natural conversation
with other competent speakers. However, the particular
object chosen for labeling is informative about the word’s
meaning, because it is presumed to be a random sample
from the word’s positive extension. These dependencies
are reversed under weak sampling. The choice of which
object to label does not depend directly on the word’s
meaning, because the learner is choosing the examples
and does not know the word’s meaning. However, the
label observed does depend on the meaning, because the
labels are provided by a competent user who knows what
the word means and will presumably label the learner’s
chosen object positively or negatively according to whether
or not it falls in the word’s extension. The differences in
these patterns of causal dependencies, and the probabilistic
dependencies they imply, lead a Bayesian learner to
make qualitatively different kinds of inferences in these
learning situations.

More formally, in the strong sampling condition, we
can write
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causal order of the sampling process, and then dropped the
dependence on 
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) which we assume is independent
of the word’s meaning 

 

m

 

, and thus will contribute an
arbitrary constant multiple that cancels when we com-
pute posterior probabilities in Equation (2). Assuming
for simplicity that only positive examples are observed,
and that the object 
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i

 

 is sampled randomly from all
objects in the word’s extension, the remaining likelihood
term 
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 li, m) is just inversely proportional to | m |, the
number of stimuli available that the word applies to
under the hypothesis that its meaning is m, unless oi is
not contained in the subset of objects that m picks out,
in which case the likelihood is 0. If  the learner observes
n examples generated by strong sampling, the total
likelihood (for any hypothesis m consistent with those
examples) is

(4)

This likelihood function reflects what we have called the
size principle (Tenenbaum, 1999; Tenenbaum & Griffiths,
2001): more specific meanings, with smaller extensions,
are more likely than more general meanings, with larger
extensions, when both are consistent with a given set of
examples; and the preference for more specific meanings

Figure 1 (a) A schematic illustration of the hypothesis space 
used to model generalization in the experiment, for the stimuli 
shown in (b). (b) One set of stimuli used in the experiment, as 
they were shown to participants.
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is shown a positive example, the label is generated first
(depending on what the speaker wants to communicate
in a particular context), and then an object is chosen
from the set of stimuli with that label. This causal order
is reversed in weak sampling: the learner first picks an
object to be labeled out of the total set of stimuli, and
then the teacher responds with either a positive or
negative label depending on whether the object chosen
falls inside the word’s positive extension.

This difference in causal order affects the inferences
that the learner is licensed to draw under strong or weak
sampling. Under strong sampling, the fact that a particular
example is positive is not informative about the meaning
of the word – only that the example is being generated
by a knowledgeable speaker who either intends to pro-

vide positive examples in an ostensive teaching context,
or is merely using words correctly (to refer to their
positive instances) in the course of natural conversation
with other competent speakers. However, the particular
object chosen for labeling is informative about the word’s
meaning, because it is presumed to be a random sample
from the word’s positive extension. These dependencies
are reversed under weak sampling. The choice of which
object to label does not depend directly on the word’s
meaning, because the learner is choosing the examples
and does not know the word’s meaning. However, the
label observed does depend on the meaning, because the
labels are provided by a competent user who knows what
the word means and will presumably label the learner’s
chosen object positively or negatively according to whether
or not it falls in the word’s extension. The differences in
these patterns of causal dependencies, and the probabilistic
dependencies they imply, lead a Bayesian learner to
make qualitatively different kinds of inferences in these
learning situations.

More formally, in the strong sampling condition, we
can write

 

p

 

(

 

x

 

i

 

 

 

|

 

 

 

m

 

) 

 

=

 

 

 

p

 

(

 

o

 

i

 

, 

 

l

 

i

 

 

 

|

 

 

 

m

 

)

 

=

 

 

 

p

 

(

 

o

 

i

 

 

 

|

 

 

 

l

 

i

 

, 

 

m

 

)

 

p

 

(

 

l

 

i

 

 

 

|

 

 

 

m

 

)

 

∝

 

 

 

p

 

(

 

o

 

i

 

 

 

|

 

 

 

l

 

i

 

, 

 

m

 

),

where we have factorized 

 

p

 

(

 

o

 

i

 

, 

 

l

 

i

 

 

 

|

 

 

 

m

 

) according to the
causal order of the sampling process, and then dropped the
dependence on 

 

p

 

(

 

l

 

i

 

 

 

|

 

 

 

m

 

) which we assume is independent
of the word’s meaning 

 

m

 

, and thus will contribute an
arbitrary constant multiple that cancels when we com-
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term 
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 li, m) is just inversely proportional to | m |, the
number of stimuli available that the word applies to
under the hypothesis that its meaning is m, unless oi is
not contained in the subset of objects that m picks out,
in which case the likelihood is 0. If  the learner observes
n examples generated by strong sampling, the total
likelihood (for any hypothesis m consistent with those
examples) is

(4)

This likelihood function reflects what we have called the
size principle (Tenenbaum, 1999; Tenenbaum & Griffiths,
2001): more specific meanings, with smaller extensions,
are more likely than more general meanings, with larger
extensions, when both are consistent with a given set of
examples; and the preference for more specific meanings

Figure 1 (a) A schematic illustration of the hypothesis space 
used to model generalization in the experiment, for the stimuli 
shown in (b). (b) One set of stimuli used in the experiment, as 
they were shown to participants.
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each subordinate category, and 15 objects in each basic-
level category. Four nonsense words were used (‘blicket’,
‘tupa’, ‘wug’, and ‘fep’). Which word was used to refer
to which picture and which picture was shown first were
counterbalanced across participants.

Teacher-driven condition

With child participants, the experimenter began by ask-
ing the child to play a game with her. She pointed to an
object in the picture and said to the child, ‘See this? It’s
a blicket.’ She then pointed to two other objects from
the same subordinate category, one at a time, and said
to the child, ‘See this one? It’s a blicket.’ She then asked
the child to choose a sticker for paying attention and
doing a good job in the game. The experimenter then
proceeded to the test phase, in which the child was asked
to decide which other objects were also blickets. The
experimenter pointed to a total of five other objects, and
for each one she asked the child, ‘Is this a blicket?’ The
five test objects were, in order of questioning, a sub-
ordinate match, a non-match from the other basic-level
category, a basic-level match from a different subordinate,
another subordinate match, and another basic-level match.
Participants received no feedback on their answers to
test questions. The experimenter then presented the child
with the second set of objects and went through the
same procedure, using a different novel word. At the end
of the study, each child was allowed to choose another
sticker for doing a good job.

The procedure for adults was identical to that for chil-
dren. The adults were told that the study was initially
designed for preschoolers, and that stickers were given
out to keep the child on task.

