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Agenda for today

• What is this course?


• Mini-lecture / history lesson, and 
topic overview


• Introductions and getting to know 
each other



“Without concepts, mental life would be chaotic” (Smith & Medin, 1981)

chairs

windows

desks

computer





Concepts can be hierarchical and cross-cutting
animals

food

?

?

fruit
artifacts



dog and owner playing catch with a ball

people watching dogs 
running

two people sitting on

a bench and talking

Concepts can be relational



Concepts can be abstract

electron infinity galaxy

wisdom,

cancer,


love,

peace,

money,


…



To make inferences:  if you know an object is a “dog”, 
you also know that:

-it is a mammal,

-it can bark,

-probably likes squirrels,

-likes to eat doggy chow,

-etc.


To process information efficiently:
You can summarize an event as “I saw a dog.” You don’t 
need to store all the pixels in the image for memory, 
reasoning, etc.

Why do we have concepts?



Why do we have concepts?

Example: Going to a movie 
in a new city


1) Identify the theater

2) Identify the box office

3) Buy a ticket

4) Sit quietly through the 

movie

5) When you see the 

credits role, get up and 
leave


None of this is possible 
without concepts and 
categories



input output:
“daisy”

layers of feature maps

Recurrent neural network

Deep convolutional neural network

Today’s lecture: Two very important 
types of neural network models

Intelligent machines need concepts, too!

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.
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(Krizhevsky et al., 2012)

object recognition finding similar images
probe similar images…



Categories vs. Concepts

• A category is a set of objects in the world that have 
some commonality


• A concept is a mental representation of a category


• Often one is really referring to both, and so you can use 
either term


• Psychology often asks what category people are using, 
as well as what is in their heads



Two strands in the psychology of concepts

1) Experimental psychology, learning theory, 
computational modeling


2) Knowledge representation and domain knowledge



Strand 1: Experimental psychology, 
learning theory, computational modeling


This strand focuses on:


• Underlying learning mechanisms


• Effects of category structure on learning and 
representation


• Laboratory experiments


• Interaction with attention, memory, conditioning, etc.



Strand 2: Knowledge representation and 
domain knowledge


This strand focuses on:


• Studying existing concepts: fish, weapons, personality 
types


• These studies cannot manipulate category structures 
directly— often don’t have a “condition 1” and “2”


• Less emphasis on computational modeling and learning, 
more emphasis on knowledge representation 


• Wider populations tested: children, different cultures, 
different levels of expertise


• Greater emphasis on how concepts relate to one 
another and to general knowledge



• Actually held classically (Aristotle’s On Categories)


• View of the person on the street


• Can be identified in many early papers even when it is 
not explicitly described 


• Assumed in some form or another in all work prior to 
1970s

The Classical View




The Classical View


• Concepts can be defined: there are necessary and 
sufficient conditions for category membership


• bachelor: an unmarried man


• prime number: a number not divisible by any number 
besides “1” and itself


• triangle: a polygon with three sides


• Important implication: membership is all-or-nothing. 
All members of a category are equally good members.



Hull’s (1920) thesis
• Supposed Chinese characters

• Subjects saw many different characters and had to 

learn to provide different names for them

• 12 names and 12 examples per name (i.e., categories)



Category “oo” or “ta”?

oo



Category “oo” or “ta”?

ta



Category “oo” or “ta”?

ta



Category “oo” or “ta”?

oo



Category “oo” or “ta”?

oo



Category “oo” or “ta”?

ta



The classical view is clear from Hull’s writing: “All of the individual experiences which 
require a given reaction must contain certain characteristics which are at the same 
time common to all members of the group requiring this reaction and which are NOT 
found in any members of the groups requiring different reactions.”


defining feature examples from demo



Experiments were harder to run in 1920…



Smoke (1932)
• Seemed to be criticizing the classical view. Wasn’t.


• Smoke, after quoting Hull’s passage about defining 
concepts with a common characteristic, writes that “It is 
our contention that if any concepts have ever been 
formed in any such fashion, they are very few in 
number. We confess our inability to think of a single 
one.”


• But his concepts still had clear definitions (just more 
complex ones):


A “dax” is a circle and two dots, one dot inside and 
one outside the circle

A “zif” is three dots, the distance between the two 
farthest dots being twice the distance between the 
two nearest dots




What happened next?

• Nothing


• Perhaps due to the dominance of behaviorism, there 
was very little done in the psychology of concepts for 25 
years or so


• Bruner, Goodnow, & Austin (1956) revived the 
psychology of concepts

• still well within classical view, but using cognitive 

approach (people had hypotheses, and learned 
mental rules)




What did you study in the classical view?

