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Concept learning from just a few positive examples
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The authors present a Bayesian framework for understanding how adults and children learn the meanings
of words. The theory explains how learners can generalize meaningfully from just one or a few positive
examples of a novel word’s referents, by making rational inductive inferences that integrate prior
knowledge about plausible word meanings with the statistical structure of the observed examples. The
theory addresses shortcomings of the two best known approaches to modeling word learning, based on
deductive hypothesis elimination and associative learning. Three experiments with adults and children
test the Bayesian account’s predictions in the context of learning words for object categories at multiple
levels of a taxonomic hierarchy. Results provide strong support for the Bayesian account over competing
accounts, in terms of both quantitative model fits and the ability to explain important qualitative
phenomena. Several extensions of the basic theory are discussed, illustrating the broader potential for

Bayesian models of word learning.
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Learning even the simplest names for object categories presents
a difficult induction problem (Quine, 1960). Consider a typical
dilemma faced by a child learning English. Upon observing a
competent adult speaker use the word dog in reference to Max, a
particular Dalmatian running by, what can the child infer about the
meaning of the word dog? The potential hypotheses appear end-
less. The word could refer to all (and only) dogs, all mammals, all
animals, all Dalmatians, this individual Max, all dogs plus the
Lone Ranger’s horse, all dogs except Labradors, all spotted things,
all running things, the front half of a dog, undetached dog parts,
things that are dogs if first observed before next Monday but cats
if first observed thereafter, and on and on. Yet despite this severe

underdetermination, even 2- or 3-year-olds seem to be remarkably
successful at learning the meanings of words from examples. In
particular, children or adults can often infer the approximate ex-
tensions of words such as dog given only a few relevant examples
of how the word can be used and no systematic evidence of how
words are not to be used (Bloom, 2000; Carey, 1978; Markman,
1989; Regier, 1996). How do they do it?

Two broad classes of proposals for how word learning works
have been dominant in the literature: hypothesis elimination and
associative learning. Under the hypothesis elimination approach,
the learner effectively considers a hypothesis space of possible
concepts onto which words will map and (leaving aside for now
the problem of homonyms and polysemy) assumes that each word
maps onto exactly one of these concepts. The act of learning
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Review: Bayes’ rule for updating
beliefs in light of data

Data (D): John is coughing

“Bayes’ rule”
posterior likelihood prior
Hypotheses: \ \ v
h1 = John has a cold P(hi\D) _ P(D‘hi)P(hi)
ho = John has emphysema Zj P(D|hj)P(hj)

hs = John has a stomach flu

Prior favors h; and hs, over ho
Likelihood favors h; and hs, over hs

Posterior favors hi, over ho and hj



Bayesian concept learning

h € H : hypothesis about meaning of word (e.g., node in tree structure)
X : data (often just labels of positive examples)

n : number of examples

Posterior over word meanings

P(X|h)P(h)
P(X)

P(h|X) =

Likelihood

1
PXTh) = [size(h) ]

“tufa” “tufa”

(“the size principle”, uniform random sample from appropriate set)

Prior .
could be uniform over nodes tree,

P(h) or favor more distinctive nodes,
or favor nodes at a certain level....



Xu and Tenenbaum Exp 1: Adults

Helping Mr. Frog who speaks a different language pick out the objects he wants.

“Here is a fep” Which others are feps?




Xu and Tenenbaum Exp 1

Helping Mr. Frog who speaks a different language pick out the objects he wants.

“Here are three feps” Which others are feps?




Xu and Tenenbaum Exp 1: Training set

Vegetables Vehicles Animals

1 example
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Xu and Tenenbaum Exp 1: Test set

Vegetables Vehicles Animals

Subordinate
matches

Basic-level
matches

Superordinate
matches




Adult results (Exp 1)
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* Graded generalization with one subordinate example, and rule-like generalization
with 3 examples
* Rapid learning from only sparse, positive examples



Xu and Tenenbaum Exp 3: Children

Helping Mr. Frog who speaks a different language pick out the objects he wants.

| Which others are feps?
Here is a fep (YES/NO for each)

 Can 3-4 year olds learn from sparse,
positive examples?

* If only one example, it is labeled 3 times
to control number of labeling events




Xu and Tenenbaum Exp 3
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Bayesian concept learning

h € H : hypothesis about the meaning of word (node in tree structure)

X : 1 or 3 positive examples

n : number of examples

Posterior over word meanings

animal
JJ

P(Xl h)P(h) _ vethjIe vegetable
P(X) S
oo K " - g pepper
Likelihood H
1 1 ) oL
P(X|h) =] I"=~ 1 | :

size(h). height(h) + ¢

(height is the average within-node distance between examples)

Prior favors more distinctive nodes,
P(h) < height(parent[/])) — height(s)  or favor nodes at a certain level....