Learner-driven condition

The procedure was identical to that of the teacher-driven
condition with the following critical difference. After
presenting the first example with the phrase, ‘See this?
It’s a blicket.’ The experimenter then asked the child,
‘Can you point to two other blickets? If  you get both of
them right, you get a sticker!’ Once the child picked two
more objects, the experimenter confirmed that the child
had correctly found two blickets (regardless of the child’s
selections) and the child was allowed to choose a sticker
as a reward. The experimenter then proceeded to the test
phase, pointing to five test objects and asking for each
one, ‘Is this a blicket?’ just as in the teacher-driven con-
dition. In both conditions, these five test questions were
asked only after participants had seen three labeled
examples; the only difference between conditions was the
process by which the second and third labeled examples

were sampled. The procedure for adults was again identical
to that for children. With the exception of  one child
(whose data were excluded from the analyses), all par-
ticipants pointed to two other objects from the same
subordinate category when asked to point to two other
blickets.

Results

Figure 2 summarizes responses to the test questions in
both conditions, in terms of the frequencies with which
participants generalized to different levels of the cate-
gory hierarchy. Over the five test trials, no participant
generalized a new word to any object from the other
basic-level category, and every participant responded in
a way that was consistent with a preferred level of gen-
eralization for a given word. That is, for each novel
word, each participant either generalized to just the two
subordinate-level matches, or to those objects and the
two basic-level matches. We calculated the percentages
of ‘yes’ responses for both the subordinate and the
basic-level matches. In the teacher-driven condition,
children generalized the novel word at the subordinate

Figure 2 Percentages of generalization responses at the 
subordinate and basic levels, for adults and children in both 
teacher-driven (a) and learner-driven (b) conditions.
Corresponding posterior probabilities for subordinate and 
basic-level hypotheses are shown for the Bayesian model.
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of the study, each child was allowed to choose another
sticker for doing a good job.

The procedure for adults was identical to that for chil-
dren. The adults were told that the study was initially
designed for preschoolers, and that stickers were given
out to keep the child on task.
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The procedure was identical to that of the teacher-driven
condition with the following critical difference. After
presenting the first example with the phrase, ‘See this?
It’s a blicket.’ The experimenter then asked the child,
‘Can you point to two other blickets? If  you get both of
them right, you get a sticker!’ Once the child picked two
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had correctly found two blickets (regardless of the child’s
selections) and the child was allowed to choose a sticker
as a reward. The experimenter then proceeded to the test
phase, pointing to five test objects and asking for each
one, ‘Is this a blicket?’ just as in the teacher-driven con-
dition. In both conditions, these five test questions were
asked only after participants had seen three labeled
examples; the only difference between conditions was the
process by which the second and third labeled examples

were sampled. The procedure for adults was again identical
to that for children. With the exception of  one child
(whose data were excluded from the analyses), all par-
ticipants pointed to two other objects from the same
subordinate category when asked to point to two other
blickets.

Results

Figure 2 summarizes responses to the test questions in
both conditions, in terms of the frequencies with which
participants generalized to different levels of the cate-
gory hierarchy. Over the five test trials, no participant
generalized a new word to any object from the other
basic-level category, and every participant responded in
a way that was consistent with a preferred level of gen-
eralization for a given word. That is, for each novel
word, each participant either generalized to just the two
subordinate-level matches, or to those objects and the
two basic-level matches. We calculated the percentages
of ‘yes’ responses for both the subordinate and the
basic-level matches. In the teacher-driven condition,
children generalized the novel word at the subordinate
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basic-level hypotheses are shown for the Bayesian model.
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is shown a positive example, the label is generated first
(depending on what the speaker wants to communicate
in a particular context), and then an object is chosen
from the set of stimuli with that label. This causal order
is reversed in weak sampling: the learner first picks an
object to be labeled out of the total set of stimuli, and
then the teacher responds with either a positive or
negative label depending on whether the object chosen
falls inside the word’s positive extension.

This difference in causal order affects the inferences
that the learner is licensed to draw under strong or weak
sampling. Under strong sampling, the fact that a particular
example is positive is not informative about the meaning
of the word – only that the example is being generated
by a knowledgeable speaker who either intends to pro-

vide positive examples in an ostensive teaching context,
or is merely using words correctly (to refer to their
positive instances) in the course of natural conversation
with other competent speakers. However, the particular
object chosen for labeling is informative about the word’s
meaning, because it is presumed to be a random sample
from the word’s positive extension. These dependencies
are reversed under weak sampling. The choice of which
object to label does not depend directly on the word’s
meaning, because the learner is choosing the examples
and does not know the word’s meaning. However, the
label observed does depend on the meaning, because the
labels are provided by a competent user who knows what
the word means and will presumably label the learner’s
chosen object positively or negatively according to whether
or not it falls in the word’s extension. The differences in
these patterns of causal dependencies, and the probabilistic
dependencies they imply, lead a Bayesian learner to
make qualitatively different kinds of inferences in these
learning situations.

More formally, in the strong sampling condition, we
can write
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) which we assume is independent
of the word’s meaning 
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, and thus will contribute an
arbitrary constant multiple that cancels when we com-
pute posterior probabilities in Equation (2). Assuming
for simplicity that only positive examples are observed,
and that the object 
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 is sampled randomly from all
objects in the word’s extension, the remaining likelihood
term 
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 li, m) is just inversely proportional to | m |, the
number of stimuli available that the word applies to
under the hypothesis that its meaning is m, unless oi is
not contained in the subset of objects that m picks out,
in which case the likelihood is 0. If  the learner observes
n examples generated by strong sampling, the total
likelihood (for any hypothesis m consistent with those
examples) is

(4)

This likelihood function reflects what we have called the
size principle (Tenenbaum, 1999; Tenenbaum & Griffiths,
2001): more specific meanings, with smaller extensions,
are more likely than more general meanings, with larger
extensions, when both are consistent with a given set of
examples; and the preference for more specific meanings

Figure 1 (a) A schematic illustration of the hypothesis space 
used to model generalization in the experiment, for the stimuli 
shown in (b). (b) One set of stimuli used in the experiment, as 
they were shown to participants.
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each subordinate category, and 15 objects in each basic-
level category. Four nonsense words were used (‘blicket’,
‘tupa’, ‘wug’, and ‘fep’). Which word was used to refer
to which picture and which picture was shown first were
counterbalanced across participants.

Teacher-driven condition

With child participants, the experimenter began by ask-
ing the child to play a game with her. She pointed to an
object in the picture and said to the child, ‘See this? It’s
a blicket.’ She then pointed to two other objects from
the same subordinate category, one at a time, and said
to the child, ‘See this one? It’s a blicket.’ She then asked
the child to choose a sticker for paying attention and
doing a good job in the game. The experimenter then
proceeded to the test phase, in which the child was asked
to decide which other objects were also blickets. The
experimenter pointed to a total of five other objects, and
for each one she asked the child, ‘Is this a blicket?’ The
five test objects were, in order of questioning, a sub-
ordinate match, a non-match from the other basic-level
category, a basic-level match from a different subordinate,
another subordinate match, and another basic-level match.
Participants received no feedback on their answers to
test questions. The experimenter then presented the child
with the second set of objects and went through the
same procedure, using a different novel word. At the end
of the study, each child was allowed to choose another
sticker for doing a good job.