• e.g., Shephard, Hovland, and Jenkins 
(1961) studied the difficulty of learning 
various rule structures (Type I [easiest] 
> II > III, IV, V > VI [hardest] )

• number of dimensions

• salience of dimensions

• rule type

• stimulus presentation (all 

at once or sequentially)

• effects of practice

• etc.



Is the classical view too good to be true?

• Yes


• Next week we will see the downfall of the Classical 
View.


• For now, let’s talk about the remaining course logistics..




9/11 Introduction; the classical view

9/18 Prototype and exemplar theories

9/25 Concepts as theories and the knowledge view

10/2 Computational models of category learning (part 1)

10/10 (Note special Tuesday time due to Fall recess) 

Computational models of category learning (part 2)

10/16 Computational models of category learning (part 3)

10/23 Computational models of category learning (part 4)

10/30 Taxonomic organization and the basic level

11/6 Category-based induction

11/13 Concepts in infancy

11/20 Conceptual development

11/27 How categories influence perception

12/4 Conceptual combination and exemplar generation

12/11 TBD

Final paper proposal due (Monday 11/13)

Final paper due (Wed 12/13)


Course agenda

(subject to change based on pacing and interest)

(this, and all material that follows, is on the course website/syllabus)

We have a lecture/discussion format, with a goal of ~30 minutes of 
discussion per class



Exemplar vs. prototype theories

Bird? Birds  
You’ve Seen Prototypical 

Bird 

prototype theoryexemplar theory



Concepts as theories and the 
knowledge view



Computational models of category learning

tial regions h ! H. H forms a set of exhaustive and mutu-
ally exclusive possibilities; that is, one and only one element
of H is assumed to be the true consequential region for C
(although the different candidate regions represented in H
may overlap arbitrarily in the stimuli that they include). The
learner’s background knowledge, which may include both
domain-specific and domain-general components, will of-
ten translate into constraints on which subsets of objects be-
long to H. Shepard (1994) suggests the general constraint
that consequential regions for basic natural kinds should
correspond to connected subsets of psychological space.
Applying the connectedness constraint to the domains of
hormone levels or worm pigmentation levels, where the rel-
evant stimulus spaces are one-dimensional continua, the
hypothesis spaces would consist of intervals, or ranges of
stimuli between some minimum and maximum conse-
quential levels. Figure 1 shows a number of such intervals
which are consistent with the single example of 60. For sim-
plicity, we have assumed in Figure 1 that only integer stim-
ulus values are possible, but in many cases both the stimu-
lus and hypothesis spaces will form true continua.

At all times, the learner’s knowledge about the conse-
quential region consists of a probability distribution over
H . Prior to observing x, this distribution is the prior prob-
ability p(h); after observing x, it is the posterior probability
p(h!x). As probabilities, p(h) and p(h!x) are numbers be-
tween 0 and 1 reflecting the learner’s degree of belief that
h is in fact the true consequential region corresponding to
C. In Figure 1, p(h!x) for each h is indicated by the thick-
ness (height) of the corresponding bar. The probability of

any h that does not contain x will be zero, because it cannot
be the true consequential region if it does not contain the
one observed example. Hence, Figure 1 shows only hy-
potheses consistent with x ! 60.

2.2. How does the learner use that knowledge 
to decide how to generalize?

The generalization function p(y ! C !x) is computed by
summing the probabilities p(h!x) of all hypothesized con-
sequential regions that contain y:1

We refer to this computation as hypothesis averaging, be-
cause it can be thought of as averaging the predictions 
that each hypothesis makes about y’s membership in C,
weighted by the posterior probability of that hypothesis. Be-
cause p(h!x) is a probability distribution, normalized to sum
to 1 over all h ! H , the structure of Equation 1 ensures that
p(y ! C!x) will always lie between 0 and 1. In general, the
hypothesis space need not be finite or even countable. In the
case of a continuum of hypotheses, such as the space of all
intervals of real numbers, all probability distributions over
H become probability densities and the sums over H (in
Equations 1 and following) become integrals.

The top panel of Figure 1 shows the generalization gra-
dient that results from averaging the predictions of the in-
teger-valued hypotheses shown below, weighted by their

Tenenbaum & Griffiths: Generalization, similarity, and Bayesian inference

BEHAVIORAL AND BRAIN SCIENCES (2001) 24:4 631

Figure 1. An illustration of the Bayesian approach to generalization from x ! 60 in a one-dimensional psychological space (inspired by
Shepard 1989, August). For the sake of simplicity, only intervals with integer-valued endpoints are shown. All hypotheses of a given size
are grouped together in one bracket. The thickness (height) of the bar illustrating each hypothesis h represents p(h!x), the learner’s de-
gree of belief that h is the true consequential region given the observation of x. The curve at the top of the figure illustrates the gradient
of generalization obtained by integrating over just these consequential regions. The profile of generalization is always concave regard-
less of what values p(h!x) takes on, as long as all hypotheses of the same size (in one bracket) take on the same probability.