Generalizing to a new example y

p(y € C|X)= ) P(y € Clhp(h|X)
heH



Model results
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Alternative Bayesian models

Full Bayesian model

1
B PX1h) = bheighti ¢
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I I N heH
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Weak Bayesian model Most likely hypothesis only
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P(X|h) =1
generalization isn’t sharp enough generalization is too sharp



What about an exemplar model?

Full Bayesian model
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Key point:

Exemplar model
doesn’t care
between 1 example
and 3 examples

Exemplar model

Probability of
generalization

3 super.



Conclusions

Children can learn new concepts from just one or a few positive
examples, and seem to entertain very structured hypothesis spaces

Bayesian models of concept learning provide an explicit model of
sampling assumptions, and can learn concepts from just one or a few
examples

"Only a combination of sophisticated mental representations and
sophisticated statistical inference machinery will be able to explain
how adults and children can learn so many words so fast so
accurately” (Xu & Tenenbaum)

Implication: neural network models and exemplar models (e.g.,
ALCOVE) are not up to the challenge
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Sensitivity to sampling in Bayesian word learning
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Abstract

We report a new study testing our proposal that word learning may be best explained as an approximate form of Bayesian
inference ( Xu & Tenenbaum, in press). Children are capable of learning word meanings across a wide range of communicative
contexts. In different contexts, learners may encounter different sampling processes generating the examples of word—object
pairings they observe. An ideal Bayesian word learner could take into account these differences in the sampling process and
adjust hislher inferences about word meaning accordingly. We tested how children and adults learned words for novel object
kinds in two sampling contexts, in which the objects to be labeled were sampled either by a knowledgeable teacher or by the
learners themselves. Both adults and children generalized more conservatively in the former context; that is, they restricted the
label to just those objects most similar to the labeled examples when the exemplars were chosen by a knowledgeable teacher,
but not when chosen by the learners themselves. We discuss how this result follows naturally from a Bayesian analysis, but not
from other statistical approaches such as associative word-learning models.

Introduction

Models for how children learn the meanings of words
traditionally fall into two classes. One class of models
treats the process as inferential in nature, akin to reason-
ing. Although the child presumably is not consciously
working out each step of the reasoning process and the
computations may be done implicitly, the child learner is
assumed to draw on a set of hypotheses about candidate
word meanings and to evaluate these hypotheses based
on observed input using one or more principles of rational
inference (e.g. Bloom, 2000; Carey, 1978; Markman, 1989;
Siskind, 1996). In contrast, associative models assume
that the learner represents a matrix of graded word—object
mappings, and the strengths of these mappings are incre-
mentally increased or decreased over time given repeated
exposures (e.g. Colunga & Smith, 2005; Gasser & Smith,
1998; Regier, 2003, 2005).

Confronted with a novel word, the learner constructs a
hypothesis space of candidate word meanings (i.e. lexi-
calizable concepts) and a prior probability distribution
over that hypothesis space. Given one or more examples
of objects labeled by the new word, the learner updates the
prior to a posterior distribution of beliefs based on the
likelihood of observing these examples under each candi-
date hypothesis. The prior represents any knowledge
(due to previous learning or innate endowment) about
which meanings are more or less likely to be the target
of the new word, independent of the observed examples.
The likelihood is based on the sampling process pre-
sumed to have generated the observed object-label pairs.

Recent studies of word learning with adults and
children provide some initial evidence for this account.
These studies test generalization: participants are shown
one or more examples of a novel word (e.g. ‘blicket’) and
are asked to judge which objects from a test set the word



Teacher-driven condition




Learner-driven condition

“Here is a fep. Can you point to two more?”

ati

Yes, that’s right.
That’s right too
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Key point: exemplar models, ALCOVE, and neural
networks don’t differentiate based on sampling process

A
/N\ A\

subordinate ‘ —

“Here are three feps” “Here is a fep. Can you point to two more?”
(a) Teacher-driven Condition (b) Learner-driven Condition

1 1
0.9 A 0.9 -
0.8 1 0.8 A
0.7 1 0.7 1
0.6 1 B Subordinate 06 B Subordinate
0.5 1 O Basic-level 0.5 1 O Basic-level
0.4 A 0.4 -
0.3 A 0.3 1
0.2 - 0.2 -
0.1 - 011

0 0

Adults Children Model Adults Children Model



Key point: ALCOVE and other gradient-based algorithms
don’t differentiate between two sampling conditions

response P(y € A)

sim(y,C) = Z w.,. Sim(y, x)

xeX

association weights W4 0.015 0.002 0.002 0.0

Exemplars X

sim(y,x) = e 2, b WAX O 002

/)</‘\T

attention weights ~ @¢plor Xsoxture Xlash
0.33 0.33 0.33

current stimulus y .