The procedure for adults was identical to that for chil-
dren. The adults were told that the study was initially
designed for preschoolers, and that stickers were given
out to keep the child on task.

Learner-driven condition

The procedure was identical to that of the teacher-driven
condition with the following critical difference. After
presenting the first example with the phrase, ‘See this?
It’s a blicket.’ The experimenter then asked the child,
‘Can you point to two other blickets? If  you get both of
them right, you get a sticker!’ Once the child picked two
more objects, the experimenter confirmed that the child
had correctly found two blickets (regardless of the child’s
selections) and the child was allowed to choose a sticker
as a reward. The experimenter then proceeded to the test
phase, pointing to five test objects and asking for each
one, ‘Is this a blicket?’ just as in the teacher-driven con-
dition. In both conditions, these five test questions were
asked only after participants had seen three labeled
examples; the only difference between conditions was the
process by which the second and third labeled examples

were sampled. The procedure for adults was again identical
to that for children. With the exception of  one child
(whose data were excluded from the analyses), all par-
ticipants pointed to two other objects from the same
subordinate category when asked to point to two other
blickets.

Results

Figure 2 summarizes responses to the test questions in
both conditions, in terms of the frequencies with which
participants generalized to different levels of the cate-
gory hierarchy. Over the five test trials, no participant
generalized a new word to any object from the other
basic-level category, and every participant responded in
a way that was consistent with a preferred level of gen-
eralization for a given word. That is, for each novel
word, each participant either generalized to just the two
subordinate-level matches, or to those objects and the
two basic-level matches. We calculated the percentages
of ‘yes’ responses for both the subordinate and the
basic-level matches. In the teacher-driven condition,
children generalized the novel word at the subordinate

Figure 2 Percentages of generalization responses at the 
subordinate and basic levels, for adults and children in both 
teacher-driven (a) and learner-driven (b) conditions.
Corresponding posterior probabilities for subordinate and 
basic-level hypotheses are shown for the Bayesian model.

Bayesian word learning 293

© 2007 The Authors. Journal compilation © 2007 Blackwell Publishing Ltd.

each subordinate category, and 15 objects in each basic-
level category. Four nonsense words were used (‘blicket’,
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to which picture and which picture was shown first were
counterbalanced across participants.
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of the study, each child was allowed to choose another
sticker for doing a good job.

The procedure for adults was identical to that for chil-
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designed for preschoolers, and that stickers were given
out to keep the child on task.
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The procedure was identical to that of the teacher-driven
condition with the following critical difference. After
presenting the first example with the phrase, ‘See this?
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‘Can you point to two other blickets? If  you get both of
them right, you get a sticker!’ Once the child picked two
more objects, the experimenter confirmed that the child
had correctly found two blickets (regardless of the child’s
selections) and the child was allowed to choose a sticker
as a reward. The experimenter then proceeded to the test
phase, pointing to five test objects and asking for each
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dition. In both conditions, these five test questions were
asked only after participants had seen three labeled
examples; the only difference between conditions was the
process by which the second and third labeled examples

were sampled. The procedure for adults was again identical
to that for children. With the exception of  one child
(whose data were excluded from the analyses), all par-
ticipants pointed to two other objects from the same
subordinate category when asked to point to two other
blickets.

Results

Figure 2 summarizes responses to the test questions in
both conditions, in terms of the frequencies with which
participants generalized to different levels of the cate-
gory hierarchy. Over the five test trials, no participant
generalized a new word to any object from the other
basic-level category, and every participant responded in
a way that was consistent with a preferred level of gen-
eralization for a given word. That is, for each novel
word, each participant either generalized to just the two
subordinate-level matches, or to those objects and the
two basic-level matches. We calculated the percentages
of ‘yes’ responses for both the subordinate and the
basic-level matches. In the teacher-driven condition,
children generalized the novel word at the subordinate
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is shown a positive example, the label is generated first
(depending on what the speaker wants to communicate
in a particular context), and then an object is chosen
from the set of stimuli with that label. This causal order
is reversed in weak sampling: the learner first picks an
object to be labeled out of the total set of stimuli, and
then the teacher responds with either a positive or
negative label depending on whether the object chosen
falls inside the word’s positive extension.

This difference in causal order affects the inferences
that the learner is licensed to draw under strong or weak
sampling. Under strong sampling, the fact that a particular
example is positive is not informative about the meaning
of the word – only that the example is being generated
by a knowledgeable speaker who either intends to pro-

vide positive examples in an ostensive teaching context,
or is merely using words correctly (to refer to their
positive instances) in the course of natural conversation
with other competent speakers. However, the particular
object chosen for labeling is informative about the word’s
meaning, because it is presumed to be a random sample
from the word’s positive extension. These dependencies
are reversed under weak sampling. The choice of which
object to label does not depend directly on the word’s
meaning, because the learner is choosing the examples
and does not know the word’s meaning. However, the
label observed does depend on the meaning, because the
labels are provided by a competent user who knows what
the word means and will presumably label the learner’s
chosen object positively or negatively according to whether
or not it falls in the word’s extension. The differences in
these patterns of causal dependencies, and the probabilistic
dependencies they imply, lead a Bayesian learner to
make qualitatively different kinds of inferences in these
learning situations.

More formally, in the strong sampling condition, we
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, and thus will contribute an
arbitrary constant multiple that cancels when we com-
pute posterior probabilities in Equation (2). Assuming
for simplicity that only positive examples are observed,
and that the object 
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 is sampled randomly from all
objects in the word’s extension, the remaining likelihood
term 
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 li, m) is just inversely proportional to | m |, the
number of stimuli available that the word applies to
under the hypothesis that its meaning is m, unless oi is
not contained in the subset of objects that m picks out,
in which case the likelihood is 0. If  the learner observes
n examples generated by strong sampling, the total
likelihood (for any hypothesis m consistent with those
examples) is

(4)

This likelihood function reflects what we have called the
size principle (Tenenbaum, 1999; Tenenbaum & Griffiths,
2001): more specific meanings, with smaller extensions,
are more likely than more general meanings, with larger
extensions, when both are consistent with a given set of
examples; and the preference for more specific meanings

Figure 1 (a) A schematic illustration of the hypothesis space 
used to model generalization in the experiment, for the stimuli 
shown in (b). (b) One set of stimuli used in the experiment, as 
they were shown to participants.
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Abstract

This article proposes a new model of human concept learning that provides a rational analysis
of learning feature-based concepts. This model is built upon Bayesian inference for a grammatically
structured hypothesis space—a concept language of logical rules. This article compares the model
predictions to human generalization judgments in several well-known category learning experiments,
and finds good agreement for both average and individual participant generalizations. This article
further investigates judgments for a broad set of 7-feature concepts—a more natural setting in several
ways—and again finds that the model explains human performance.