(1)
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Exemplar / neural net models
 Bayesian concept learning


input output:
“daisy”

layers of feature maps

Recurrent neural network

Deep convolutional neural network

Today’s lecture: Two very important 
types of neural network models

Classification in contemporary AI




Computational models of category learning

Causal models of categorization
Background knowledge in 
category learning




Taxonomic organization and the basic level


ents dropped off more steeply at the basic level, with a soft
threshold: Most test items from the same basic-level category were
chosen, but relatively few superordinate matches were chosen.
With three examples, adults’ generalizations sharpened into a
much more all-or-none pattern. Generalizations from three exam-
ples were almost always restricted to the most specific level that
was consistent with the examples: For instance, given three Dal-
matians as examples of feps, adults generalized only to other
Dalmatians; given three different dogs (or three different animals),
adults generalized to all and only the other dogs (or other animals).

With the above overview in mind, we turn to statistical analyses
that quantify these effects. Later we present a formal computa-
tional model of this word-learning task and compare it with the

data from this experiment in more quantitative detail. All analyses
in this section were based on one-tailed t tests with planned
comparisons based on the model’s predictions. Data were col-
lapsed over the three different superordinate categories and over
the different test items within a given level of generalization
(subordinate, basic, and superordinate). For each of the four kinds
of example sets (one, three subordinate, three basic-level, three
superordinate) and each of the three levels of generalization, each
participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
given that kind of example set. The means of these scores across
participants are shown in Figure 5. Because participants almost
never (less than 0.1% of the time) chose any distractors (test items
outside of an example’s superordinate category), subsequent anal-
yses did not include these scores.

Two questions were addressed with planned t tests. First, did
participants generalize further in the one-example trials compared
with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
did participants restrict their generalization to the most specific
level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants

Figure 4. The test set of 24 objects used to probe generalization of word meanings in Experiment 1. For each
training set in Figure 3, this test set contains two subordinate matches, two basic-level matches, and four
superordinate matches. The circled number underneath each object is used to index that object’s location in the
hierarchical clustering shown in Figure 7.

Figure 5. Adults’ generalization of word meanings in Experiment 1,
averaged over domain. Results are shown for each of four types of example
set (one example, three subordinate [sub.] examples, three basic-level
examples, and three superordinate [super.] examples). Bar height indicates
the frequency with which participants generalized to new objects at various
levels. Error bars indicate standard errors.
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with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
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level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
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ents dropped off more steeply at the basic level, with a soft
threshold: Most test items from the same basic-level category were
chosen, but relatively few superordinate matches were chosen.
With three examples, adults’ generalizations sharpened into a
much more all-or-none pattern. Generalizations from three exam-
ples were almost always restricted to the most specific level that
was consistent with the examples: For instance, given three Dal-
matians as examples of feps, adults generalized only to other
Dalmatians; given three different dogs (or three different animals),
adults generalized to all and only the other dogs (or other animals).

With the above overview in mind, we turn to statistical analyses
that quantify these effects. Later we present a formal computa-
tional model of this word-learning task and compare it with the

data from this experiment in more quantitative detail. All analyses
in this section were based on one-tailed t tests with planned
comparisons based on the model’s predictions. Data were col-
lapsed over the three different superordinate categories and over
the different test items within a given level of generalization
(subordinate, basic, and superordinate). For each of the four kinds
of example sets (one, three subordinate, three basic-level, three
superordinate) and each of the three levels of generalization, each
participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
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Basic level

(e.g., “Dog”)

Superordinate level

(e.g., “Animal”)



Category-based induction


Features!

Horse!
Cow!

Chimp!
Gorilla!
Mouse!
Squirrel!
Dolphin!

Seal!
Rhino!

Elephant!

f (1) f (m)f (2), ...,

Structure

Data f (k)
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S

p(S|f (1), ..., f (k)) �
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p(f (i)|S)p(S)

Find structure S that maximizes the objective function:
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Cow!

Chimp!
Gorilla!
Mouse!
Squirrel!
Dolphin!

Seal!
Rhino!