Cognitive Science 32 (2008) 108—154

Copyright (© 2008 Cognitive Science Society, Inc. All rights reserved.
ISSN: 0364-0213 print/ 1551-6709 online

DOI: 10.1080/03640210701802071

A Rational Analysis of Rule-Based Concept Learning

Noah D. Goodman?, Joshua B. Tenenbaum?, Jacob Feldman®,

Thomas L. Griffiths®
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Abstract

This article proposes a new model of human concept learning that provides a rational analysis
of learning feature-based concepts. This model is built upon Bayesian inference for a grammatically
structured hypothesis space—a concept language of logical rules. This article compares the model
predictions to human generalization judgments in several well-known category learning experiments,
and finds good agreement for both average and individual participant generalizations. This article
further investigates judgments for a broad set of 7-feature concepts—a more natural setting in several
ways—and again finds that the model explains human performance.

Keywords: Concept learning; Categorization; Bayesian induction; Probabilistic grammar; Rules;
Language of thought




Motivating rational rules

* The authors lay out three themes in concept learning
e Concepts are used to discriminate between objects, events,

relationships, etc.
e Concepts are learned inductively from sparse and noisy data
e Concepts are compositional and are formed by combining simpler

concepts

Rational rules is an attempt to combine these themes into a single model
by combining the “classical view”/rule learning with probabilistic inference

Key question: The classical view (e.g., rules and definitions) does not
account for graded effects in categorization and learning. Can we account
for these effects by performing Bayesian inference over rules and

definitions?



Model’s aim is to learn defining rules for concepts

. Typel Type |I

(f1(x) =0) (1) = DA (folx) = D) vV ((f1(x) = 0) A (f2(x) = 0))

(color is purple) (color is blue AND has slash) OR (color is purple AND has no slash)
T B ELE

: Type I Type 11 Type il

/ g 3 %

Type IV Type V Type VI

1oy am3 texture

| :L,__|__,! I dim 2 Slash

17—5" dim 1 color
fi(x) : color

f>(x) : slash
f3(x) : texture




Model’s aim is to learn defining rules for concepts

Type Il
(fi(x) = 0) A (f5(x) = 0) V (fo(x) = 0) A (f3(x) = 1)),

(color is blue AND has no texture) OR (has slash and has texture)

= & pay e

Type I Type 11 Type il

g e 3

Type IV Type V Type VI

1oy am3 texture

| :Is—-l-l I dim 2 Slash

1%—5" dim 1 color
fi(x) : color

f>(x) : slash
f3(x) : texture




Rational rules model

F : formula that defines a concept (Rule)
X : set of observed examples

[(X) : labels provided to examples

Posterior over word meanings
p(FIX); X) x p(i(X) | F; X)p(F)

Likelihood (noisy labeling according to formula)

pI(X)| F; X) o e~
O,(F) number of labels that have been misaligned according to formula

Prior Based on derivation of formula under a probability
p(F) context free grammar (favors short formulas and re-use
of derivational steps)

Generalizing to a new example y

p(y € 1[IX);X) = ) P(y € C|F)p(F|I(X); X)
F



A grammar of rule-based concepts

Deriving a formula

S

D

D — False
¢ — PAC
C — True

P — F

P — Fy

Fi — fi(x)=1

F1 — fl(ﬂj) =0

FN — fN(QE) =1

FN — fN(QZ) =0

Derivation of rules:

3.
S1: P A ~

Vo L(z)=(D)
D1 : NI

vz t(z)&((C) v D)
D2 . A

Vz {(z)&((C) V False)
C1: 4

Vo l(x)e((P A C)V False)
C2: A

Vo l(x)=((P A True) V False)
P1: /v\

vz {(x)e((F1 A True) V False)
n2.: T A

Vo £(x)<(((f1(x)=0) A True) V False)



Accounts for SHJ due to boolean complexity

. Typel Type |I

(f1(x) =0) (1) = DA (folx) = D) vV ((f1(x) = 0) A (f2(x) = 0))