Keywords: Concept learning; Categorization; Bayesian induction; Probabilistic grammar; Rules;
Language of thought

But what are concepts save formulations and creations of thought, which, instead of giving us the
true form of objects, show us rather the forms of thought itself? (Cassirer, 1946, p. 7)

The study of concepts—what they are, how they are used and how they are acquired—has
provided one of the most enduring and compelling windows into the structure of the human
mind. What we look for in a theory of concepts, and what kinds of concepts we look at,
depends on the functions of concepts that interest us. Three intuitions weave throughout the
cognitive science literature (e.g., see Fodor, 1998; Murphy, 2002):

1. Concepts are mental representations that are used to discriminate between objects, events,
relationships, or other states of affairs. Cognitive psychologists have paid particular atten-
tion to concepts that identify kinds of things—those that classify or categorize objects—and
such concepts are our focus here. It is clear how an ability to separate objects according
to kind could be critical to survival. To take a classic example, a decision about whether
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sachusetts Ave., MIT Building 46-4053, Cambridge, MA 02139. E-mail: ndg@mit.edu



Motivating rational rules

• The authors lay out three themes in concept learning
• Concepts are used to discriminate between objects, events, 

relationships, etc.
• Concepts are learned inductively from sparse and noisy data
• Concepts are compositional and are formed by combining simpler 

concepts

Rational rules is an attempt to combine these themes into a single model 
by combining the “classical view”/rule learning with probabilistic inference

Key question: The classical view (e.g., rules and definitions) does not 
account for graded effects in categorization and learning. Can we account 
for these effects by performing Bayesian inference over rules and 
definitions?
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Table 5
The six concepts with three features, four positive and four negative examples, studied first in Shepard et al. (1961).

I II III IV V VI

+ 0 0 0 + 0 0 0 + 0 0 0 + 0 0 0 + 0 0 0 + 0 0 0
+ 0 0 1 + 0 0 1 + 0 0 1 + 0 0 1 + 0 0 1 − 0 0 1
+ 0 1 0 − 0 1 0 + 0 1 0 + 0 1 0 + 0 1 0 − 0 1 0
+ 0 1 1 − 0 1 1 − 0 1 1 − 0 1 1 − 0 1 1 + 0 1 1
− 1 0 0 − 1 0 0 − 1 0 0 + 1 0 0 − 1 0 0 − 1 0 0
− 1 0 1 − 1 0 1 + 1 0 1 − 1 0 1 − 1 0 1 + 1 0 1
− 1 1 0 + 1 1 0 − 1 1 0 − 1 1 0 − 1 1 0 + 1 1 0
− 1 1 1 + 1 1 1 − 1 1 1 − 1 1 1 + 1 1 1 − 1 1 1

membership, and the remaining features are uninformative. For Concept II the first two features
are informative; for example, the complexity 4 formula:

((f1(x) = 1) ∧ (f2(x) = 1)) ∨ ((f1(x) = 0) ∧ (f2(x) = 0))

is the simplest perfect rule for this concept. In contrast, all three features are informative for
Concepts III, IV, V, and VI. Concept III admits the relatively simple formula

((f1(x) = 0) ∧ (f3(x) = 0)) ∨ ((f2(x) = 0) ∧ (f3(x) = 1)),

whereas Concepts IV, V, and VI do not admit any perfect rules of low complexity. However,
IV, and V both admit imperfect, but useful, rules of low complexity, whereas VI has no useful
simple rules at all.

A well-replicated finding concerning human errors (Shepard et al., 1961) is that these
concepts vary reliably in difficulty, reflecting the above complexity and informativeness con-
siderations: I < II < III = IV = V < VI (ordered from least to most difficulty, where “=”
indicates no reliable difference in diffculty). The RRDNF model predicts these qualitative find-
ings: error rates (via posterior probability, when b = 3) of 0%, 17%, 24%, 24%, 25%, 48%
for concepts I, II, III, IV, V, and VI, respectively. This ordering is predicted for a fairly wide
range of parameter values, although an inversion is predicted at b = 1: concept II is then more
difficult than concepts III, IV, and V. It is intriguing that this inversion has been experimentally
observed in humans when the stimulus dimensions are nonseparable (Nosofsky & Palmeri,
1996), but further work will be needed to determine whether this is an illuminating or acci-
dental prediction of the model. (This inversion, which is also seen in rhesus monkeys [Smith,
Minda, & Washburn, 2004], is predicted by the ALCOVE model when attention learning is
disabled.)

However, people are not bound to attend to the smallest set of informative features—indeed,
selective attention is particularly interesting in light of the implied trade-off between accuracy
and number of features attended. Medin, Altom, Edelson, and Freko (1982) demonstrated
this balance by studying the category structure shown in Table 6. This structure affords two
strategies: Each of the first two features are individually diagnostic of category member-
ship, but not perfectly so, whereas the correlation between the third and fourth features is

N. D. Goodman, J. B. Tenenbaum, J. Feldman, T. L. Griffiths/Cognitive Science 32 (2008) 129

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Complexity

Po
st

er
io

r 
pr

ob
ab

ili
ty

Concept LS
Concept NLS

Fig. 6. Posterior complexity distribution of the RRDNF model (b = 3) on the two category structures from Medin
and Schwanenflugel (1981; see Table 4). The model shows greater dependence on simple rules for Concept LS
(linearly separable) than Concept NLS (not linearly separable).

complexity and feature weights) is a measure of selective attention exhibited by the model:
The posterior complexity weights describe the extent to which the model favors simpler
formulae (which will have fewer features), whereas the posterior feature weights directly
describe the informativeness of each feature, as estimated by the model. It has been noted
before (Navarro, 2006) that selective attention effects emerge naturally from the Bayesian
framework. In our setting selective attention can be understood as the effect of updating the
uncertainty over production probabilities as evidence accumulates. Indeed, as the prior over
τ—initially uniform—is updated, it will often concentrate, becoming tightly peaked on a sub-
set of productions. For instance, if only the first of three features is informative, the posterior
distribution on production P → F1 will become larger, whereas the posteriors on P → F2
and P → F3 will be small (and these values will be reflected in the posterior feature weights;
see Appendix D). The changing importance of the productions τ have been marginalized
away in the summary prior, Equation 4, but the effects will still be felt in model predic-
tions. As a result the inferences of the Rational Rules model will depend most sensitively on
the informative features—this is the manner in which Bayesian models implement selective
attention.