Elephant!
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dolphin

squirrel

seal
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rhino

chimp

gorilla

mouse

(Gaussian Markov Random Field
with latent variables)

observed variable
(object)
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Key

Likelihood favors
 fit to the data

Prior favors
 sparse graphs

Structural sparsity algorithm for discovering 
organizing structure in data

(Lake, Lawrence, & Tenenbaum, under review)
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Features! New property!

? 

Horse!
Cow!

Chimp!
Gorilla!
Mouse!

Squirrel!
Dolphin!

Seal!
Rhino!

Elephant!

Property induction

“Given that cows and seals have T9 hormones, how 
likely is it that horses do?”

Features for Elephant:  ‘gray’, ‘hairless’,  ‘toughskin’, ‘big’, ‘bulbous’, ‘longleg’, ‘tail’,  ‘chewteeth’, 
‘tusks’, ‘smelly’, ‘walks’, ‘slow’, ‘strong’, ‘muscle’, ‘fourlegs’,…

f (1)
f (m)f (2), ...,

new property
Features for Elephant:  ‘gray’, ‘hairless’,  ‘toughskin’, ‘big’, 
‘bulbous’, ‘longleg’, ‘tail’,  ‘chewteeth’, ‘tusks’, ‘smelly’, ‘walks’, 
‘slow’, ‘strong’, ‘muscle’, ‘fourlegs’,…

P (fY = 1|fX = 1)

background knowledge structure inference

Question: “Given that cows and seals have T9 hormones, how likely is 
it that horses do?”

To make inferences:  if you know an object is a 
“dog”, you also know that:

-is a mammal,

-it can bark,

-probably likes squirrels,

-likes to eat doggy chow,

-etc.




Conceptual development


Figure 1. The animals and vehicles used as stimuli for the global categorization task 
in Experiment 1. 

Here is a “dax”

Which is the other “dax”?



How categories shape perception


Advanced Review wires.wiley.com/cogsci

FIGURE 1 | An illustration of categorical perception. When an
observer looks at objects (chickens) that fall into two or more categories
(coops), differences among objects that fall into different categories are
exaggerated, and differences among objects that fall into the same
category are minimized. Conceived by Robert Goldstone, Made
perceptual by Joe Lee.

sea lions may possess equivalence classes, as Schuster-
man et al.5 have argued that these animals show free
substitution between two entities once they have been
associated together.

CP provides a mechanism for the origin of these
(near-) equivalence classes. By CP, our perceptual
systems transform relatively linear sensory signals
into relatively nonlinear internal representations. The
extreme case of this kind of nonlinear transformation
is a step function by which increases to a sensory signal
have no effect on perception until the signal reaches
a certain threshold. At that threshold, perception
changes qualitatively and suddenly. During the flat
portion of the staircase function, different input
signals have equivalent effects. Hence, CP can provide
us with equivalence classes, the beginning of proto-
symbolic thought.

Why would we, or mother nature, want to
build cognitive systems with equivalence classes?
One reason is that they are relatively impervious
to superficial similarities. Once one has formed a
concept that treats all skunks as equivalent for some
purposes, irrelevant variations among skunks can be
greatly deemphasized. People may never be able to
transcend superficial appearances when categorizing
objects,6 nor is it clear that they would want to.7 Still,
one of the most powerful aspects of concepts is their
ability to make superficially different things alike.8 If
one has the concept ‘Things to remove from a burning
house’, even children and jewelry become similar.9

Across modalities, the spoken phonemes /d/ /o/ /g/,
the French word ‘chien’, the written word ‘dog’, and

a picture of a dog can all trigger one’s concept of
dog,10 and although they may trigger slightly different
representations, much of the core information will be
the same. Equivalence classes are particularly useful
when we need to make connections between things
that have different apparent forms.

Equivalence classes are particularly useful when
we need to make connections between things that
have different apparent forms. CP is the first stage of
this process of responding to the essential, rather than
superficial, aspect of an entity. It is the same reason
why most current electronics are digital: To provide
tolerance to superficial variation in voltage signals that
are irrelevant to the critical information. It may well
be that current computers are too brittle because they
throw away too much analog variation in their pursuit
of discrete symbols. Still, it is worth remembering that
the informational system benefiting from the most
years of ‘research and development’, provided by
evolution is the genetic code of life itself, which closely
approximates a digital code consisting of nucleotides
and codons. Complex cellular machinery is dedicated
to assuring that the code is relatively inert, and is
protected from many contextual influences.11 It is
reasonable to think that our cognitive system benefits
from the same strategy of developing (quasi-)reusable
codes.