(color is purple) (color is blue AND has slash) OR (color is purple AND has no slash)
T B ELE

: Type I Type 11 Type il

/ g 3 %

Type IV Type V Type VI

1oy am3 texture

| :L,__|__,! I dim 2 Slash

17—5" dim 1 color
fi(x) : color

f>(x) : slash
f3(x) : texture




Accounts for SHJ due to boolean complexity
Type I
(fi(x) = 0) A (f3(x) = 0) V ((fa(x) = 0) A (f3(x) = 1)),

(color is blue AND has slash) OR (has slash and has texture)

E & pay e

Type I Type 11 Type il

g e 3

Type IV Type V Type VI

1oy am3 texture

| :!‘»—-l-l I dim 2 Slash

1%—5’ dim 1 color
fi(x) : color

f>(x) : slash
f3(x) : texture




Medin & Schaffer Experiment 2

famous “5-4” category structure
TRAINING STIMULI

e - .
STiMuLUS STIMULUS
NumBeR DiIMENSION VALUES RAT~ NUMBER DIMENSION VALUES RAT-
c F S N EE ING_ c F S N fE ING
4 1 1 1 0 49 4.8 12 1 1 0 0 55 5.0
/ 1 0 1 0 33 54 2 0 1 1 0 5251
15 l1 0 1 1 3.2 51 14 0 ¢ 0 1 3,9 5.2
13 i1 1 0 1 4.8 5.2 10 0 0 0 0 3.1 55
5 0 1 1 1 45 5,2
Prototype:1 1 1 1 Prototype:0 0 0 O

Key comparison is stimulus 4 vs stimulus 7
* Prototype model would predict stimulus 4 is easier to learn
It’'s more similar to the prototype
 Exemplar model would predict stimulus 7 is easier to learn
- Has two near neighbors, 15 and 4
 Behavior results favor exemplar model: stimulus 7 had
fewer error (FE) and higher confidence rating



Medin & Schaffer Experiment 2

Rational rules can account for enhancement by
neighboring exemplars

Table 3
The category structure of Medin & Schaffer (1978), with the human data of Nosofsky et al. (1994a), and the

predictions of the Rational Rules model (b = 1). probability of classifying as category “A”

Object Feature Values Human RRpnF
A1 more like prototype (all 0’s) 0001 0.77 0.82
A2 more like other exemplars 0101 0.78 0.81
A3 0100 0.83 0.92
A4 0010 0.64 0.61
A5 1000 0.61 0.61
R2 = 0.98
" " " 1 ‘ ‘
Rational rules accounts for this by reliance on
A3
rules that often use Features 1 and 3, and not 08 S
often Feature 2 A
§ 0.6 T1, A5
g "Te
g T2 B2
= 041 T4' *B
. T5
02f "53
‘B4

0 0.2 04 0.6 0.8 1
RR predictions



Human

B Model
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Individual generalization patterns

Probability of responding with the indicated categorizations of 7 transfer stimuli

famous “5-4” category structure
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People don’t necessarily favor linearly separable
categories (as accounted for by ALCOVE)

linearly non-linearly
separable separable

Figure 10. Category structures used by Medin and Schwanenflugel
(1981, Experiment 4). (The linearly separable structure is a subset of
Type 1V in the Shepard, Hovland, and Jenkins, 1961, studies [cf. Figure
4], whereas the nonlinearly separable structure is the corresponding
subset from Type 111)

linearly separable condition:
people had 39.5 errors on
average

non-linearly separable
condition: people had 38.0
errors on average

(criterion was two error-free
passes through stimuli)



Rational rules can learn NLS concepts more easily
than LS

A complexity 4 rule perfectly discriminates the NLS case, but you
need a more complex rule for the LS case

(a) (b)
0.5 I I 0.4 T T T T T T T T
-—0--Concept LS _\.\’ ‘‘‘‘‘ Concept LS
0.45F o-\. _ —6e— Concept NLSH 0351 ~_ | — Concept NLS
0.4F
0.3
0.35¢
% -
. 03 £ 0.2
:
= 0.25 S 02
g o,
- S
0.2F £
g 0.15
0.15¢
0.1
0.1F
0.05- 0.05r
O 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9
Block b

Fig.5. (a) The human data from Medin and Schwanenflugel ( 1981) for the category structures in Table 4, showing
that linearly separable Concept LS was more difficult to learn than Concept NLS, which is not linearly separable.
(b) Predictions of the RRpnr model: the probability of an incorrect response versus the outlier parameter b.