Shepard et al. (1961), in one of the first studies to demonstrate selective attention effects,
compared difficulty in learning the six concepts in Table 5 (these are the six concepts with
three Boolean features, four positive and four negative examples). These concepts differ in
the number of dimensions that must be attended to, in the complexity of their simplest perfect
rule, and in the number of imperfect, but useful, simple rules. To learn Concept I it is only
necessary to consider the first feature, that is, the rule (f1(x) = 0) perfectly predicts category

f1(x) : color
f2(x) : slash
f3(x) : texture

(color is purple) (color is blue AND has slash) OR (color is purple AND has no slash)
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f1(x) : color
f2(x) : slash
f3(x) : texture

(color is blue AND has no texture) OR (has slash and has texture)
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Table 5
The six concepts with three features, four positive and four negative examples, studied first in Shepard et al. (1961).

I II III IV V VI

+ 0 0 0 + 0 0 0 + 0 0 0 + 0 0 0 + 0 0 0 + 0 0 0
+ 0 0 1 + 0 0 1 + 0 0 1 + 0 0 1 + 0 0 1 − 0 0 1
+ 0 1 0 − 0 1 0 + 0 1 0 + 0 1 0 + 0 1 0 − 0 1 0
+ 0 1 1 − 0 1 1 − 0 1 1 − 0 1 1 − 0 1 1 + 0 1 1
− 1 0 0 − 1 0 0 − 1 0 0 + 1 0 0 − 1 0 0 − 1 0 0
− 1 0 1 − 1 0 1 + 1 0 1 − 1 0 1 − 1 0 1 + 1 0 1
− 1 1 0 + 1 1 0 − 1 1 0 − 1 1 0 − 1 1 0 + 1 1 0
− 1 1 1 + 1 1 1 − 1 1 1 − 1 1 1 + 1 1 1 − 1 1 1

membership, and the remaining features are uninformative. For Concept II the first two features
are informative; for example, the complexity 4 formula:

((f1(x) = 1) ∧ (f2(x) = 1)) ∨ ((f1(x) = 0) ∧ (f2(x) = 0))

is the simplest perfect rule for this concept. In contrast, all three features are informative for
Concepts III, IV, V, and VI. Concept III admits the relatively simple formula

((f1(x) = 0) ∧ (f3(x) = 0)) ∨ ((f2(x) = 0) ∧ (f3(x) = 1)),

whereas Concepts IV, V, and VI do not admit any perfect rules of low complexity. However,
IV, and V both admit imperfect, but useful, rules of low complexity, whereas VI has no useful
simple rules at all.

A well-replicated finding concerning human errors (Shepard et al., 1961) is that these
concepts vary reliably in difficulty, reflecting the above complexity and informativeness con-
siderations: I < II < III = IV = V < VI (ordered from least to most difficulty, where “=”
indicates no reliable difference in diffculty). The RRDNF model predicts these qualitative find-
ings: error rates (via posterior probability, when b = 3) of 0%, 17%, 24%, 24%, 25%, 48%
for concepts I, II, III, IV, V, and VI, respectively. This ordering is predicted for a fairly wide
range of parameter values, although an inversion is predicted at b = 1: concept II is then more
difficult than concepts III, IV, and V. It is intriguing that this inversion has been experimentally
observed in humans when the stimulus dimensions are nonseparable (Nosofsky & Palmeri,
1996), but further work will be needed to determine whether this is an illuminating or acci-
dental prediction of the model. (This inversion, which is also seen in rhesus monkeys [Smith,
Minda, & Washburn, 2004], is predicted by the ALCOVE model when attention learning is
disabled.)

However, people are not bound to attend to the smallest set of informative features—indeed,
selective attention is particularly interesting in light of the implied trade-off between accuracy
and number of features attended. Medin, Altom, Edelson, and Freko (1982) demonstrated
this balance by studying the category structure shown in Table 6. This structure affords two
strategies: Each of the first two features are individually diagnostic of category member-
ship, but not perfectly so, whereas the correlation between the third and fourth features is

Model’s aim is to learn defining rules for concepts



Rational rules model

p(F | l(X); X) ∝ p(l(X) |F; X)p(F)

F : formula that defines a concept (Rule)

X : set of observed examples

Posterior over word meanings

Likelihood (noisy labeling according to formula)

Prior Based on derivation of formula under a probability 
context free grammar (favors short formulas and re-use 
of derivational steps)

l(X) : labels provided to examples

Generalizing to a new example y

p(y ∈ l | l(X); X) = ∑
F

P(y ∈ C |F)p(F | l(X); X)

p(l(X) |F; X) ∝ e−bQl(F)

Ql(F) number of labels that have been misaligned according to formula

p(F)
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(S1) S → ∀x !(x)⇔(D)

(D1) D → (C) ∨D

(D2) D → False

(C1) C → P ∧ C

(C2) C → True

(P1) P → F1

...

(PN) P → FN

(F11) F1 → f1(x) = 1

(F12) F1 → f1(x) = 0
...

(FN1) FN → fN (x) = 1

(FN2) FN → fN (x) = 0

Fig. 1. Production rules of the DNF grammar. Note S is the start symbol, and D,C, P, Fi the other non-terminals.
Productions (Fi1) and (Fi2) can be naturally extended to “decision boundary” predicates—for example, F1 →
f1(x) < 2.

F12 :

∀x (x)⇔(((f1(x)=0) ∧ True) ∨ False)

∀x (x)⇔((F1 ∧ True) ∨ False)

∀x (x)⇔((P ∧ True) ∨ False)

∀x (x)⇔((P ∧ C) ∨ False)

∀x (x)⇔((C) ∨ False)

∀x (x)⇔((C) ∨D)

∀x (x)⇔(D)

S
S1 :

D1 :

D2 :

C1 :

C2 :

P1 :

Fig. 2. Derivation of a formula from the DNF grammar.
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A grammar of rule-based concepts Derivation of rules:

Deriving a formula
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Table 5
The six concepts with three features, four positive and four negative examples, studied first in Shepard et al. (1961).