CP IN SPEECH
As operationalized in psychology, CP is said to
be present when people more reliably distinguish
physically different stimuli when the stimuli come
from different categories than when they come
from the same category.12 The effect was originally
established with speech phoneme categories. For
example, Liberman et al.13 generated a continuum
of equally spaced consonant-vowel syllables with
endpoints reliably identified as /be/ and /ge/, as
shown in Figure 2 (top left graph) by varying the
second formant transition.14 There is a point (around
stimulus value 4) where there is a relatively rapid
decrease in the probability of observers hearing the
sound as a /be/ to hearing it as /de/. At a later
point, around values 9 and 10, observers rapidly
shift from /de/ to /ge/ identifications. In addition to
giving participants an identification task, participants
were also given an ABX discrimination task. In this
task, observers listened to three sounds—A followed
by B followed by X—and indicated whether X was
identical to A or B. Observers performed the task
more accurately when syllables A and B belonged
to different phonemic categories, as indicated by
their identification probabilities, than when they

 2009 John Wi ley & Sons, L td.



Conceptual combination


“pet” “fish”

“pet fish”

? ?



Be prepared for a lot of reading
• There is a substantial amount of required reading — one book chapter, and 2 

or 3 papers per week…


• We will focus on classic empirical and modeling papers

Example from next week:

Prototype and exemplar theories


Big Book; Chapter 2 and Chapter 3

    Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of 
categories. Cognitive Psychology, 7(4), 573-605.

    Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. 
Psychological Review, 85, 207-238.




Textbook



Grading

• Final paper (65%)

• Weekly response papers (35%) 

• Class participation will be used to decide grades in borderline cases. If 

you feel sick, you can let me know and please don’t come to class! You 
can make it up later.



Response papers
• Each week you will write a mini-paper (about 4 paragraphs or about 600 

words) in which you will critique the week’s readings, discuss an issue 
raised by it, or propose a new experiment based on it.


• Responses are posted on EdStem (see link on website to sign up)


• Post your response to the class EdStem page before class (the night 
before would be preferred)



What makes a good response paper?

• There are many ways to write a good response paper, and I would rather 
leave it up to you than impose a rigid formula. 


• Please focus on what issues are most important or interesting and to think 
about, and what questions are unresolved. Do not give a list of minor 
questions or flaws. 


• Articulate an opinion about the readings, rather than write an exhaustive 
summary.


• You may skip one weekly response, but any other missed ones will need to 
be made up.


• Your responses will be graded on a check-plus, check, or check-minus basis, 
with most responses receiving a check.



Final paper

• Final paper due date is Wed 12/13


• The final paper is written individually (no groups).


• The final paper should address one of the topics covered in the 
class in more detail. Alternatively, it could investigate a topic that 
was not covered in class. Either way, the paper should 
demonstration your knowledge of the material covered in class.

• The paper should include a critical review of the literature, along 
with theoretical conclusions or suggestions for future research. I 
would expect papers to be about 12 pages long


• If you want to link the paper to your research, that’s encouraged.


• Final assignment proposal due on Mon 11/13 (one half page 
written).



Pre-requisites and expectations
• This course is for graduate students in cognitive science and related fields. 

All students are expected to have previous coursework in psychology.


• Computational modeling has been central to the study of concepts and 
categories, and we will cover more computational modeling than in past 
versions of the class.


If you have taken "Computational cognitive modeling” with me, 
you're in a great position.

If you have had linear algebra and statistics as an undergraduate, or 
MathTools, you will also be in the a good position to understand the 
modeling details.

If you don't have either, don't fret! Talk to me if you are unsure.


• Computer programming will not be used in this course, and we will not be 
implementing models as part of the class. (if you would like to do this on the 
side, I am happy to provide guidance)



• Currently enrolled in what type of program:

• Psychology Ph.D.? Psychology Masters? Other graduate program? 

Undergraduate?


• Previous coursework:

• Cognitive psychology? Cognitive development? Cognitive modeling? 

Probability, statistics, MathTools?


• Who knows about:

- Category typicality?

- Family resemblance?

- Basic-level categories?

- Ad hoc categories? 

- Theory theory?

- ALCOVE model?

- Backpropagation?

- Bayes’ rule?


Background survey



What you will come away with…

A deeper understanding of the major topics in the psychology of concepts:


1. Classic empirical findings


2. Main theories of concepts, including the classical view, prototype models, 
exemplar models, and the knowledge view


3. Influential computational models of concept learning, with a focus on neural 
networks and Bayesian models 


4. Other key topics including taxonomic categories, category-based induction, 
conceptual development, categorical perception, and conceptual combination



Questions?



Introductions

1) Your name

2) department / degree program

3) Why are you taking this course? What do you hope to learn?