I II III IV V VI

+ 0 0 0 + 0 0 0 + 0 0 0 + 0 0 0 + 0 0 0 + 0 0 0
+ 0 0 1 + 0 0 1 + 0 0 1 + 0 0 1 + 0 0 1 − 0 0 1
+ 0 1 0 − 0 1 0 + 0 1 0 + 0 1 0 + 0 1 0 − 0 1 0
+ 0 1 1 − 0 1 1 − 0 1 1 − 0 1 1 − 0 1 1 + 0 1 1
− 1 0 0 − 1 0 0 − 1 0 0 + 1 0 0 − 1 0 0 − 1 0 0
− 1 0 1 − 1 0 1 + 1 0 1 − 1 0 1 − 1 0 1 + 1 0 1
− 1 1 0 + 1 1 0 − 1 1 0 − 1 1 0 − 1 1 0 + 1 1 0
− 1 1 1 + 1 1 1 − 1 1 1 − 1 1 1 + 1 1 1 − 1 1 1

membership, and the remaining features are uninformative. For Concept II the first two features
are informative; for example, the complexity 4 formula:

((f1(x) = 1) ∧ (f2(x) = 1)) ∨ ((f1(x) = 0) ∧ (f2(x) = 0))

is the simplest perfect rule for this concept. In contrast, all three features are informative for
Concepts III, IV, V, and VI. Concept III admits the relatively simple formula

((f1(x) = 0) ∧ (f3(x) = 0)) ∨ ((f2(x) = 0) ∧ (f3(x) = 1)),

whereas Concepts IV, V, and VI do not admit any perfect rules of low complexity. However,
IV, and V both admit imperfect, but useful, rules of low complexity, whereas VI has no useful
simple rules at all.

A well-replicated finding concerning human errors (Shepard et al., 1961) is that these
concepts vary reliably in difficulty, reflecting the above complexity and informativeness con-
siderations: I < II < III = IV = V < VI (ordered from least to most difficulty, where “=”
indicates no reliable difference in diffculty). The RRDNF model predicts these qualitative find-
ings: error rates (via posterior probability, when b = 3) of 0%, 17%, 24%, 24%, 25%, 48%
for concepts I, II, III, IV, V, and VI, respectively. This ordering is predicted for a fairly wide
range of parameter values, although an inversion is predicted at b = 1: concept II is then more
difficult than concepts III, IV, and V. It is intriguing that this inversion has been experimentally
observed in humans when the stimulus dimensions are nonseparable (Nosofsky & Palmeri,
1996), but further work will be needed to determine whether this is an illuminating or acci-
dental prediction of the model. (This inversion, which is also seen in rhesus monkeys [Smith,
Minda, & Washburn, 2004], is predicted by the ALCOVE model when attention learning is
disabled.)

However, people are not bound to attend to the smallest set of informative features—indeed,
selective attention is particularly interesting in light of the implied trade-off between accuracy
and number of features attended. Medin, Altom, Edelson, and Freko (1982) demonstrated
this balance by studying the category structure shown in Table 6. This structure affords two
strategies: Each of the first two features are individually diagnostic of category member-
ship, but not perfectly so, whereas the correlation between the third and fourth features is
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Fig. 6. Posterior complexity distribution of the RRDNF model (b = 3) on the two category structures from Medin
and Schwanenflugel (1981; see Table 4). The model shows greater dependence on simple rules for Concept LS
(linearly separable) than Concept NLS (not linearly separable).

complexity and feature weights) is a measure of selective attention exhibited by the model:
The posterior complexity weights describe the extent to which the model favors simpler
formulae (which will have fewer features), whereas the posterior feature weights directly
describe the informativeness of each feature, as estimated by the model. It has been noted
before (Navarro, 2006) that selective attention effects emerge naturally from the Bayesian
framework. In our setting selective attention can be understood as the effect of updating the
uncertainty over production probabilities as evidence accumulates. Indeed, as the prior over
τ—initially uniform—is updated, it will often concentrate, becoming tightly peaked on a sub-
set of productions. For instance, if only the first of three features is informative, the posterior
distribution on production P → F1 will become larger, whereas the posteriors on P → F2
and P → F3 will be small (and these values will be reflected in the posterior feature weights;
see Appendix D). The changing importance of the productions τ have been marginalized
away in the summary prior, Equation 4, but the effects will still be felt in model predic-
tions. As a result the inferences of the Rational Rules model will depend most sensitively on
the informative features—this is the manner in which Bayesian models implement selective
attention.

Shepard et al. (1961), in one of the first studies to demonstrate selective attention effects,
compared difficulty in learning the six concepts in Table 5 (these are the six concepts with
three Boolean features, four positive and four negative examples). These concepts differ in
the number of dimensions that must be attended to, in the complexity of their simplest perfect
rule, and in the number of imperfect, but useful, simple rules. To learn Concept I it is only
necessary to consider the first feature, that is, the rule (f1(x) = 0) perfectly predicts category

f1(x) : color
f2(x) : slash
f3(x) : texture

(color is purple) (color is blue AND has slash) OR (color is purple AND has no slash)
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f3(x) : texture

(color is blue AND has slash) OR (has slash and has texture)
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Table 5
The six concepts with three features, four positive and four negative examples, studied first in Shepard et al. (1961).

I II III IV V VI

+ 0 0 0 + 0 0 0 + 0 0 0 + 0 0 0 + 0 0 0 + 0 0 0
+ 0 0 1 + 0 0 1 + 0 0 1 + 0 0 1 + 0 0 1 − 0 0 1
+ 0 1 0 − 0 1 0 + 0 1 0 + 0 1 0 + 0 1 0 − 0 1 0
+ 0 1 1 − 0 1 1 − 0 1 1 − 0 1 1 − 0 1 1 + 0 1 1
− 1 0 0 − 1 0 0 − 1 0 0 + 1 0 0 − 1 0 0 − 1 0 0
− 1 0 1 − 1 0 1 + 1 0 1 − 1 0 1 − 1 0 1 + 1 0 1
− 1 1 0 + 1 1 0 − 1 1 0 − 1 1 0 − 1 1 0 + 1 1 0
− 1 1 1 + 1 1 1 − 1 1 1 − 1 1 1 + 1 1 1 − 1 1 1

membership, and the remaining features are uninformative. For Concept II the first two features
are informative; for example, the complexity 4 formula:

((f1(x) = 1) ∧ (f2(x) = 1)) ∨ ((f1(x) = 0) ∧ (f2(x) = 0))

is the simplest perfect rule for this concept. In contrast, all three features are informative for
Concepts III, IV, V, and VI. Concept III admits the relatively simple formula

((f1(x) = 0) ∧ (f3(x) = 0)) ∨ ((f2(x) = 0) ∧ (f3(x) = 1)),

whereas Concepts IV, V, and VI do not admit any perfect rules of low complexity. However,
IV, and V both admit imperfect, but useful, rules of low complexity, whereas VI has no useful
simple rules at all.

A well-replicated finding concerning human errors (Shepard et al., 1961) is that these
concepts vary reliably in difficulty, reflecting the above complexity and informativeness con-
siderations: I < II < III = IV = V < VI (ordered from least to most difficulty, where “=”
indicates no reliable difference in diffculty). The RRDNF model predicts these qualitative find-
ings: error rates (via posterior probability, when b = 3) of 0%, 17%, 24%, 24%, 25%, 48%
for concepts I, II, III, IV, V, and VI, respectively. This ordering is predicted for a fairly wide
range of parameter values, although an inversion is predicted at b = 1: concept II is then more
difficult than concepts III, IV, and V. It is intriguing that this inversion has been experimentally
observed in humans when the stimulus dimensions are nonseparable (Nosofsky & Palmeri,
1996), but further work will be needed to determine whether this is an illuminating or acci-
dental prediction of the model. (This inversion, which is also seen in rhesus monkeys [Smith,
Minda, & Washburn, 2004], is predicted by the ALCOVE model when attention learning is
disabled.)

However, people are not bound to attend to the smallest set of informative features—indeed,
selective attention is particularly interesting in light of the implied trade-off between accuracy
and number of features attended. Medin, Altom, Edelson, and Freko (1982) demonstrated
this balance by studying the category structure shown in Table 6. This structure affords two
strategies: Each of the first two features are individually diagnostic of category member-
ship, but not perfectly so, whereas the correlation between the third and fourth features is

Accounts for SHJ due to boolean complexity



Medin & Schaffer Experiment 2
famous “5-4” category structure

Key comparison is stimulus 4 vs stimulus 7
• Prototype model would predict stimulus 4 is easier to learn

It’s more similar to the prototype
• Exemplar model would predict stimulus 7 is easier to learn

Has two near neighbors, 15 and 4
• Behavior results favor exemplar model: stimulus 7 had 

fewer error (FE) and higher confidence rating
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Figure 4. Design of Experiment 2. (C, P, S, and N refer to the dimensions of color, form, size, and
number, respectively. The stimulus numbers are carried over from Experiment 1. Fe refers to average
errors during learning. Rating scores may vary from 1 to 6, with 3.5 representing chance [nohdifferential]
classification.)

eter values that would alter this prediction
would place numerous other testable con-
straints on the data.

Method

Subjects. Thirty-two volunteers were solicited
through ads in local newspapers. The subjects, men and
women ranging in ages from 17 to 30 years, were paid
$2.50 for the experimental session. The subjects had not
participated in the first experiment.

Stimuli, Sixteen stimulus cards with geometric
forms drawn on them were used. Nine cards were used
in training and seven additional cards were used in
transfer. The geometric forms were like those from the
preceding experiment, except that the dimension of
number was substituted for the dimension of position.
The number dimension was represented by either a
single geometric form centered on the card or by two
geometric forms each centered on their respective
halves of the card.

The assignment of abstract notation to individual
stimulus cards varied from subject to subject exactly
as in the first experiment. That is, the assignment of

stimulus cards to conditions and category labels was
exactly counterbalanced.

Procedure. The procedure followed that used in
the first part of Experiment 1: initial training, followed
by a S-10-minute interpolated activity, followed by a
transfer task involving both training and new transfer
stimuli.

The instructions for training were those used in
Experiment 1. Training consisted of up to 16 runs
through the list of 9 training stimuli with a learning
criterion of 1 errorless run. Other procedural details
followed those of Experiment 1, including the inter-
polated activity and the transfer test instructions and
procedure.

Results

Learning. The learning task was of moder-
ate difficulty; 19 of the 32 subjects learned the
classification task within the maximum limit
of 16 runs. Overall, subjects averaged 18%
errors on the last run through the list, but
virtually all subjects showed some improve-

Prototype: 1    1    1     1 Prototype: 0    0    0     0
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Fig. 3. Comparison of human judgments with RRDNF model predictions: mean probability of category A judgments
after training on the category structure of Medin and Schaffer (1978). See Table 3 for human and RRDNF model
(b = 1). The fit between model and human data is R2 = 0.98.

enhancement: most high probability formulae agree on the classification of B4, whereas fewer
agree on the classifications of the other training examples. However, note that the typicality
gradient of training examples is not entirely determined by similarity to the prototypes. For
instance, training example A2 and A1 are equally typical of category A and more typical than
examples A4 and A5 (according to both humans and the Rational Rules model), however A1,

)b()a(

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Complexity

Po
st

er
io

r 
co

m
pl

ex
ity

 w
ei

gh
t

1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Feature

Po
st

er
io

r 
fe

at
ur

e 
w

ei
gh

t

Fig. 4. (a) Posterior complexity distribution of the RRDNF model (b = 1) for the category structure of Medin
and Schaffer (1978; see Table 3). (b) Posterior feature weights for this category structure. Together these weight
distributions indicate that the RRDNF model focuses on simple rules along features 1 and 3.
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Table 3
The category structure of Medin & Schaffer (1978), with the human data of Nosofsky et al. (1994a), and the
predictions of the Rational Rules model (b = 1).

Object Feature Values Human RRDNF

A1 0001 0.77 0.82
A2 0101 0.78 0.81
A3 0100 0.83 0.92
A4 0010 0.64 0.61
A5 1000 0.61 0.61
B1 0011 0.39 0.47
B2 1001 0.41 0.47
B3 1110 0.21 0.21
B4 1111 0.15 0.07
T1 0110 0.56 0.57
T2 0111 0.41 0.44
T3 0000 0.82 0.95
T4 1101 0.40 0.44
T5 1010 0.32 0.28
T6 1100 0.53 0.57
T7 1011 0.20 0.13

The best (highest posterior probability) formulae according to the Rational Rules model are
shown in Table 2. For small values of b (those that are more permissive of outliers), the best
formulae are single dimension rules. Note that the posterior probabilities of these formulae
reflect their predictiveness on the training examples, and in particular that formula f4(x) = 0,
although not the best, has significantly greater posterior probability than formula f2(x) = 0.
In Fig. 4 we have plotted the posterior complexity weights and the posterior feature weights of
the Rational Rules model for b = 1. We see that this pattern is maintained when considering
the entire posterior: most of the weight is on simple formulae along Features 1 and 3, followed
by Feature 4, then Feature 2.

The object T3 = 0000 is the prototype of category A, in the sense that most of the examples of
category A are similar to this object (differ in only one feature), whereas most of the examples
of category B are dissimilar. Although it never occurs in the training set, the importance of this
prototype is reflected in the human transfer judgments (Table 3 and Fig. 3): T3 is, by far, the
most likely transfer object to be classified as category A. The Rational Rules model predicts
this “prototype enhancement effect” (Posner & Keele, 1968). This prediction results because
the highest posterior probability formulae (Table 2) all agree on the categorization of T3, so
combine (together with lower probability formulae) to enhance the probability that T3 is in
category A.

The degree of typicality, or recognition rate for training examples, is often taken as a useful
proxy for category centrality (Mervis & Rosch, 1981) because it correlates with many of the
same experimental measures (such as reaction time). In Table 3 and Fig. 3, we see greater
typicality for the prototype of category B, the object B4 = 1111, than for other training
examples: although presented equally often it is classed into category B far more often. The
Rational Rules model also predicts this typicality effect, in a manner similar to prototype

more like prototype (all 0’s)
more like other exemplars

probability of classifying as category “A”

R2 = 0.98

Rational rules accounts for this by reliance on 
rules that often use Features 1 and 3, and not 
often Feature 2
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Maddox & Ashby, 1993) suggests that feature predicates capturing general linear or quadratic
decision boundaries may be appropriate in some situations.

4.4. Individual generalization patterns

Nosofsky et al. (1994) investigated the pattern of generalizations made by individual par-
ticipants, that is, they reported the proportion of participants giving each set of answers to the
generalization questions. One may wonder whether it is necessary to consider these general-
ization patterns in addition to group averages for each question. As noted in Nosofsky and
Palmeri (1998), even the best binomial model does very poorly at predicting individual gener-
alization patterns (R2 = 0.24 in the case of Nosofsky et al., 1994, Experiment 1), although, by
construction, it perfectly predicts the group average for each generalization question. There-
fore the pattern of generalizations provides an additional, more fine grained, probe for testing
concept learning models.

To understand how the Rational Rules model can predict these generalization patterns,
recall the hypothesis sampling assumption discussed earlier: each individual has a single
hypothesis that is drawn from the posterior over formulae. The pattern of judgments made by
each individual is then determined by this hypothesis, with additional response noise η. If we
assume a single value of the parameters (b and η) for all participants, the best fit of the RRDNF
model explains R2 = 0.85 of the variance in human generalization for the 36 generalization
patterns reported in (Nosofsky et al., 1994). The RULEX model also does well, R2 = 0.86, but
uses several more free parameters. As with RULEX, the qualitative match of the Rational Rules
model to human judgments is good (see Fig. 10). Also as with RULEX, the generalization
pattern ABABBAB is underpredicted by the model (cf. Johansen & Palmeri, 2002).
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Fig. 10. Individual generalization patterns: the probability of responding with the indicated categorizations for
the seven transfer stimuli of Table 3. Human data from Nosofsky, Palmeri, and McKinley (1994), Experiment 1.
The model values are for parameters b = 4, η = 0.09. Agreement of model with human data is good: R2 = 0.85,
rmsd = 0.016.
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Figure 4. Design of Experiment 2. (C, P, S, and N refer to the dimensions of color, form, size, and
number, respectively. The stimulus numbers are carried over from Experiment 1. Fe refers to average
errors during learning. Rating scores may vary from 1 to 6, with 3.5 representing chance [nohdifferential]
classification.)

eter values that would alter this prediction
would place numerous other testable con-
straints on the data.

Method

Subjects. Thirty-two volunteers were solicited
through ads in local newspapers. The subjects, men and
women ranging in ages from 17 to 30 years, were paid
$2.50 for the experimental session. The subjects had not
participated in the first experiment.

Stimuli, Sixteen stimulus cards with geometric
forms drawn on them were used. Nine cards were used
in training and seven additional cards were used in
transfer. The geometric forms were like those from the
preceding experiment, except that the dimension of
number was substituted for the dimension of position.
The number dimension was represented by either a
single geometric form centered on the card or by two
geometric forms each centered on their respective
halves of the card.

The assignment of abstract notation to individual
stimulus cards varied from subject to subject exactly
as in the first experiment. That is, the assignment of

stimulus cards to conditions and category labels was
exactly counterbalanced.

Procedure. The procedure followed that used in
the first part of Experiment 1: initial training, followed
by a S-10-minute interpolated activity, followed by a
transfer task involving both training and new transfer
stimuli.

The instructions for training were those used in
Experiment 1. Training consisted of up to 16 runs
through the list of 9 training stimuli with a learning
criterion of 1 errorless run. Other procedural details
followed those of Experiment 1, including the inter-
polated activity and the transfer test instructions and
procedure.

Results

Learning. The learning task was of moder-
ate difficulty; 19 of the 32 subjects learned the
classification task within the maximum limit
of 16 runs. Overall, subjects averaged 18%
errors on the last run through the list, but
virtually all subjects showed some improve-

famous “5-4” category structure

Probability of responding with the indicated categorizations of 7 transfer stimuli



People don’t necessarily favor linearly separable 
categories (as accounted for by ALCOVE)

linearly separable condition: 
people had 39.5 errors on 
average

non-linearly separable 
condition: people had 38.0 
errors on average

(criterion was two error-free 
passes through stimuli)
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Fig. 5. (a) The human data from Medin and Schwanenflugel ( 1981) for the category structures in Table 4, showing
that linearly separable Concept LS was more difficult to learn than Concept NLS, which is not linearly separable.
(b) Predictions of the RRDNF model: the probability of an incorrect response versus the outlier parameter b.

agreement with the human data, predicting more errors on the linearly separable concept (and
note that no parameters were fit in these model results). The RULEX model also predicts the
relative diculty of Concept LS over Concept NLS (Nosofsky et al., 1994), which suggests that
this is a rather general prediction of rule-based models.

To understand this result, note that, although the two concepts support equally informative
complexity 1 rules (that is single-feature strategies), Concept NLS supports more informative
rules of complexity 2, 3, and 4 than does Concept LS. For example, the complexity 4 formula
(f1(x) = 0 ∧f2(x) = 0) ∨ (f3(x) = 0 ∧f4(x) = 0) discriminates perfectly for Concept NLS,
whereas there is no complexity 4 formula that does so for Concept LS. The RRDNF model
relies more heavily on these rules of complexity 2, 3, and 4 for Concept NLS than for Concept
LS, see the plots of posterior complexity in Fig. 6, which results in a difference in accuracy.
The model does not, however, simply use the most informative rules (after all there are always
perfectly predictive rules of very high complexity), but balances predictive accuracy against
simplicity—it places weight on highly informative and moderately complex rules for Concept
NLS, but, finding no such rules for Concept LS, places the majority of the weight on very
simple rules.

4.2. Selective attention effects

It is important to be able to ignore uninformative features in a world, such as ours, in
which every object has many features, any of which may be useful for classification. This
motivates the long standing interest in selective attention in human concept learning (Kr-
uschke, 1992): the tendency to consider as few features as possible to achieve acceptable
classification accuracy. We have seen a simple case of this already predicted by the Rational
Rules model: Single feature concepts were preferred to more complex concepts for the 5–4
category structure (Fig. 4a). Indeed, each of the descriptive measures described earlier (the

Rational rules can learn NLS concepts more easily 
than LS

A complexity 4 rule perfectly discriminates the NLS case, but you 
need a more complex rule for the LS case


